Найдите работу "специалист по нейросетям" В нашей базе бесплатно доступны 35 100 вакансий в Санкт-Петербурге. Почти половина руководителей российских компаний и начальников отделов фирм считают, что нейросети сумеют заменить специалистов нескольких профессий. Разработчик нейросетей — это программист, который разрабатывает математические модели машинного обучения по типу нейронных связей головного мозга. Искусственный интеллект и профессии: какие специальности, связанные с ИИ и нейросетями, ждет бурное развитие и высокий спрос. Введение в ИИ и нейросети, знакомство с профессией.
Огонь нейросетей: как попасть в индустрию
Мария Кузнецова Мария Кузнецова С января по ноябрь 2023 года российские работодатели разместили более 12,6 тыс. По данным исследования, у российского бизнеса растёт интерес к работникам, понимающим как развивать, обслуживать и работать с нейросетями. Так, за неполные 11 месяцев 2023 года на сайте рекрутингового ресурса было размещено более 12,6 тысяч вакансий, в которых упоминался ИИ. При этом в целом на Северо-Западе страны бизнес опубликовал более 2,2 тыс.
Например, писать запросы и анализировать их на странные реакции и ошибки, а затем давать нейросети новый набор данных для изучения.
Нейроиллюстратор Как появилась. Ещё в 1968 году прошла выставка Cybernetic Serendipity, где часть произведений была написана с помощью алгоритмов. В 1973 году художник Гарольд Коэн создал программу, которая рисовала картины с помощью руки робота. А первую в истории картину, которая была полностью сгенерирована ИИ в современном понимании, продали на аукционе в Нью-Йорке в 2018 году.
С того момента люди стали активнее генерировать изображения для личных и бизнес-целей. Нейросеть быстро создаёт картинку, но её всё равно приходится дорабатывать. Поэтому работодатели стали искать специалистов, которые могли бы грамотно составлять запросы, получать изображения и доводить их до финального результата. В ответ на этот запрос появилась отдельная профессия — нейроиллюстраторы.
С помощью Midjourney, DALL-E или других подобных нейросетей иллюстратор может создать одно изображение или серию картинок в едином стиле. Например, Шедеврум от Яндекса выдаёт четыре варианта картинки, чтобы пользователь выбрал самую подходящую. Но для точного результата художнику нужно грамотно составить запрос, — на это иногда могут уходить часы. Нейроиллюстраторам не обязательно уметь рисовать на бумаге, но им нужны знания фотошопа и других графических редакторов, а также насмотренность и чувство стиля.
Картинку от ИИ придётся дорабатывать: корректировать цвет, стирать или детальнее прорисовать предметы. Нейросети помогают создавать логотипы, арты, баннеры, картины, фотосессии и прочее. Это быстрый и зачастую бюджетный вариант сделать дизайн чего-то. Но это не значит, что графические дизайнеры больше не нужны: просто теперь им важно совершенствовать свои скиллы и изучать нейросети.
Такие услуги нужны многим компаниям, поэтому чем лучше иллюстратор разбирается в алгоритмах и запросах в этой сфере, тем востребованнее его услуги на рынке. Нейрокопирайтер Как появилась. Если можно генерировать изображения, получать ответы на вопросы, почему не попробовать писать тексты? Параллельно с развитием других профессий в сфере ИИ появились и нейрокопирайтеры.
Они начали тестировать новый инструмент: придумывать с его помощью идеи для контента, заголовки, структуры для объёмных статей или сразу готовые посты и письма. Мы спросили у нейросети YandexGPT, кто такой нейрокопирайтер, и получили следующий ответ: «Нейрокопирайтеры — это специалисты в области создания и редактирования текстов, которые используют технологии нейросетей и искусственного интеллекта для улучшения качества и эффективности контента. Они анализируют данные, проводят исследования и применяют алгоритмы машинного обучения для оптимизации текстов, чтобы повысить их привлекательность для целевой аудитории и достичь поставленных бизнес-целей». А на вопрос, какие задачи решает нейрокопирайтер с помощью нейросетей, YandexGPT выдала целый список: Анализ данных.
Нейросети могут анализировать большие объёмы данных, таких как поведение пользователей на сайте, поисковые запросы, социальные медиа и т.
Оказалось, что неприкосновенных для ИИ сфер человеческой деятельности остается все меньше и открывается простор для новых тревожных прогнозов. Насколько реальна опасность На самом деле, утверждения, что роботы или нейросети оставят без работы представителей той или иной профессии, звучит чаще всего в заголовках новостей и журналистских статьях. Даже в названиях своих исследований ученые используют более мягкие формулировки: Насколько профессии восприимчивы к автоматизации? Исследование компании McKinsey и вовсе показывает: только незначительное количество профессий будут полностью автоматизированы с помощью современных технологий. В остальных роботы или ИИ станут выполнять только отдельные задачи. Дело в том, что, хотя ChatGPT или Midjourney нейросеть, которая генерирует изображения способны быстрее человека обрабатывать огромные объемы информации и предлагать большое количество разных решений, запрос, корректировка и оценка работы остаются за людьми. Ведущая роль — роль креатора — по-прежнему принадлежит дизайнерам, копирайтерам, преподавателям или программистам. Но теперь их задача — правильно задать вопрос, чтобы быстрее получить результат, с которым можно работать.
В этом смысле технологии остаются тем, чем и были ранее — инструментом в руках Homo sapiens.
В основном требуются хорошие знания математики, Python, а также алгоритмов и библиотек машинного обучения. Профессия в целом не новая, но вероятно мы еще увидим больше вакансий и рост зарплат, так как новые достижения могут сильно изменить экономику разных отраслей. Представьте, что кто-то нехороший нарисует несколько тысяч или даже миллионов оскорбительных картинок, да еще в разных стилях, и потом начнет заливать их в соцсети.
Именно поэтому может вырасти нужда в специалистах по модерации. Конечно, часть контента уже фильтруют с помощью алгоритмов компьютерного зрения, но определять к примеру на сколько оскорбителен контент для каких-то групп пользователей все еще очень сложная задача. Вероятно, вырастет потребность в модераторах более "высоких" сущностей: смешная ли картинка, красивая ли? То есть станет больше потребность в субъективных мнениях от живых людей.
Но учитывайте, что пока что в компаниях все еще нужно проверять много такого контента, после которого потом придется долго лечится у психотерапевта. Но также улучшились модели, которые создают качественные и логичные тексты см.
Назван список профессий, по которым сильнее всего ударит ИИ. Программисты в безопасности
Мечтаете, чтобы вас изобразил великий художник Пикассо или Малевич? Проще простого — Русский музей запустил собственную нейросеть, которая генерирует портреты в стиле работ Брюллова, Серова, Врубеля и других гениев живописи. Художники творили свои произведения месяцами, нейросеть справится за несколько часов. А вот ещё одно преображение и на фасаде дома в стиле фильмов Алексея Балабанова. Вместо рождественского Нью-Йорка мрачные улицы и панельные дома, Кевин МакКаллистер выживает в суровой России и 90- х. После долгих съемок в России звезда боевиков Джейсон Стэйтем нашёл-таки своё счастье и к 60-ти годам остался жить в глубинке нашей необъятной родины, приворожённый борщом местной поварихи.
По мнению экспертов, рынок профессий, взаимодействующих с ИИ, будет только расширяться. В дальнейшем все больше и больше людей свяжут с нейросетями свое карьерное развитие. Ранее о внедрении нейросети ChatGPT-4 в процесс обучения сообщила онлайн-школа английского языка Skyeng. Виртуальный собеседник Кеша позволит ученикам в любое время практиковать язык и закреплять полученные на уроках навыки.
То есть дизайнер — это мозги и творчество, а нейросеть — это условно руки, руки и механизмы? Кулинкович: Все сложно. Давайте обрисую, в целом, систему. Николай Иронов для начала — это не одна нейросеть, это большое количество разных алгоритмов, наборов алгоритмов, которые работают в ансамбле между собой.
Собственно, рождение Николая Иронова — это не рождение какой-то одной технологии генеративного дизайна. Это рождение правильно срежиссированной комбинации технологий. И с момента рождения Николая, когда мы всем рассказали о том, что он существует, о том, что он выполняет дизайн задачи, его мозги пересобрались уже очень-очень много раз. И вот они сейчас снова в одном шаге от того, чтобы пересобраться с использование новых технологий, которые появились на рынке.
Соответственно, дизайнеры, которые занимаются этим проектом, их задача заключается в том, чтобы правильные технологии объединить в правильный пайплайн — последовательность действий, когда результат одного алгоритма правильно передается правильный результат другому алгоритму, и вот так вот по этому конвейеру получается какой-то новый результат. Соответственно, дизайнеры Иронова проектируют примерный диапазон, изобразительный диапазон, учат его новым стилям, подключают к нему новые шрифты и так далее. И вот здесь мы упираемся в то, что задача дизайнера, она на самом деле и раньше была такой — применить какое-то изобразительное решение в правильный контекст. Потому что поставщиками потребностей всегда были и будут люди.
Соответственно, принять правильное решение, какой из десятков и даже сотен вариантов подходит лучше всего, - это была, есть и будет истинная работа дизайнера, потому что дизайн делается людьми, для людей. А сейчас, с появлением роботов, просто у нас появляется некоторая компонента, которая называется искусственным интеллектом, которая позволяет: а делать это масштабировано, то есть в больших масштабах, вместо трех вариантов логотипа выбирать из тысячи, б позволяет это делать непредсказуемо. Собственно, в этот все отличие от того, что сейчас называется искусственным интеллектом от алгоритмических каких-то результатов, в том, что мы часто получаем не вполне предсказуемый результат, и это очень похоже на то, как работает человек. Собственно, вот и вся разница.
Но корневая суть работы дизайнера — она не поменялась. Это было и есть подбор правильного варианта в правильные контексты. Гребенников: То есть определяет. Что красиво, сегодня дизайнер все еще, а не искусственный интеллект?
Кулинкович: Да, но… У нас, например, есть отдельные технологии внутри Иронова, которые позволяют отбросить совсем плохие варианты. То есть такой примитивный арт-директор, скажем так. И он помогает не выгружать на конечного пользователя весь массив данных, которые слишком шероховатые, слишком смелые, а как бы делать такой скоринг дизайн-решений, чтобы финальное решение было в каком-то более-менее приличном диапазоне. Поэтому мы все равно используем эти технологии, даже чтобы отсортировать какой-то большой массив выдачи, но финальное решение, конечно, принимает человек.
Гребенников: А как вообще происходит постановка технического задания искусственному интеллекту? Предположим, я — маленькая пекарня во Владимирской области. Я приходу в вашу студию и говорю: «Хочу себе классный логотип, чтобы ко мне приходило не 2 000 человек в месяц, а 15 000 человек. Я считаю, что вся проблема моя в логотипе».
Я говорю: «Хочу такой логотип, чтобы там был колосочек, хлебушек и круассанчик обязательно». Вы же куда-то это загружаете. Как происходит процесс формирования технического задания? И потом как искусственный интеллект осознает, что мне нужно как конечному клиенту?
Кулинкович: Начнем с того, что если вы предъявите задание живым людям, живым дизайнерам, то, скорее всего, если они будут достаточно с вами честны, то они скажут, что изменение логотипа не увеличит вашу выручку в 10 раз. Это первый момент. То есть если у вас была пекарня с плохим логотипом, а потом появляется некоторый бренд с хорошим логотипом, то едва ли это напрямую окажет влияние на ваши продажи. Косвенно, возможно, при правильном стечении обстоятельств, правильно посеве, да.
Но, скорее всего, это не является критерием хорошего логотипа. Второй момент заключается в том, что, если мы посмотрим на логотип пекарен и других каких-то бизнесов, связанных с хлебобулочными изделиями, там не всегда фигурируют колоски, не всегда фигурируют круассаны. А иногда это некий образ, визуальна интерпретация образа бизнеса, которая этим дизайнером и сделана. Соответственно, когда вы приходите в брендинговое агентство, где сидят живые люди, и они получают этот бриф, что еще происходит?
Они его творчески интерпретируют. Они смотрят, как выглядят булочные в этом городе, в округе, пытаются придумать что-то контрастное, что-то отличное от тех ребят, которые на той же улице торгуют круассанами. И, соответственно, они приходят с некоторыми дизайн-гипотезами, что кто-то решил, что это будет какой-то крестик красивый, в котором угадывается что-то такое. Кто-то решил пойти через концепцию семейности, семейного кафе, и вообще нарисовал сердечко, потому что вот «Приходите к нам.
Мы вас любим». И все такое. А кто-то прошел напролом и начал рисовать конкретно круассан, фотореалистично и так далее. И эти все подходы имеют право на жизнь, и в равнозначной степени вы можете получить такие варианты от живых людей.
В случае с Ироновым человек, без участия людей, он заполняет бриф, описывает свою компанию. Дальше у нас отдельная система, нейросеть, она интерпретирует бриф, то есть она из текста брифа достает некоторые образы, которые могут подходить под визуальное представление этой компании, как она может быть представлена в виде какого-то емкого символа либо знака. И дальше это по такой цепочке передается, появляются эти визуализации этих образов, они обогащаются разными шрифтовыми комбинациями, дальше подключаются отдельные алгоритмы, которые подбирают цветовые сочетания комплиментарные. В общем, там сложная-сложная штука.
Но по факту это точно то же самое, что происходит при работе с живым человеком. То есть интерпретируется некоторый текстовый ввод, так же как к вам приходит человек и что-то говорит, и вы как-то это трансформируете. Мы все эти шаги условно творческих мытарств алгоритмизировали, перевели в какие-то отдельные процессы? И клиент на выходе получает опыт, очень сопоставимый с опытом общения с живым дизайнером.
Только наш дизайнер не капризничает, не болеет. Коротнева: Не уходит в отпуск. Кулинкович Да, да, да. Гребенников: Скажите, а стоимость разработки логотипа… Логотип, предположим, я пришел за логотипом, искусственным интеллектом и обычным дизайнером в студии Артемия Лебедева отличается?
Есть какой-то прайс на искусственный интеллект и обычного дизайнера? Кулинкович: Да, конечно, отличается. Когда вы приходите лично в брендинговое агентство или дизайн-студию, помимо непосредственного конечного дизайнера, который сидит и визуализирует ваш логотип, в это вовлечено очень много людей на самом деле. Это юристы, которые помогают составлять договор; менеджеры, которые позволяют клиенту и дизайнеру услышать друг друга, перевести с одного языка на другой, и много-много всего.
Соответственно, когда вы работаете с живыми людьми, чаще всего дизайн — это операционный процесс, где клиент хочет, чтобы его услышали и некоторое врем поиграли с ним вот в эту игру «Согласование видения», да? Это все умножается на стоимость часов специалиста. И разные компании, конечно, по-разному, диапазон очень большой, но он может доходить до очень больших сумм. То есть если вы просто придете в большую дизайн-компанию, то разработка логотипа с нуля, где вас будут слышать, слушать долго и до победного, она может быть супердорогой, неподъемно дорогой для малого и среднего бизнеса.
Поэтому Иронов и другие генеративные технологии — это не просто про скорость, это про такую демократизацию дизайна, что если у вас не слишком много денег для того, чтобы играть во все эти чаепития и подписания договоров дорогостоящее, то вы можете пойти и получить из коробки сопоставимый по качеству результат. Просто процесс будет происходить несколько иначе. Вам нужно будет принять, что ваши какие-то правки и пожелания интерпретируются не прямым методом, а косвенным, в результате работы некоторых алгоритмов. Там могут быть шероховатости, а могут быть, наоборот, источники классных открытий в результате этого.
Гребенников: Вот вы говорите про открытия. А бывало так, что пришли две разные компании, диапазон полгода-год, и искусственный интеллект выдал одинаковый логотип на совершенно разные задачи, которые перед вами ставили? Такое происходит и с живыми людьми, то есть можно увидеть очень много примеров того, как дизайнеры думают похоже, скажем так. Гребенников: Назовем это так, хорошо.
Кулинкович: Ну да. Просто на самом деле очень часто, когда у вас большой объем работы, вы сделали 1 000 логотипов, наивно полагать, что в мире все ваши логотипы абсолютно аутентичны, потому что каждый день в мире сотни и тысячи дизайнеров генерят новые логотипы, а набор примитивов, из которых логотипная графика состоит, он довольно ограничен, потому что есть базовые формы: треугольник, прямоугольник, квадрат и так далее, которые так или иначе комбинируются. Если мы говорим условно, что даже у стран, которых ограниченное количество, есть очень похожие флаги, которые можно часто путать друг с другом, что уж говорить про логотипы, которых сотни тысяч генерируется каждый год. Соответственно, мы видим, что действительно могут появляться одинаковые работы, как у живых людей, так и нейросеть может генерировать одинаковые работы, и мы в этом не видим проблемы, потому что это было долгое время ранее.
Если где-то в Сингапуре еще существует похожая птицефабрика с таким же крестиком, таким же цветом и с таким же соотношением сторон исполнен, то едва ли эти бизнесы будут друг друга локтями толкать. Поэтому мы на это смотрим совершенно нормально компенсируем это объемом, то есть проблема плагиата существенна, когда у вас стоимость каждой итерации очень большая, а дизайнер уходит на следующую итерацию, неделю молчит, пыхтит и так далее. Но когда вы можете еще одним щелчком сгенерировать еще 100 альтернатив, то, в целом, это перестает быть проблемой. Но я предлагаю переходить от проекта Николай Иронов к другим генеративным технологиям, потому что летом прошлого года буквально весь интернет взорвала сеть Midjourney, которая создавала крутые классные визуальные картинки, и все были в полном восторге.
Но вместе с этим восторгом действительно возник вопрос о том, что «Зачем мне условно в штате держать дизайнера, если я могу загрузить свой достаточно вариант брифа, и нейросеть выдаст мне несколько классных вариантов: совершенно удивительных и визуально привлекательных. Сергей, давайте поговорим немножко про это. Во-первых, как вы думаете, какие перспективы развития у этих нейросетей? Насколько действительно хорошо они генерируют визуальные изображения, и какие риски это несет для творческих профессий?
Кулинкович: Спасибо за вопрос. Поскольку возможна какая-то профдеформация, и мы довольно давно находимся от в этой области генеративного дизайна. Просто сейчас из-за того, что искусственный интеллект как понятие тиражируется и как-то ассоциируется с нейросетевыми технологиями, и это сейчас на всех полосах газет и всяких изданий, на это все прожекторы устремлены, на самом деле генеративный дизайн существовал ранее просто в других жанрах. И он как тогда, так и сейчас создавая новые возможности, новые рабочие места, то есть сейчас есть отдельные ребята, которые используют эту технологию для того, чтобы решать подобные задачи за деньги.
Midjourney и другие ребята, они создают под себя, как Иронов, который создал новый рынок, который мы сделали, так и другие ребята. Они берут и просто используют это как инструмент. Раньше инструментом была кисть, к которой просто нужно было применить к ней механическое какое-то воздействие, и сколько-то лет опыта. Но, в целом, она выдавала такие же результаты.
Сейчас вместо этой кисти что-то другое.
Для детей, проявляющих интерес к программированию и анализу данных, обучение и развитие в области искусственного интеллекта может стать отличным выбором для успешной карьеры в будущем. Как подготовить ребенка к профессии оператора нейросетей? Если ваш ребенок проявляет интерес к программированию и анализу данных, подготовка к специальности оператора нейросетей может начаться уже в раннем возрасте. Вот несколько способов, как помочь развить необходимые навыки: Изучение основ программирования. Предоставьте ребенку возможность ознакомиться с основами программирования, начиная с простых языков, таких как Scratch или Python.
Постепенно школьник сможет изучить концепции, логику и алгоритмы, которые являются основой работы с нейронными сетями. Углубленное изучение математики и статистики. Математические и статистические знания являются важным элементом взаимодействия с нейросетями. Поощряйте ребенка изучать математические концепции и решать задачи, которые помогут ему развить навыки анализа данных. Прохождение онлайн-курсов. Существует множество онлайн-курсов по программированию и нейронным сетям, которые предоставляют возможность практического применения знаний и развития навыков.
IT-школы для детей помогают освоить множество смежных перспективных профессий. Создание собственных проектов. Поощряйте ребенка к самостоятельному созданию собственных проектов, используя нейросети. Это может быть разработка игры, создание рекомендательной системы или анализ данных.
Report Page
- Маркетолог назвал профессии, которые могут исчезнуть из-за нейросетей - АБН 24
- Будущее SMM-специалистов в эпоху нейросетей: интервью с хантером Аленой Владимирской
- Все новости
- Новая профессия – ПРОМПТ-инженер. Будет очень востребованной!
- «Моя мама учит нейросети говорить»: история многодетной челябинки, которая завязала с журналистикой
Неожиданные профессии, где используют нейросети
В прошлый раз, неделю назад, мы обсуждали ChatGPT, нейросети, технические аспекты, нюансы этих механизмов. Как появилась профессия тренера нейросетей Основные обязанности AI-тренера Ключевые навыки Где могут работать AI-тренеры Сколько зарабатывает тренер нейросетей Как стать AI-тренером Перспективы профессии Главные мысли. Многие задачи, связанные с обработкой и анализом больших объемов данных, могут быть автоматизированы. Профессия требует не только применять нейросети, но также строить и обучать модели для новых задач. где учиться работе с нейросетями. Промт-инженер знает, как получить доступ к нейросетям и взаимодействовать с ними через различные платформы и инструменты.
Назван список профессий, по которым сильнее всего ударит ИИ. Программисты в безопасности
Чаще всего соискатели не принимают предложения из-за низких зарплат. Также среди причин назвали несоответствия между тем, что указано в описании вакансии и реальными обязанностями. Еще одна часть отказов связана с неудобным графиком.
С развитием технологий и проникновением искусственного интеллекта в различные сферы жизни, профили, связанные с нейросетями, становятся более популярными и востребованными. Одной из таких перспективных специальностей является оператор нейросетей. Нейронные сети используются для решения сложных задач, таких как распознавание и генерация изображений или анализ баз данных. Когда человек обучает искусственный интеллект, он показывает ей много примеров и объясняет, что делать в каждой ситуации.
Она изучает эти примеры и находит закономерности, чтобы самостоятельно принимать решения. Например, если обучить нейросеть распознавать кошек на фотографиях, она сможет сама определить, что на изображении есть кошка. Профессия оператора нейросетей является перспективной и обещает широкие возможности карьерного роста и развития. Спрос на специалистов, обладающих навыками работы с нейронными сетями, постоянно растет, и множество инновационных компаний и стартапов ищут квалифицированных сотрудников в этой области.
Кто такой оператор нейросетей? Роль оператора нейросетей заключается в настройке, обучении и управлении нейронными сетями. Он осуществляет выбор и настройку алгоритмов анализа, оптимизирует параметры искусственного интеллекта и контролирует его действия. Оператор также отвечает за обработку и подготовку данных, выбор оптимальных моделей нейронных сетей и анализ результатов работы.
Для достижения успеха в этой области необходимы знания математики, статистики, алгоритмов и программирования. Оператор нейросетей должен быть в состоянии понимать сложные математические модели и алгоритмы, а также иметь навыки программирования для реализации и оптимизации нейронных сетей. Операторы нейросетей активно работают в различных сферах, включая медицину, финансы, робототехнику, автоматизацию производства и многом другом.
Предоставьте ребенку возможность ознакомиться с основами программирования, начиная с простых языков, таких как Scratch или Python. Постепенно школьник сможет изучить концепции, логику и алгоритмы, которые являются основой работы с нейронными сетями. Углубленное изучение математики и статистики. Математические и статистические знания являются важным элементом взаимодействия с нейросетями. Поощряйте ребенка изучать математические концепции и решать задачи, которые помогут ему развить навыки анализа данных. Прохождение онлайн-курсов. Существует множество онлайн-курсов по программированию и нейронным сетям, которые предоставляют возможность практического применения знаний и развития навыков.
IT-школы для детей помогают освоить множество смежных перспективных профессий. Создание собственных проектов. Поощряйте ребенка к самостоятельному созданию собственных проектов, используя нейросети. Это может быть разработка игры, создание рекомендательной системы или анализ данных. Это поможет ребёнку применить знания на практике и развить творческий подход к решению задач. Продолжительное обучение и самообразование. Стимулируйте ребенка читать книги, изучать новые технологии, следить за актуальными исследованиями и статьями. Помогите ему найти ресурсы и сообщества, где можно обмениваться опытом и учиться от других специалистов.
С их помощью производители осуществляют контроль качества, проводят диагностику оборудования, проектируют новую продукцию и т. Особую нишу заняли промышленные роботы, которые могут полноценно заменить сварщиков, шлифовщиков, сборщиков и других специалистов.
Что будет дальше Аналитики считают, что в ближайшем будущем нейросети продолжат «завоевывать» профессиональное и повседневное пространство людей. Отсюда в обществе возникла дискуссия: заменят ли технологии человеческий ресурс. По словам эксперта, страх общества, что компьютеры сместят людей с тех или иных работ, вполне оправдан. Активное развитие нейросетей приводит к тому, что многие специальности становятся неактуальными. Если ваша работа — получить список из 10 документов, взять из них какие-то данные и собрать их в 11-й документ, то, скорее всего, вас алгоритм заменит. Также опасность идет для тех, кто занимается сбором и анализом информации. Нейросеть это прекрасно делает, что показывают последние разработки. Например, такие как ChatGPT. И работа рерайтера, который берет 2-3 новости, материалы какие-то или вставляет новые для написания текста, тоже в ближайшее время, вероятно, будет заменена нейросетями», — рассуждает собеседник. Есть и другие профессии, где участие человека не потребуется, и в этом нет никакого «всемирного заговора», отметил Чечулин.
Речь идет о бизнесе, которому выгоднее задействовать компьютеры: они не спят, не едят, не отвлекаются, а только выполняют поставленную задачу. При этом развитие нейросетей даст новые профессии и рабочие места. Помимо самих создателей таких программ, потребуются операторы, которые будут давать системе грамотные запросы и задачи. Часто предприниматели не могут доступно сформулировать, что им нужно, а нейросеть не способна дать ожидаемого результата без четкой инструкции.
Огонь нейросетей: как попасть в индустрию
Какие профессии заменит искусственный интеллект | Вакансии связанные с нейросетями могут быть найдены на специализированных ресурсах, таких как |
Что делают разработчики нейронных сетей: суть работы, обучение | Разбираем, на что способны нейросети уже сегодня и какие профессии сможет заменить искусственный интеллект в ближайшем будущем. |
Какие профессии скоро может вытеснить нейросеть с рынка труда Metro | Недавно телеканал RTVI захотел рассказать о профессиях будущего и обратился за помощью к нейросети MidJourney. |
Нейросети на работе: какие задачи они могут взять на себя уже сейчас - Лайфхакер | Искусственный интеллект и профессии: какие специальности, связанные с ИИ и нейросетями, ждет бурное развитие и высокий спрос. |
Профессии, связанные с нейросетями: какой бывает работа будущего и как на нее устроиться | Использовать нейросети под силу каждому, независимо от опыта и профессии. |
Маркетолог назвал профессии, которые могут исчезнуть из-за нейросетей
Их основное достоинство заключается в том, что они позволяют выполнять рутинные задачи значительно быстрее, свести при этом к минимуму участие человека. Однако это не значит, что AI-системы смогут полностью заменить обычных сотрудников. Напротив, количество специальностей, связанных с искусственным интеллектом, сильно возрастет, так как работу нейросетей тоже нужно контролировать и модернизировать. Инженер по разработке искусственного интеллекта Это специалист, который занимается программированием ИИ, созданием алгоритмов и моделей машинного обучения, обработкой естественного языка и компьютерного зрения. Он выполняет разработку и поддержку систем, приложений на основе AI. Профессия инженера требует знаний в программировании, математике и машинном обучении. Средний уровень зарплаты этого специалиста в ИИ с опытом менее 1 года составляет 200-230 000 руб. Более опытные сотрудники получают до 500 000 руб. Однако путь в эту профессию достаточно тернистый.
Чтобы добиться успеха, надо иметь уникальный склад ума. В основном требуются знания математики, Python, алгоритмов и библиотек машинного обучения.
Например, это касается переводов, технической поддержки, подготовки аналитики, создания текста и дизайна.
Менее 40 процентов респондентов могут обратиться к нейросети в деле ведении коммуникации, написания кода и задачах, связанных с обучением людей. При этом наиболее остро, на взгляд респондентов, во внедрении искусственного интеллекта нуждаются сферы IT и финансов, маркетинг и сфера услуг.
Однако выбор финального результата, понимание всех тонкостей задач, работа с клиентом и внесение правок остается за человеком. Поэтому квалифицированные самозанятые в этих сферах также могут не опасаться за свои заказы. Скорее всего, ИИ будет применяться в этой сфере для выполнения типовых заданий и подготовки различных вариантов на основе существующего решения. В будущем дизайнерам, скорее всего, обязательно будет необходим навык работы с системами с ИИ. Ретушеры фотографий. ИИ может заменить часть работы ретушеров: например, с помощью ИИ можно автоматически удалять шумы и дефекты на фотографиях, а также улучшать качество изображений.
Это может существенно упростить и ускорить труд профессиональных фотографов и фоторедакторов, в том числе самозанятых. Специалисты по контекстной рекламе и SEO-оптимизации. ИИ уже сейчас можно использовать для автоматического подбора ключевых слов и оптимизации контента для поисковых систем. Это позволяет сократить время, затрачиваемое на оптимизацию контента, и улучшить его качество. Финальное решение и формулировка задач по-прежнему остаются за человеком, так что самозанятые специалисты в этих сферах смогут сосредоточиться на более интересных задачах. Аналитики данных. Многие задачи, связанные с обработкой и анализом больших объемов данных, могут быть автоматизированы.
А что касается открытого письма с призывом ввести мораторий на разработку нейросетей, то тут вряд ли речь идёт о реальных опасениях за будущее человечества — скорее оно связано с корпоративными интересами. Сейчас идёт напряжённая гонка между IT-гигантами в сфере создания нейросетей. Тот же ChatGPT уже не раз ловили на том, что он выдаёт фейки, сочиняет их сам, а не берёт из каких-то источников. Дело в том, что ChatGPT — это генератор текстов, работа которого основана на сложной математике. И поскольку эти вычисления очень сложные и очень приблизительные, то на выходе порой получаются сбои. И вообще, нейросети создаются для помощи людям, а не для того, чтобы их заменить. Это невозможно, особенно в таких областях, как медицина, например. Последнее слово всё равно остаётся за врачом, какие бы нейросети ни применялись для постановки диагноза. В своё время IBM пыталась продвинуть на американском рынке продукт Watson Health — планировалось, что ИИ найдёт применение в здравоохранении. Однако продукт так и не завоевал доверие врачей: нейросеть часто ошибалась, а в тех случаях, когда ставила точные диагнозы, давала очень узкие рекомендации по лечению. Потому что выборка данных, на которой учат нейросети, — она всё-таки очень ограниченная. И нейросетям не присуща человеческая интуиция, широкая образованность. По сути, нейросеть живёт в информационном пузыре. Например, чат-боты позволяют автоматически генерировать простые официальные письма, справки. Ранее в новостях сообщалось, что руководство Сбербанка частично сократило юристов низшего звена, которые писали претензионные письма. Теперь эти функции выполняет нейросеть. Также по теме «Настанет день, когда машина обретёт сознание»: фантаст Франк Шетцинг о будущем человечества и инопланетном разуме Книги немецкого писателя-фантаста Франка Шетцинга расходятся большими тиражами, а экранизацией одного из его главных бестселлеров —... Однако нужно понимать, что возможности нейросетей очень ограниченны. По сути, появление нейросетей должно подстегнуть людей к развитию. Кроме того, создание, обслуживание и внедрение таких технологий приводит к появлению новых рабочих мест и специальностей. Хотя, конечно, не массовых. Допустим, сейчас пишут о спросе на специалистов по составлению запросов для нейросетей — есть ли такая профессия? К слову, такое направление, как анализ данных data scientist , появилось уже очень давно, в 2000-е годы. Это, по сути, универсальный специалист, способный проанализировать данные, написать и внедрить нейросеть, а далее её сопровождать.
План курса “Заработок на нейросетях”
- ChatGPT отнимет у вас работу: нейросеть перечислила профессии в зоне наибольшего риска
- ИИ вам в помощь: почему самозанятым нужно учиться работать с нейросетями
- Новости по теме
- Какой может быть работа с нейросетями
Незаменимых нет: вытеснят ли нейросети творческие профессии?
Ранее о внедрении нейросети ChatGPT-4 в процесс обучения сообщила онлайн-школа английского языка Skyeng. Виртуальный собеседник Кеша позволит ученикам в любое время практиковать язык и закреплять полученные на уроках навыки. Самые важные и оперативные новости — в нашем телеграм-канале «Ямал-Медиа».
AI-тренер анализирует ответы нейросети и пишет грамотные тексты как образец, на которых она учится. Всё больше людей пользуются нейросетями, и запросы становятся разнообразнее.
Из-за этого всплывают новые ошибки, которые нельзя оставлять без внимания. Яндекс продолжает активно нанимать и обучать AI-тренеров, чтобы внедрять в свои системы новые и качественные версии нейросетей. Вакансия подходит для всех, кто умеет работать с текстами и смыслом: авторов, редакторов, копирайтеров, переводчиков и других специалистов. Промпт-инженер Как появилась. Когда нейросети достаточно обучились и стали реагировать на запросы, встал вопрос: как добиться от них нужного ответа?
Решить простую задачу с помощью ChatGPT и других нейросетей сможет любой пользователь с первого раза. Но если вам понадобится текст с определённой структурой и лексикой или изображение со множеством деталей и разными стилями, придётся правильно подбирать слова, чтобы получить желаемый результат. Основной вопрос — какие слова и команды подобрать, чтобы искусственный интеллект правильно понял запрос и выдал пользователю то, что нужно. Эти слова и формулировки называются промптами. Именно их разрабатывают инженеры для получения качественных результатов.
Промпт-инженер составляет точные инструкции, по которым нейросеть сможет выдавать качественные текстовые ответы и иллюстрации. Он знает, какие фразы и «подсказки» использовать, чтобы нейросеть правильно поняла запрос. Например, если нужно изображение в определённом стиле, стоит добавить профессиональные термины, эпоху и имена художников. Тогда ИИ тщательнее обработает запрос. К промпт-инженерам часто обращается бизнес, чтобы качественнее обрабатывать запросы клиентов или использовать нейросеть для продвижения в соцсетях.
А ещё промпт-специалисты могут тестировать продукты на основе ИИ и обучать языковые модели. Например, писать запросы и анализировать их на странные реакции и ошибки, а затем давать нейросети новый набор данных для изучения. Нейроиллюстратор Как появилась. Ещё в 1968 году прошла выставка Cybernetic Serendipity, где часть произведений была написана с помощью алгоритмов. В 1973 году художник Гарольд Коэн создал программу, которая рисовала картины с помощью руки робота.
А первую в истории картину, которая была полностью сгенерирована ИИ в современном понимании, продали на аукционе в Нью-Йорке в 2018 году. С того момента люди стали активнее генерировать изображения для личных и бизнес-целей. Нейросеть быстро создаёт картинку, но её всё равно приходится дорабатывать. Поэтому работодатели стали искать специалистов, которые могли бы грамотно составлять запросы, получать изображения и доводить их до финального результата.
Сегодня есть три варианта: Самостоятельное обучение. Не всегда, но практика показывает — талантливые самоучки достигают больших успехов. Но для достижения должного уровня придется стараться намного больше, чем при обучении где-либо, самостоятельно разрабатывать систему обучения. Самоконтроль, целеустремленность, эффективное планирование времени — все это нужно при самостоятельном обучении. Надежный вариант для тех, кто желает освоить профессию с нуля. Но современные программы не всегда предлагают то, что нужно. Впрочем, освоить языки программирования и получить нужные навыки возможно. Плюсы решения — диплом, подтверждающий знания. Минусы — не всегда программа ВУЗа отвечает требованиям современности. В каком из университетов можно стать инженером ИИ? В МГУ также действует образовательная программа для всех аспирантов университета. Онлайн-курсы, платные и бесплатные. Оптимальный вариант для тех, кто уже имеет представление о нейронных сетях, но не имеет должной подготовки. Если грамотно выбрать курс, можно получить полный объем знаний и навыков за короткий срок и вполне демократичную сумму. При этом не обязательно отрываться от основной учебы или работы. Перспективы профессии Прежде чем купить и пройти курс «Специалист по нейросетям» важно понять: на что рассчитывать новоиспеченному инженеру или программисту, который создает сети или обучает их, или с их помощью работает с какими-либо проектами. На данный момент профессия востребована — открыто несколько сотен вакансий.
Другой пример — ресайз картинок в разных размерах для рекламных кампаний. Эту задачу вместо дизайнера может сделать ИИ. Нейросети не умеют строить гипотезы о том, как скорректировать бюджет в рекламе или какой канал отключить из-за высокой стоимости конверсий. Для этого ИИ нужно много обучать, предоставлять ему большие объемы данных и логических цепочек», — говорит руководитель направления контент-маркетинга и соцсетей в «ЮMoney». Из очевидных плюсов ИИ — он может быстро находить в большом массиве информации ответы на поставленные вопросы. Намного быстрее, чем реальный сотрудник. К тому же нейросети не грозит выгорание и прокрастинация. Но как делать выводы из аналитики или давать этически корректные ответы на вопросы, нейросети по-прежнему обучает человек. Так же, как не генерировать откровенно фейковые изображения — достаточно вспомнить пример с Папой Римским и рекламой Balenciaga. Но привлечь нейросеть к оптимизации финансовых отчетов — например, сделать выводы из «скормленных» ей данных о затратах компании за отчетный период, — это практичнее и экономнее, чем поручать такую задачу человеку, считает Майя Новикова. Например, SMM-щикам нейросети помогают подготовить контент-план и сделать посты для сторис за несколько минут. С помощью ИИ можно сгенерировать SEO-блог на сайте, включив в него ключевые слова — быстро и без мороки с копирайтерами. Нейросети также активно используют в графическом дизайне — они могут сгенерировать изображения под любой запрос, при этом не придется ждать и кому-то платить. Появляются и нейронные сети, способные сочетать дизайнерские и редакторские задачи, отлично понимая запросы на русском языке. Один из таких примеров - недавно анонсированный «Сбером» GigaChat, который, кроме прочего, умеет брейнстормить и отвечать на фактологические вопросы. Если говорить про веб-разработку, то инструмент под названием GitHub Copilot помогает дописывать код, подстраиваясь под стиль программиста.
📈Оптимизация Бизнес-Аналитики: Роль и Преимущества Дашбордов в Power BI
- Строка навигации
- Специалист по нейросетям - Школа удаленных-профессий «PROДвижение»
- Как стать тренером нейросетей и почему сегодня это востребованная профессия
- Новая профессия – ПРОМПТ-инженер. Будет очень востребованной!
- Маркетолог назвал профессии, которые могут исчезнуть из-за нейросетей - АБН 24
Незаменимых нет: вытеснят ли нейросети творческие профессии?
В профессиях, связанных с правом и безопасностью, нейросети могут быть использованы для анализа больших объемов данных, чтобы выявлять законопреступления и определять наиболее эффективные стратегии противодействия. Описание профессии Разработчик нейросетей — это программист, который разрабатывает математические модели машинного обучения по типу нейронных связей головного мозга. Команда VK Cloud перевела статью, в которой дата-сайентист рассказывает о новых специальностях, появление которых в грядущие годы связано с развитием искусственного интеллекта. Узнали у нейросети, каких профессионалов искусственный интеллект настроен видеть в числе будущих коллег.
Как стать тренером нейросетей и почему сегодня это востребованная профессия
Профессия «Специалист по нейросетям» предполагает глубокие знания и специализацию в различных областях, связанных с нейросетями. Нейросеть сделала это за 5 минут с хорошей ла локальные компании от глобальных, рассказала про количество производственных площадок. Около трети респондентов считают, что нейросеть сможет заменить бухгалтеров и менеджеров по продажам, меньшее число опрошенных рассказали, что рискуют быть замененными финансисты, HR-специалисты, социологи. Около трети респондентов считают, что нейросеть сможет заменить бухгалтеров и менеджеров по продажам, меньшее число опрошенных рассказали, что рискуют быть замененными финансисты, HR-специалисты, социологи. Анализ интернет-спроса на профессии, связанные с разработкой и ИТ, показал, что больше всего растет спрос на создание нейросетей (+1749%). В этом году нейросети могут внедриться в целый ряд профессий, рассказал "Известиям" руководитель направления продаж "Авито Работы" Роман Губанов.
5 перспективных профессий в области искусственного интеллекта
Вы научитесь не только эффективно взаимодействовать с нейросетями, но и интегрировать их в свою повседневную рутину и бизнес-процессы. Заработок в первую очередь идет от профессии и навыков, а не от нейросетей, хотя нейросети могут ускорить вашу работу. Развитие нейросетей в России создаст, в числе прочих, профессию специалиста по этике в сфере искусственного интеллекта (ИИ), также в вузах появятся профильные. Использовать нейросети под силу каждому, независимо от опыта и профессии. Тенденция к большей заинтересованности рынка в гуманитариях со знанием ИИ, нежели в аналогичных навыках у программистов, может быть связана с относительной "молодостью" нейросети, считает генеральный директор EvApps Альфред Столяров.