Что мощнее ядерная или водородная бомба. Ядерное оружие включает в себя водородные бомбы, как частный вариант. B-53 — американская термоядерная бомба, наиболее старое и мощное ядерное оружие находившееся в арсенале стратегических ядерных сил США вплоть до 1997 года. Ядерная или атомная бомба.
Последствия взрыва водородной бомбы
Ядерная бомба со слишком сильным зарядом может взорваться непроизвольно. «Вследствие осуществления в водородной бомбе мощной термоядерной реакции взрыв был большой силы, — писали «Известия». — Испытание показало, что мощность водородной бомбы во много раз превосходит мощность атомных бомб». Термоядерное оружие (водородная бомба), его мощность основана не на делении ядер плутония (урана), как в ядерной бомбе, а на энергии от реакции ядерного синтеза (превращение легких элементов. Какое отличие атомной бомбы от водородной ввергло в ужас мировую супердержаву? И водородная, и атомная бомбы работают с помощью ядерной физики, но одна из них в 1000 раз мощнее и производит гораздо меньше радиоактивных осадков.
«Сердце» взрыва
- Al Jazeera: "Царь-бомба" — самое мощное ядерное оружие Путина
- Водородная против атомной. Что нужно знать о ядерном оружии | Futurist - будущее уже здесь
- Водородная и атомная бомбы: сравнительные характеристики
- Зона поражения — вся планета: почему атомные бомбы такие мощные?
Что произойдет после взрыва ядерной бомбы?
Сборник ответов на ваши вопросы | B61 и B83 — свободнопадающие термоядерные бомбы. |
Зона поражения — вся планета: почему атомные бомбы такие мощные? | Водородная (термоядерная) бомба: испытания оружия массового поражения. |
Вся правда о ядерном ударе. Спасут ли нас бомбоубежища? | Атомная бомба или ядерная бомба относится к ядерному оружию. |
Последствия взрыва водородной бомбы | Плюсы и минусы | Фугасные бомбы оставались самыми мощными неядерными боеприпасами, стоящими на вооружении многих армий мира, пока не были разработаны термобарические или объемно-детонирующие бомбы. |
Чем водородная бомба отличается от атомной? | термоядерные (термоядерные бомбы, водородные бомбы) — более современное оружие, в котором принцип действия «атомной бомбы» усиливается термоядерным синтезом. |
ТОП-10 самых мощных атомных бомб в мире
Эта термоядерная реакция , подобная той, что можно наблюдать на звездах, высвобождает невероятный поток энергии. В атомной же энергия получается от деления атомного ядра, поэтому взрыв атомной бомбы намного слабее. Обычно топливо представляет собой дейтерий и тритий. У взрывоопасных бомб внутри есть бомба деления - это первичная, которая создает чрезвычайно высокую температуру и давление, необходимые для ядерного синтеза. Вторичным является то, где происходят реакции слияния.
Возможно иметь многоступенчатое оружие, в котором третичная ступень производит еще больше энергии. Пластиковые бомбы часто закрываются демпфером из обедненного урана. С огромным потоком нейтронов, созданным в реакциях слияния бомб, обедненный уран фактически подвергается самому делению, что приводит к конфигурации, иногда известной как устройства деления-слияния-деления: существует первичное деление, которое воспламеняет вторичное слияние, что, в свою очередь, вызывает деление в заслонке. Странность заключается в том, что вторая реакция деления обычно дает большую часть выхода бомбы.
Первое испытание Первую водородную бомбу, изготовленную под руководством Сахарова, испытали на секретном полигоне Семипалатинска — и они, мягко говоря, впечатлили не только ученых, но и западных лазутчиков. Ударная волна Прямое разрушительное воздействие водородной бомбы — сильнейшая, обладающая высокой интенсивностью ударная волна. Ее мощность зависит от размера самой бомбы и той высоты, на которой произошла детонация заряда. Самое большое в мире оружие слияния было советским «Цара Бомба» с урожаем около 50 мегатонн.
Цара Бомба никогда не была предназначена для производства оружия. Он был предназначен для производства более 100 мегатонн, но они заменили обедненный урановый затвор свинцом. Бомба была переброшена по испытательному полигону « Новая Земля », и было много сомнений в том, что бомбардировщик мог ускользнуть от взрыва в 100 мегатонн. Для 50-мегатонного взрыва практически весь энергетический выход был вызван реакциями синтеза.
Это было самое чистое оружие, когда-либо взорванное. В разгар холодной войны развернутые термоядерные бомбы достигли урона в 25 мегатонн и 15 мегатонн. С тех пор эти очень большие бомбы урожая были сняты с эксплуатации и демонтированы. Максимальный выход современного ядерного оружия с переменным выходом, как правило, находится в диапазоне от 250 до 300 килотонн.
Тем не менее, есть еще несколько крупных бомб слияния. Тепловой эффект Водородная бомба всего в 20 мегатонн размеры самой большой испытанной на данный момент бомбы — 58 мегатонн создает огромное количество тепловой энергии: бетон плавился в радиусе пяти километров от места испытания снаряда. В девятикилометровом радиусе будет уничтожено все живое, не устоят ни техника, ни постройки. Диаметр воронки, образованной взрывом, превысит два километра, а глубина ее будет колебаться около пятидесяти метров.
Что такое атомная бомба? Как Китай, так и Россия по-прежнему развертывают 5 мегатонн боеголовок. Изменить: Правильная ссылка на самую мощную ядерную бомбу. Грязная бомба или радиологическое рассеивающее устройство - это бомба, которая объединяет обычные взрывчатые вещества, такие как динамит, с радиоактивными материалами в твердой, жидкой или газообразной форме.
Грязная бомба предназначена для рассеивания радиоактивного материала в небольшой локализованной области вокруг взрыва. Основная цель грязной бомбы - пугать людей и загрязнять здания или землю. Огненный шар Самым зрелищным после взрыва покажется наблюдателям огромный огненный шар: пылающие бури, инициированные детонацией водородной бомбы, будут поддерживать себя сами, вовлекая в воронку все больше и больше горючего материала. Радиационное заражение Но самым опасным последствием взрыва станет, конечно же, радиационное заражение.
Распад тяжелых элементов в бушующем огненном вихре наполнит атмосферу мельчайшими частицами радиоактивной пыли — она настолько легка, что попадая в атмосферу, может обогнуть земной шар два-три раза и только потом выпадет в виде осадков. Таким образом, один взрыв бомбы в 100 мегатонн может иметь последствия для всей планеты. В чем разница между грязной бомбой и атомными бомбами, используемыми в Хиросиме и Нагасаки? Атомные взрывы, произошедшие в Хиросиме и Нагасаки, были вызваны ядерным оружием.
Грязная бомба - это обычное взрывное устройство, приспособленное для распространения радиоактивного материала и загрязнение только небольшой площади. Поскольку материал будет рассеиваться в результате взрыва, участки вблизи взрыва будут загрязнены. Уровень загрязнения будет зависеть от количества радиоактивного материала в бомбе, а также от погодных условий во время взрыва. Царь-бомба 58 мегатонн — вот, сколько весила самая крупная водородная бомба, взорванная на полигоне архипелага Новая Земля.
Чем водородная бомба отличается от атомной Термоядерный синтез - процесс, который происходит во время детонации водородной бомбы - самый мощный тип доступной человечеству энергии. В мирных целях его использовать мы еще не научились, зато приспособили к военным. Эта термоядерная реакция, подобная той, что можно наблюдать на звездах, высвобождает невероятный поток энергии. В атомной же энергия получается от деления атомного ядра, поэтому взрыв атомной бомбы намного слабее. Первое испытание И Советский Союз вновь опередил многих участников гонки холодной войны. Первую водородную бомбу, изготовленную под руководством гениального Сахарова, испытали на секретном полигоне Семипалатинска - и они, мягко говоря, впечатлили не только ученых, но и западных лазутчиков. Ударная волна Прямое разрушительное воздействие водородной бомбы - сильнейшая, обладающая высокой интенсивностью ударная волна. Ее мощность зависит от размера самой бомбы и той высоты, на которой произошла детонация заряда. Тепловой эффект Водородная бомба всего в 20 мегатонн размеры самой большой испытанной на данный момент бомбы - 58 мегатонн создает огромное количество тепловой энергии: бетон плавился в радиусе пяти километров от места испытания снаряда.
В девятикилометровом радиусе будет уничтожено все живое, не устоят ни техника, ни постройки. Диаметр воронки, образованной взрывом, превысит два километра, а глубина ее будет колебаться около пятидесяти метров. Огненный шар Самым зрелищным после взрыва покажется наблюдателям огромный огненный шар: пылающие бури, инициированные детонацией водородной бомбы, будут поддерживать себя сами, вовлекая в воронку все больше и больше горючего материала. Радиационное заражение Но самым опасным последствием взрыва станет, конечно же, радиационное заражение. Распад тяжелых элементов в бушующем огненном вихре наполнит атмосферу мельчайшими частицами радиоактивной пыли - она настолько легка, что попадая в атмосферу, может обогнуть земной шар два-три раза и только потом выпадет в виде осадков. Таким образом, один взрыв бомбы в 100 мегатонн может иметь последствия для всей планеты. Царь-бомба 58 мегатонн - вот какая мощность у самой крупной водородной бомбы, взорванной на полигоне архипелага Новая Земля. Ударная волна три раза обогнула земной шар, заставив противников СССР лишний раз увериться в огромной разрушительной силе этого оружия. Весельчак Хрущев на пленуме шутил, что бомбу не сделали больше только из опасений разбить стекла в Кремле.
В чем отличие Водородной бомбы от Ядерной? Есть ядерное оружие. Это оружие, основанное на ядерных реакциях. Ядерные бомбы подразделяются на: - атомные их иногда называют просто "ядерные" ; - водородные их называют еще "термоядерные" ; - нейтронные. Атомная бомба - это бомба, в которой происходит реакция ядерного деления. Атом тяжелого изотопа, к примеру, плутония-239, делится на более легкие химические элементы с выделением колоссальной энергии. Существует критическая масса плутония-239. Грубо говоря, кусок плутония массой больше этого значения не может существовать - он сразу дает цепную реакцию, то есть взрыв. В атомной бомбе установлены несколько кусков плутония, масса каждого из которых немного меньше критической.
Эти куски подогнаны по форме так, что если их соединить, получится единое целое. Они выстреливаются друг в друга и образуют большой кусок массой намного больше критической. Водородная бомба - это бомба, в которой происходит реакция ядерного синтеза. То есть наоборот, из двух легких атомов получается один тяжелый. Изотопы водорода дейтерий и тритий на выходе дают гелий и еще более колоссальное количество энергии. Мощность водородной бомбы обычно где-то в тысячу раз больше, чем атомной. Кстати, внутри водородной бомбы стоит атомная бомба. Она служит для нее запалом. Вот такой вот ужас.
Нейтронная бомба - это бомба, которая не помню как устроена, но единственный ее поражающий фактор - это излучение нейтронов. То есть нет как таковой ударной волны, ничего не горит и разрушается. Просто выходит из строя вся электротехника и электроника, а также гибнут живые организмы. При этом деньги, ключи от квартир и одежда сохраняются нетронутыми. Ядерная бомба имеет ограничения по мощности. От того, что привзрыве не все "куски" Урана-235 успевают провзаимодействовать с нейтронными потоками. В водородной бомбе используется "начинка" из ядерной бомбы на Уране-235, которая нужна для создания высоких темепратур для термоядерного синтеза в оболочке из Урана-238. Получение Урана-235 весьма затруднено из-за его малого присутствия в обычном Уране.
Также по теме Ядерный пацифизм: насколько оправданны призывы запретить атомное оружие 16 июля 1945 года Соединённые Штаты впервые в истории человечества провели испытание атомной бомбы. В 1949 году обладателем самого... Советский физик Андрей Сахаров предложил создать сферическую водородную бомбу, начинка которой состояла из слоёв урана и термоядерного горючего, окружённых взрывчатым веществом. Компактный термоядерный заряд мощностью 400 кт под названием «изделие РДС-6c» был разработан в КБ-11 в городе Арзамас-16 современный Саров Нижегородской области. Для того чтобы оценить мощность нового оружия, на полигоне построили макет населённого пункта из 190 сооружений, между которыми поместили образцы военной техники, а также около 3 тыс. Заряд подняли на стальной мачте на 30 м от земли. В результате взрыва в радиусе 4 км были снесены все кирпичные здания, а железобетонный мост, находившийся в 1 км от эпицентра, сместился на 200 м. Советский Союз вышел в лидеры военно-технической гонки. За океаном компактный термоядерный заряд появился только в 1954 году. Значение и последствия «За восемь лет до описываемых событий произошла первая атомная бомбардировка Хиросимы и Нагасаки. Эти два города не были военными объектами, но Америка продемонстрировала свой военный арсенал, которого на тот момент не было ни у одной другой страны. Все понимали, что американские бомбардировщики, летавшие в годы Второй мировой войны над фашистской Германией, могли в условиях холодной войны полететь и в нашу сторону. Поэтому СССР было необходимо чем-то ответить, остановить армаду в 3 тыс. Так, бомба, которую сбрасывали на Хиросиму и Нагасаки , имела мощность 20 кт. Бомба, которую испытали в 1953 году, имела мощность 400 кт. По количеству, может, американцы нас и опережали. Но мы одной бомбой могли поразить гораздо большую площадь. Ничего подобного у них не было», — подчеркнул Леонков.
Часть из этих столкновений завершается их слиянием и образованием более тяжелых ядер гелия. Это и есть термоядерный синтез, при котором выделяется гигантское количество энергии, так как часть массы легких ядер при синтезе более тяжелого гелия превращается в энергию. Атомный заряд в термоядерной бомбе служит, своего рода, запалом, обеспечивающим сверхвысокие температуры, необходимые для начала синтеза. В недрах звезд благодаря наличию высокой температуры активно протекают ядерные реакции, сырьем для которых служит, например, дейтерий тяжелый водород. На Земле же таких условий нет. Взрыв атомной бомбы создает условия, близкие к солнечным меньше, чем на одну миллионную долю секунды. Спрашивается, можно ли, используя обычную атомную бомбу в качестве детонатора, вызвать бегущую по дейтерию детонационную волну? Детонация дейтерия давала бы в 10 000 000 раз больше энергии на единицу массы, чем, например, детонация тринитротолуола тротила. Известно, что существует предел выделенной энергии обычной атомной бомбы. При создании надкритической массы происходит цепная ядерная реакция. Учитывая, что скорость создания из подкритической массы надкритической конечна, то существует предел созданной надкритической массы. Если же существует незатухающая ядерная детонация, особенно в таком дешевом веществе, как дейтерий, то сила бомбы ничем не ограничена сверху. Отсюда возникла идея страшной бомбы, которую назвали "водородной" раньше, чем убедились в возможности ее создания. Сахарову исполнилось 95лет.. В самой первой ядерной бомбе для запуска реакции деления использовался полоний. Значит е с успехом можно назвать "полониевой" А в современных изделиях для запуска чуть чаще чем всегда используется... В ответ президент Трамп назначает новые санкции для частных лиц, компаний и банков, которые ведут бизнес с страной. Ри добавил, что «это зависит от нашего лидера». Атомная и водородная бомба: отличия Водородные бомбы или термоядерные бомбы являются более мощными, чем атомные или «делящие» бомбы. Отличия между водородными бомбами и атомными бомбами начинается с атомного уровня. Атомные бомбы, как и те, которые использовались для опустошения японских городов Нагасаки и Хиросимы во время Второй мировой войны, работают путем расщепления ядра атома. Когда нейтроны или нейтральные частицы ядра расщепляются, некоторые попадают в ядра соседних атомов, разделяя их тоже. Результатом является очень взрывная цепная реакция. По данным Союза ученых, бомбы упали на Хиросиму и Нагасаки с мощностью 15 килотонн и 20 килотонн т. Напротив, первое испытание термоядерного оружия или водородной бомбы в Соединенных Штатах в ноябре 1952 года привело к взрыву порядка 10 000 килотонн тротила. Термоядерные бомбы начинаются с той же реакции деления, которая управляет атомными бомбами, — но большая часть урана или плутония в атомных бомбах фактически не используется. В термоядерной бомбе дополнительный шаг означает, что появляется больше взрывной мощности бомбы. Во-первых, воспламеняющийся взрыв сжимает сферу плутония-239, материал, который затем будет делиться. Внутри этой ямы плутония-239 находится камера газообразного водорода. Высокие температуры и давления, создаваемые делением плутония-239, заставляют атомы водорода сливаться. Этот процесс синтеза высвобождает нейтроны, которые возвращаются в плутоний-239, расщепляя больше атомов и усиливая цепную реакцию деления. Ядерные ипытания Правительства во всем мире используют глобальные системы мониторинга для обнаружения ядерных испытаний в рамках усилий по обеспечению соблюдения Договора о всеобъемлющем запрещении ядерных испытаний 1996 года. Есть 183 участника этого договора, но он не действует, поскольку ключевые страны, включая Соединенные Штаты, не ратифицировали его. С 1996 года Пакистан, Индия и Северная Корея провели ядерные испытания. Тем не менее в договоре была введена система сейсмического мониторинга, которая может отличать ядерный взрыв от землетрясения. Международная система мониторинга также включает в себя станции, которые обнаруживают инфразвук — звук, частота которого слишком низкая для ушей человека для обнаружения взрывов. Восемьдесят станций радионуклидного мониторинга по всему миру измеряют атмосферные осадки, которые могут доказать, что взрыв, обнаруженный другими системами мониторинга, был по сути ядерным. Геополитические амбиции крупных держав всегда веди к гонке вооружения. Разработка новых военных технологий давала той или иной стране преимущества перед другими. Так семимильными шагами человечество подошло к возникновению страшного оружия - ядерной бомбы. С какой даты пошел отчет атомной эры, сколько стран нашей планеты обладают ядерным потенциалом и в чем принципиальное отличие водородной бомбы от атомной? На эти и другие вопросы вы сможете найти ответ, прочитав данную статью. Чем отличается водородная бомба от ядерной Любое ядерное оружие основывается на внутриядерной реакции , мощь которой способна почти мгновенно уничтожить как большое количество живой единицы, так и технику, и всевозможные здания и сооружения. Рассмотрим классификацию ядерных боеголовок, находящихся на вооружении некоторых стран: Ядерная атомная бомба.
Зона поражения — вся планета: почему атомные бомбы такие мощные?
Бомба взрывается в воздухе, образуя сверхзвуковую ударную волну и вызывая повышение температуры до экстремальных пределов. Это оружие генерирует более устойчивые взрывные волны по сравнению с обычными взрывчатыми веществами. Из-за этого они наносят больший урон на больших площадях, чем обычное оружие аналогичной массы. Используя кислород из самой атмосферы, они производят больше энергии, чем обычно, и в результате их труднее контролировать. Информация о АВБПМ строго конфиденциальна, сложно сказать, сколько бомб выпущено, в каком количестве они находятся на вооружении РФ — и находятся ли по сей день. Последняя информация об оружии появлялась только в рамках его первых испытаний. МБР: война за пределами континента МБР, Межконтинентальная баллистическая ракета — это баллистическая ракета, направляемая к цели, которая может преодолевать около 5 тыс.
Спроектирована, в основном, для перевозки ядерного оружия. МБР создают проблему, потому что они позволяют стране вырваться из регионального контекста и перейти к потенциальному глобальному воздействию. Независимо от происхождения конфликта страна может вовлечь весь мир, просто угрожая развязать войну с МБР. Джон Пайк, эксперт по национальной безопасности МБР могут запускаться с самолетов, подводных лодок, ракетных шахт и транспортных средств. Они стали неотъемлемой частью доктрины взаимного гарантированного уничтожения, потому что это оружие позволило установить зыбкое равновесие между потенциально опасными противниками. Каждая сторона имеет ядерное оружие в том объеме, который может уничтожить другую сторону.
Из этого следует, что ни одна страна, обладая ядерным потенциалом, не может ни добровольно разоружиться без ответных действий других стран, ни безнаказанно начать конфликт. Этот принцип представляет собой так называемое равновесие Нэша. Равновесие Нэша, или Курно и Нэша, или «Концепция решения» для игр с двумя или более игроками предполагает, что каждый игрок знает и принял свою лучшую стратегию, и при этом все игроки осведомлены о стратегии других. Это почти в 20 раз больше скорости звука, и позволяет Minuteman III поразить цель в течение 30 минут с расстояния более 9 656 км с предельной точностью. Нижнюю ракету первой ступени иногда называют ракетой-носителем или бустером. Бустеры являются самой большой частью ракет и выполняют основную часть «тяжелой» работы.
Поражение таких ракет контрмерой похоже на попытку сбить пулю другой пулей. Более того, многие страны, в том числе США, используют ядерное оружие, которое нельзя остановить после запуска, даже если оно было отправлено по ошибке или неоправданно. Максимальная дальность полета ракеты составляет около 12 тыс. Но для оружия она имела слишком большие габариты, вполне прозрачные для противника слабые места, была плохо управляема и сложна в эксплуатации. Ее объективно сильной стороной была надежность конструкции и мощность запуска. Так, на базе Р-7 были разработаны ракеты-носители для вывода на орбиту искусственных спутников и пилотируемых кораблей, а позднее и межпланетных станций.
На данный момент все пилотируемые запуски на территории РФ осуществляются ракетами семейства Р-7. Потому в 2017 году заявление Северной Кореи об успешном запуске своей первой МБР усилило глобальную напряженность и страхи перед ядерным конфликтом, особенно между США и Северной Кореей, а также с соседними странами, в том числе и Китаем. Самый главный танк Впервые выпущенный в 2015 году , российский танк Т-14 оснащен комбинированной многослойной броней, дизельным двигателем. Его по праву можно считать одним из самых лучших танков на сегодняшний день.
Сами пострадавшие будут нести на себе радиоактивную пыль.
Радиоактивные осадки Бомбы, сброшенные на Японию, вызвали локальные радиоактивные осадки. Современное термоядерное оружие выбрасывает радиоактивный материал высоко в стратосферу, что может привести к осадкам по всему миру. Макет бомбы «Малыш», сброшенной на Хиросиму. Источник: U. National Archives Риск радиоактивных осадков наиболее высок в течение 48 часов после взрыва.
За это время область, которая первоначально подвергалась воздействию 1000 рентген в час, будет подвергаться только 10 рентгенам в час. Около половины людей, получивших общую дозу облучения около 350 рентген в течение нескольких дней, скорее всего, умрут от острого радиационного отравления. Для сравнения — типичная КТ брюшной полости подвергает людей менее 1 рентген. Выжившие, которые попадут под радиоактивные осадки, подвергаются высокому риску развития рака на протяжении всей оставшейся жизни. Экологическая катастрофа Радиоактивные осадки, осевшие на посевных угодьях, могут оказаться в пищевой цепи.
Используется цепная реакция распада атомов. В качестве детонации используется обычное взрывчатое вещество. Радиоактивное заражение местности происходит за счет распыления того самого взрывчатого вещества и в малой степени ионизирующего излучения.
Основной фактор поражения - взрывная волна. Водородная бомба, она же термоядерная бомба является наиболее продвинутой и технологичной бомбой. В ней используется энергия неуправляемого термоядерного синтеза.
В качестве детонирующего заряда используется ядерный. Поражающая способность состоит как из взрывного действия, так и из радиоактивного излучения.
То есть, как только нейтроны распадутся, то реакция продолжительность взрыва затухнет. А вот водородная термоядерная бомба работает по принципу синтеза. В процессе взрыва, дейтерид лития-6 распадается на дейтерий и тритий, а те соединяются с ядром гелия.
Атомная, водородная и нейтронная бомбы
Отсюда возникла идея страшной бомбы, которую назвали "водородной" раньше, чем убедились в возможности ее создания. Сахарову исполнилось 95лет.. В самой первой ядерной бомбе для запуска реакции деления использовался полоний. Значит е с успехом можно назвать "полониевой" А в современных изделиях для запуска чуть чаще чем всегда используется... В ответ президент Трамп назначает новые санкции для частных лиц, компаний и банков, которые ведут бизнес с страной. Ри добавил, что «это зависит от нашего лидера». Атомная и водородная бомба: отличия Водородные бомбы или термоядерные бомбы являются более мощными, чем атомные или «делящие» бомбы.
Отличия между водородными бомбами и атомными бомбами начинается с атомного уровня. Атомные бомбы, как и те, которые использовались для опустошения японских городов Нагасаки и Хиросимы во время Второй мировой войны, работают путем расщепления ядра атома. Когда нейтроны или нейтральные частицы ядра расщепляются, некоторые попадают в ядра соседних атомов, разделяя их тоже. Результатом является очень взрывная цепная реакция. По данным Союза ученых, бомбы упали на Хиросиму и Нагасаки с мощностью 15 килотонн и 20 килотонн т. Напротив, первое испытание термоядерного оружия или водородной бомбы в Соединенных Штатах в ноябре 1952 года привело к взрыву порядка 10 000 килотонн тротила.
Термоядерные бомбы начинаются с той же реакции деления, которая управляет атомными бомбами, — но большая часть урана или плутония в атомных бомбах фактически не используется. В термоядерной бомбе дополнительный шаг означает, что появляется больше взрывной мощности бомбы. Во-первых, воспламеняющийся взрыв сжимает сферу плутония-239, материал, который затем будет делиться. Внутри этой ямы плутония-239 находится камера газообразного водорода. Высокие температуры и давления, создаваемые делением плутония-239, заставляют атомы водорода сливаться. Этот процесс синтеза высвобождает нейтроны, которые возвращаются в плутоний-239, расщепляя больше атомов и усиливая цепную реакцию деления.
Ядерные ипытания Правительства во всем мире используют глобальные системы мониторинга для обнаружения ядерных испытаний в рамках усилий по обеспечению соблюдения Договора о всеобъемлющем запрещении ядерных испытаний 1996 года. Есть 183 участника этого договора, но он не действует, поскольку ключевые страны, включая Соединенные Штаты, не ратифицировали его. С 1996 года Пакистан, Индия и Северная Корея провели ядерные испытания. Тем не менее в договоре была введена система сейсмического мониторинга, которая может отличать ядерный взрыв от землетрясения. Международная система мониторинга также включает в себя станции, которые обнаруживают инфразвук — звук, частота которого слишком низкая для ушей человека для обнаружения взрывов. Восемьдесят станций радионуклидного мониторинга по всему миру измеряют атмосферные осадки, которые могут доказать, что взрыв, обнаруженный другими системами мониторинга, был по сути ядерным.
Геополитические амбиции крупных держав всегда веди к гонке вооружения. Разработка новых военных технологий давала той или иной стране преимущества перед другими. Так семимильными шагами человечество подошло к возникновению страшного оружия - ядерной бомбы. С какой даты пошел отчет атомной эры, сколько стран нашей планеты обладают ядерным потенциалом и в чем принципиальное отличие водородной бомбы от атомной? На эти и другие вопросы вы сможете найти ответ, прочитав данную статью. Чем отличается водородная бомба от ядерной Любое ядерное оружие основывается на внутриядерной реакции , мощь которой способна почти мгновенно уничтожить как большое количество живой единицы, так и технику, и всевозможные здания и сооружения.
Рассмотрим классификацию ядерных боеголовок, находящихся на вооружении некоторых стран: Ядерная атомная бомба. В процессе ядерной реакции и деления плутония и урана, происходит выделение энергии колоссальных масштабов. Обычно в одной боеголовке находится от двух зарядов плутония одинаковой массы, которые взрываются друга от друга. Водородная термоядерная бомба. Энергия выделяется на основе синтеза ядер водорода отсюда пошло и название. Интенсивность ударной волны и количество выделяемой энергии превышает атомную в разы.
Что мощнее: ядерная или водородная бомба? Пока ученые ломали голову над тем, как пустить атомную энергию полученную в процессе термоядерного синтеза водорода в мирные цели, военные уже провели не с один десяток испытаний. Выяснилось, что заряд в несколько мегатонн водородной бомбы мощнее атомной в тысячи раз. Даже трудно представить, что было бы с Хиросимой да и с самой Японией , если бы в брошенной на нее 20-ти килотонной бомбе был водород. Рассмотрим мощную разрушительную силу, которая получается при взрыве водородной бомбы в 50 мегатонн: Огненный шар : диаметр в 4,5 -5 километра в диаметре. Звуковая волна : взрыв можно услышать, находясь на расстоянии в 800 километров.
Энергия : от освобожденной энергии, человек может получить ожоги кожного покрова, находясь от эпицентра взрыва до 100 километров.
Этот принцип представляет собой так называемое равновесие Нэша. Равновесие Нэша, или Курно и Нэша, или «Концепция решения» для игр с двумя или более игроками предполагает, что каждый игрок знает и принял свою лучшую стратегию, и при этом все игроки осведомлены о стратегии других. Это почти в 20 раз больше скорости звука, и позволяет Minuteman III поразить цель в течение 30 минут с расстояния более 9 656 км с предельной точностью. Нижнюю ракету первой ступени иногда называют ракетой-носителем или бустером. Бустеры являются самой большой частью ракет и выполняют основную часть «тяжелой» работы. Поражение таких ракет контрмерой похоже на попытку сбить пулю другой пулей.
Более того, многие страны, в том числе США, используют ядерное оружие, которое нельзя остановить после запуска, даже если оно было отправлено по ошибке или неоправданно. Максимальная дальность полета ракеты составляет около 12 тыс. Но для оружия она имела слишком большие габариты, вполне прозрачные для противника слабые места, была плохо управляема и сложна в эксплуатации. Ее объективно сильной стороной была надежность конструкции и мощность запуска. Так, на базе Р-7 были разработаны ракеты-носители для вывода на орбиту искусственных спутников и пилотируемых кораблей, а позднее и межпланетных станций. На данный момент все пилотируемые запуски на территории РФ осуществляются ракетами семейства Р-7. Потому в 2017 году заявление Северной Кореи об успешном запуске своей первой МБР усилило глобальную напряженность и страхи перед ядерным конфликтом, особенно между США и Северной Кореей, а также с соседними странами, в том числе и Китаем.
Самый главный танк Впервые выпущенный в 2015 году , российский танк Т-14 оснащен комбинированной многослойной броней, дизельным двигателем. Его по праву можно считать одним из самых лучших танков на сегодняшний день. Танк сконструирован на базе универсальной гусеничной платформы «Армата». Он оснащен 125-миллиметровой гладкоствольной пушкой 2А82-1М, которая также может запускать ракеты 3UBK21 Sprinter с лазерным наведением на расстояние до 11 км. Танк Т-14 Первоначально планировалось, что к 2020 году Россия введет в эксплуатацию 2 300 танков Т-14, но из-за бюджетных ограничений сократила ее до 100 танков к 2020 году. Два уже заказанных батальона Т-14 будут состоять из 80 танков. Ракеты новые, к бою готовые Осенью начал набирать обороты скандал между Россией и США, связанный с ракетами Novator 9m729 — американская сторона заявила о нарушении российскими вооруженными силами Договора о ликвидации ракет средней и меньшей дальности 1987 года.
Ракета 9М729 — это крылатая ракета большой дальности с крыльями, сложенными в фюзеляж ракеты. Согласно отечественному источнику , ракета вероятно была разработана для ракетного комплекса 9К720 «Искандер-М». Согласно западным данным, ракета является сухопутным вариантом ракеты 3М14 ракетного комплекса «Калибр-НК» и модификацией ракеты Р-500 9М728. Так или иначе, Владимир Путин отказался давать какие-либо разрешения для осмотра или оценки ракеты. Преимущество лазеров заключается в их точности и в том, что они атакуют со скоростью света, поражая высокоскоростные маневрирующие цели, чего невозможно достичь иными стрелковыми орудиями. При наличии источника питания лазер может сбивать поступающие ракеты в течение всего дня и при этом не зависеть от перезаряда, количества снарядов и сопутствующих материалов. Американская установка лазерного оружия Немецкая компания Rheinmetall также разработала серию мобильных высокоэнергетических волоконных лазеров, крупнейшей из которых является версия мощностью в 50 кВт, помещающаяся в транспортный контейнер.
В настоящее время компания работает над 120-киловаттным лазером. Технологические аналитики Technavio предсказывают, что Китай превзойдет американские исследования и разработки в области высокоэнергетических лазеров к 2022 году.
Карлайнер и Роснер успокаивают: их открытие, о котором коротко рассказывает портал Futurism , для военных бесполезно. Кварковую бомбу сделать пока невозможно — свободные кварки живут ничтожные доли секунды.
Но кто-знает, что будет дальше. Ведь уже производят — в том же БАКе - и хранят в специальных магнитных ловушках антивещество. Вдруг когда-нибудь получится отлавливать и накапливать кварки, потребные для изготовления кварковой бомбы. Военные на выдумки горазды.
С другой стороны, новый источник энергии открывает и мирные перспективы. Как за атомной бомбой последовали атомные электростанции, за водородной — вот вот последует управляемый термоядерны синтез, так за кварковой бомбой — какие-нибудь кварковые энергосинтезаторы.
Но, сама сила взрыва ограничена массой вещества, которое успело распасться.
То есть, как только нейтроны распадутся, то реакция продолжительность взрыва затухнет. А вот водородная термоядерная бомба работает по принципу синтеза.
Самое опасное оружие в мире: «папа всех бомб», «Сармат», лазеры и обедненный уран
Ядерная бомба (атомная). Приводится в действие в момент взрыва из-за огромного количества энергии, выделяющейся при делении ядер. У ядерного взрыва три механизма поражения: ударная волна, вспышка видимого и инфракрасного излучения и гамма-излучение. На протяжении десятилетий разные государства провели тысячи ядерных и термоядерных взрывов. Водородная бомба это бытовое название термоядерного оружия принцип которого основан на слиянии ядер трития и дейтерия.
Водородная и атомная бомбы: сравнительные характеристики
Сейчас всё изменилось. Ныне устройство атомной бомбы можно узнать из открытых источников, но по-прежнему мало кто представляет, как работает самое страшное оружие человечества. А разобраться стоит. Например, чтобы определять, где в книгах и фильмах фантастические допущения, где антинаучная чушь, а где автор справочник прочёл, но ничего не понял. Шаровой заряд Атомное оружие основано на эффекте цепной реакции. Ядра некоторых изотопов тяжёлых металлов нестабильны и, захватив пролетающий мимо нейтрон, немедленно распадаются. При этом возникают как крупные осколки, так и ещё несколько свободных нейтронов. Они могут спровоцировать распад других ядер — и в результате выделится ещё больше нейтронов.
Этот лавинообразный процесс приводит к стремительному выделению энергии — ядерному взрыву, мощность которого эквивалентна 25 тоннам тротила на каждый грамм распавшегося изотопа. Разумеется, цепная реакция не начнётся, если слиток металла недостаточно велик и большая часть освободившихся нейтронов просто улетает за его пределы. Чтобы произошёл взрыв, количество расщепляющегося материала должно превысить некую критическую массу. Минимальное взрывоопасное количество вещества — 47 килограммов для урана-235 и 10 килограммов для плутония-239: на практике только эти два металла используются для создания ядерных взрывных устройств. Уже вторая, сброшенная на Нагасаки бомба «Толстяк», имела шаровой заряд Может показаться, что создать критическую массу легко: взять два слитка урана, каждый пуда по полтора, и соединить. Но это не лучшая идея, поэтому при изготовлении ядерных боеприпасов используются сложно устроенные имплозивные, или шаровые заряды. Их эффект основан на том, что при воздействии силы на поверхность сферы по мере приближения к её центру давление будет возрастать в квадрате.
Как следствие, шаровой заряд представляет собой «матрёшку». Внешний сферический слой образует обычная «химическая» взрывчатка, по поверхности которой равномерно распределены 64 детонатора. Все детонаторы должны сработать одновременно — тогда происходит взрыв, который порождает направленную к центру ударную волну. Если хотя бы один детонатор не сработает вовремя, сжатие будет ассиметричным и приведёт лишь к разрушению боеприпаса. И это служит надёжной защитой. Бомба может выпасть с самолёта, упасть вместе с самолётом, сгореть в вагоне в результате железнодорожной катастрофы, в неё даже может попасть артиллерийский снаряд правда, последнее испытывалось только на макетах. В худшем случае это приведёт к подрыву обычной, химической взрывчатки, но незапланированной детонации ядерного заряда не произойдёт.
Следом за взрывчаткой в шаровом заряде располагается слой алюминия. Лёгкий металл нужен, чтобы увеличить радиус заряда, а значит, и итоговое давление в центре сферы. Внутрь полой алюминиевой сферы вкладывается тампер — полая сфера из обеднённого урана, которая служит массивным поршнем Через тампер концентрическая ударная волна передаётся на третью, самую маленькую полую сферу, изготовленную из ядерной взрывчатки — урана или плутония. В самом же центре находится миниатюрный источник нейтронов на основе трития. Масса «ядерной взрывчатки» в шаровом заряде обычно в полтора-три раза меньше критической. Развитие цепной реакции в боеприпасе происходит благодаря дополнительным нейтронам, испускаемым тритием, увеличению плотности металла в момент максимального сжатия, а также потому, что урановый тампер отражает рождающиеся при распаде ядер нейтроны внутрь, не позволяя им покидать зону реакции. Рекорд здесь принадлежит британцам: они изготовили тонкостенную плутониевую сферу, масса которой превышала критическую в 12 раз!
Но тогда сынов Туманного Альбиона просто заели амбиции: как же так, у Советов и Штатов есть водородная бомба, а у них нет. На изготовление этого чуда техники королевство потратило годичный запас расщепляющихся материалов. Повысить мощность боеприпаса можно и без такой траты дефицитных материалов. В активированном шаровом заряде цепной распад продолжается не до исчерпания горючего, как в обычной бомбе, а до разрушения устройства. Испарившийся урановый шар уже не обладает достаточной плотностью, чтобы поддерживать цепную реакцию. Увеличить степень выгорания можно, обеспечив дополнительное сжатие. Для этого используется большой — до четверти тонны — заряд химической взрывчатки.
Абсолютно все объекты, которые были построены на Семипалатинском полигоне, оказались уничтожены: танки перевернуты, от макетов жилых зданий остались лишь бетонные ошметки, а 100-тонные элементы моста отбросило на 150—200 м. Нервное спокойствие Официально об испытаниях первой водородной бомбы объявили лишь спустя восемь дней — 20 августа 1953 года — в газетах «Правда» и «Известия». Отечественную ядерную триаду ждут большие перемены «Вследствие осуществления в водородной бомбе мощной термоядерной реакции взрыв был большой силы, — писали «Известия». В той статье также отметили резонанс в зарубежных СМИ. Многие считали, что обладание СССР таким мощным оружием является угрозой для мирового порядка. The New York Times делала акцент не на самом факте создания Советским Союзом бомбы, а на том, что США всего в течение полугода были безоговорочными лидерами гонки вооружений. Пока Запад переваривал информацию, союзный блок социалистических стран радовался новостям о новом оружии. А СССР сначала разработал атомную бомбу, а потом и водородную. Не стоит забывать и про «мирные» проекты — атомные электростанции, ледоколы и так далее, — рассказал он «Известиям».
В 50-х годах люди всего мира боялись новой войны, но, несмотря на рост напряжения, именно равновесие ядерного потенциала защищало Землю от катастрофы, указал эксперт. Для России создание водородной бомбы определило будущее и стало главным гарантом собственной безопасности. Человечество не раз шло по пути от «ядерной эйфории» до «красной черты» и обратно — После создания советской водородной бомбы США не могли уже рассчитывать на превосходство в ядерном оружии, концепция ядерного сдерживания стала доминировать. И одновременно с этим Советский Союз стал наращивать количество своих ядерных боеголовок, — рассказал «Известиям» доктор исторических наук, заместитель директора Института российской истории РАН Сергей Журавлев. Эксперт подчеркнул, что, кроме сдерживания блока НАТО, именно наработки по атомному и водородному оружию позволили использовать атом в мирных целях.
Кстати, ядерную бомбу еще называют атомной. А водородная получила название термоядерной.
Поэтому вопрос, чем отличается атомная бомба от ядерной, по сути своей является некорректным. Это одно и то же. Отличие ядерной бомбы от термоядерной же заключается не только в названии. Термоядерная реакция основана не на реакции деления, а сжатия тяжелых ядер. Ядерная боеголовка является детонатором или запалом для водородной бомбы. Другими словами, представьте себе огромную бочку с водой. В нее погружают атомную ракету. Вода представляет собой тяжелую жидкость.
Тут протон со звуком замещается в ядре водорода на два элемента - дейтерий и тритий: Дейтерий представляет собой один протон и нейтрон. Их масса вдвое тяжелее, чем водород; Тритий состоит из одного протона и двух нейтронов. Они тяжелее водорода в три раза. Сначала взрывается атомный запал из двух кусков урана-235 или плутония-239. Находятся они в хвостовой части бочки. При соединении они достигают критической массы и начинается цепная реакция. Это и есть атомный взрыв. За счет него выделяется тепло, которое начинает термоядерный синтез гелия из дейтерия.
Подробнее о самых мощных атомных бомбах. Испытания термоядерной бомбы После взрыва в Хиросиме и Нагасаки , окончания Второй Мировой Войны, началась гонка между Америкой и СССР и мировое сообщество поняло, что мощнее ядерная или водородная бомба. Разрушительная сила атомного оружия начала привлекать каждую из сторон. США первыми сделали и испытали ядерную бомбу. Но вскоре стало понятно, что она не может иметь больших размеров. Поэтому было решено попробовать сделать термоядерную боеголовку. Тут снова же преуспела Америка. Советы решили не проигрывать в гонке и испытали компактную, но мощную ракету, которую можно перевозить даже на обычном самолете Ту-16.
Тогда все поняли, чем отличается ядерная бомба от водородной. Для примера, первая американская термоядерная боеголовка была такой высокой, как трехэтажный дом. Ее нельзя было доставить небольшим транспортом. Но потом по разработкам СССР размеры были уменьшены. Если проанализировать взрывы в Японии , можно сделать вывод, что эти ужасные разрушения были не такими уж и большими. В тротиловом эквиваленте сила удара была всего несколько десятком килотонн. Поэтому здания были уничтожены только в двух городах, а в остальной части страны услышали звук ядерной бомбы. Если это была бы водородная ракета, всю Японию бы разрушили полностью всего одной боеголовкой.
Ядерная бомба со слишком сильным зарядом может взорваться непроизвольно. Начнется цепная реакция и произойдет взрыв.
С момента первого применения атомной бомбы в Хиросиме прошло 52 года. Мировое сообщество близко подошло к осознанию того, что ядерная война неминуемо приведет к глобальной экологической катастрофе, которая сделает дальнейшее существование человечества невозможным. В течение многих лет создавались правовые механизмы, призванные разрядить напряженность и ослабить противостояние между ядерными державами. Так например, было подписано множество договоров о сокращении ядерного потенциала держав, была подписана Конвенция о Нераспространении Ядерного Оружия, по которой страны-обладателя обязались не передавать технологии производства этого оружия другим странам, а страны, не имеющие ядерного оружия, обязались не предпринимать шагов для его разработки; наконец, совсем недавно сверхдержавы договорились о полном запрещении ядерных испытаний. Очевидно, что ядерное оружие является важнейшим инструментом, который стал регулирующим символом целой эпохи в истории международных отношений и в истории человечества. Первое ядерное оружие было применено Соединенными Штатами против японских городов Хиросимы и Нагасаки в августе 1945 г. При таких взрывах высвобождается огромное количество энергии и губительной радиации: взрывная мощность может равняться мощности 200 000 тонн тринитротолуола.
Гораздо более мощная водородная бомба термоядерная бомба , впервые испытанная в 1952 г. Взрывная мощность может равняться мощности нескольких миллионов тонн мегатонн тринитротолуола. Площадь поражения, вызванного такими бомбами, достигает больших размеров: 15 мегатонная бомба взорвет все горящие вещества в пределах 20 км. Третий тип ядерного оружия, нейтронная бомба, является небольшой водородной бомбой, называемой также оружием повышенной радиации. Слабость взрыв означает то, что здания повреждаются не сильно. Нейтроны же вызывают серьезную лучевую болезнь у людей, находящихся в пределах определенного радиуса от места взрыва, и убивают всех пораженных в течении недели. Вначале взрыв атомной бомбы А образует огненный шар 1 с температурой и миллионы градусов по Цельсию и испускает радиационное излучение? Через несколько минут В шар увеличивается в обьеме и создав! Огненный шар поднимается С , всасывая пыль и обломки, и образует грибовидное облако D , По мере увеличения в обьеме огненный шар создает мощное конвекционное течение 4 , выделяя горячее излучение 5 и образуя облако 6 , При взрыве 15 мегатонной бомбы разрушение от взрывной волны являются полным 7 в радиусе 8 км, серьезными 8 в радиусе 15км и заметными Я в радиусе 30 км Даже на расстоянии 20 км 10 взрываются все легковоспламеняющиеся вещества, В течение двух дней после взрыва бомбы на расстоянии 300 км от взрыва продолжается выпадение осадков с радиоактивной дозой в 300 рентген Прилагаемая фотография показывает, как взрыв крупного ядерного оружия на земле создает огромное грибовидное облако радиоактивной пыли и обломков, которое может достигать высоты нескольких километров.
Опасная пыль, находящаяся в воздухе, свободно переносится затем преобладающими ветрами в любом направлении Опустошение покрывает огромную территорию.
Разница между атомной и водородной бомбой
По словам экспертов в ней может использоваться не только ядерная, но и термоядерная боеголовка. Смотрите видео онлайн «Атомная бомба и Водородная бомба: что сильнее? |. На днях Северная Корея провела успешные испытания межконтинентальной баллистической ракеты «Хвасон-17». По словам экспертов в ней может использоваться не тол. Термоядерное оружие (водородная бомба), его мощность основана не на делении ядер плутония (урана), как в ядерной бомбе, а на энергии от реакции ядерного синтеза (превращение легких элементов. Водородная или термоядерная бомба работает на синтезе ядер. При слиянии ядер выделяется огромное количество энергии. Водородная бомба не имеет ограниченности мощности, не выжигает территорию и через небольшое время пригодна для использования.
Что такое водородная бомба?
- Что включает в себя ядерное оружие
- Смотрите также
- Мощнейшее смертоносное оружие: как устроена водородная бомба и чем она отличается от атомной
- Вся правда о ядерном ударе. Спасут ли нас бомбоубежища?
- Чем водородная бомба отличается от атомной? | Аргументы и Факты
- За счет чего происходит взрыв водородной бомбы?
В чем отличия между атомной и водородной бомбой, какой взрыв мощнее
Водородная бомба. Увеличение мощности обычной ядерной бомбы упирается в некий потолок, ограниченной мощностью в несколько десятков килотонн. Водородная бомба и атомная бомба оба типы ядерного оружия, но одно устройства очень сильно отличаются от другого. В двух словах, атомная бомба представляет собой устройство деления, в то время как водородная бомба использует деление для питания реакции синтеза. Ядерная бомба, созданная и испытанная в реальных условиях, произвела революцию и в военном деле, и в политике.
Радиоактивные осадки
- Какая бомба мощнее: ядерная или водородная
- Принцип действия термоядерного оружия
- Водородная против атомной. Что нужно знать о ядерном оружии
- 10 самых мощных бомб в мире
Разница между атомной и водородной бомбой
Работы начались под руководством Уильяма Пеннея, который ранее занимался Манхэттенским проектом. США мало делились информацией об атомном оружии, ссылаясь на одноименный закон от 1946 года, однако все же позволили проводить наблюдения во время ядерных испытаний. Для сбора проб использовался самолет, а впоследствии был начат Олдермастонский проект. В 1957 году Великобритания провела серию испытаний под названием Operation Grapple. Первым испытанием стал взрыв Short Granite мощностью 300 килотонн, а уже в ходе операции Orange Herald британцы испытали атомную бомбу мощностью 700 килотонн. Она до сих пор является самой мощной среди атомных бомб, когда либо созданных человеком.
Впоследствии проведены испытания Purple Granite, мощность взрыва составила 150 килотонн. В 1957 году Великобритания также взорвала двухступенчатое устройство мощностью 1,8 мегатонны, а 28 апреля 1958 года над островом Рождества взорвали термоядерную бомбу мощностью 3 мегатонны — крупнейший успех британских ученых. Китай взорвал свою термоядерную бомбу в 1967 году. Заряд был произведен по принципу Теллера-Улама, его мощность составила 3,36 мегатонны. Примечательно, что взрыв водородной бомбы в КНР был произведен через 32 месяца после испытаний атомной бомбы — очень короткий срок для развивающегося в то время Китая.
Франция провела испытание под названием «Канопус» в 1968 году. Термоядерная бомба мощностью 2,6 мегатонны была произведена по принципу Теллера-Улама. Испытания провели на атолле Фангатауфа, после чего Франция стала пятой ядерной державой мира на тот момент. О Северной Корее стоит поговорить отдельно, поэтому пока что нужно лишь упомянуть эту страну. На фоне испытаний сейсмологи фиксировали небольшие очаги землетрясения.
В начале сентября 2017 года в КНДР заявили о наличии термоядерного заряда, который можно использовать в боеголовках на межконтинентальных баллистических ракетах. В тот же день, 3 сентября, были проведены испытания бомбы, мощность которой составила 100 килотонн.
Атомная бомба В основе действия термоядерного оружия лежит использование термоядерной реакции с водородом или его соединениями. В этих реакциях, протекающих при сверхвысоких температурах и давлении, энергия выделяется за счет образования ядер гелия из ядер водорода, или из ядер водорода и лития. Для образования гелия используется, в основном, тяжелый водород — дейтерий, ядра которого имеют необычную структуру — один протон и один нейтрон.
При нагревании дейтерия до температур в несколько десятков миллионов градусов его атому теряют свои электронные оболочки при первых же столкновениях с другими атомами. В результате этого среда оказывается состоящей лишь из протонов и движущихся независимо от них электронов. Скорость теплового движения частиц достигает таких величин, что ядра дейтерия могут сближаться и благодаря действию мощных ядерных сил соединяться друг с другом, образуя ядра гелия. Результатом этого процесса и становится выделения энергии. Принципиальная схема водородной бомбы такова.
Дейтерий и тритий в жидком состоянии помещаются в резервуар с теплонепроницаемой оболочкой, которая служит для длительного сохранения дейтерия и трития в сильно охлажденном состоянии для поддержания из жидкостного агрегатного состояния. Теплонепроницаемая оболочка может содержать 3 слоя, состоящих из твердого сплава, твердой углекислоты и жидкого азота. Вблизи резервуара с изотопами водорода помещается атомный заряд. При подрыве атомного заряда изотопы водорода нагреваются до высоких температур, создаются условия для протекания термоядерной реакции и взрыва водородной бомбы. Однако, в процессе создания водородных бомб было установлено, что непрактично использовать изотопы водорода, так как в таком случае бомба приобретает слишком большой вес более 60 т.
Второй проблемой, с которой столкнулись разработчики водородной бомбы была радиоактивность трития, которая делала невозможным его длительное хранение. В ходе исследования 2 вышеуказанные проблемы были решены. Жидкие изотопы водорода были заменены твердым химическим соединением дейтерия с литием-6. Это позволило значительно уменьшить размеры и вес водородной бомбы.
Человеческие потери и гуманитарные последствия Использование водородной бомбы и ядерного оружия ведет к огромному количеству человеческих потерь.
Взрывы этих бомб вызывают множество смертей и травмированных людей. Помимо того, что многие люди погибают от взрыва и радиации, они также могут столкнуться с долгосрочными заболеваниями и мутациями на генетическом уровне. Гуманитарные последствия такого использования оружия также включают эвакуацию и вынужденное перемещение населения, разрушение медицинских и экологических систем, а также потерю доступа к пище и воде. Все это приводит к глубокому гуманитарному кризису и длительному восстановлению после конфликта. Последствия использования водородной бомбы и ядерного оружия Разрушение инфраструктуры Разрушение городов и населенных пунктов Высвобождение радиоактивных частиц и загрязнение окружающей среды Человеческие потери и травмированные люди Долгосрочные заболевания и мутации на генетическом уровне Эвакуация и вынужденное перемещение населения Разрушение медицинских и экологических систем Потеря доступа к пище и воде Гуманитарный кризис и длительное восстановление Особенности конструкции и состава водородной бомбы.
Основным компонентом водородной бомбы является тритий — радиоактивный изотоп водорода. Тритий представляет собой тяжелый изотоп водорода, содержащий один протон и два нейтрона в ядре. Он является отличным источником нейтронов, которые играют важную роль в процессе синтеза ядра. Ключевым этапом водородной бомбы является термоядерный синтез. В процессе синтеза ядра, три тяжелых ядра дейтерия изотоп водорода, состоящий из одного протона и одного нейтрона соединяются и образуют новое ядро гелия.
При этом высвобождается колоссальное количество энергии. Для создания условий для термоядерного синтеза, внутри водородной бомбы применяется ядерный взрыв. Взрыв атомной бомбы, также называемой «воспламенителем», создает достаточно высокую температуру и давление, чтобы запустить реакцию термоядерного синтеза. В процессе термоядерного синтеза образуется не только энергия, но и большое количество высвобождающихся нейтронов. Нейтроны, вылетающие из реакции, могут использоваться для вызывания еще одной цепной реакции деления ядер — это принцип, называемый саморазмножением или термоядерной лавинообразностью.
В итоге, особенности конструкции и состава водородной бомбы обеспечивают ей значительно большую разрушительную мощность по сравнению с атомной бомбой. Она способна вызывать огромные взрывы и радиационные последствия, что делает ее одним из самых опасных видов оружия в мире. Отличие вакуумной бомбы американской от российской Различия состоят в том, что последняя может уничтожать противника, находящегося даже в бункере, при помощи соответствующей боеголовки. Во время взрыва в воздухе боеголовка падает и сильно ударяется об землю, зарываясь на глубину до 30 метров.
Такая водородная бомба именуется "чистой", хотя ядерный запал некоторое заражение всё же создаёт если существует неядерный запал - то и этого заражения нет. Простое помещение дейтрида лития рядом с атомной бомбой-запалом приведёт к разбросу его без существенного выделения энергии, поэтому он окружается оболочками тяжёлого металла, не допускающими быстрого разлёта. Основная схема для современных бомб более сложна, и включает в себя металлический цилиндр, в котором находится стержень из дейтрида лития с плутониевым сердечником, окружённый слоем пластмассы. Сбоку от цилиндра находится атомная бомба-"триггер", причём дейтрид лития прикрыт металлической крышкой. Взрыв бомбы приводит к испарению пластмассы, давление которой сжимает дейтрид лития в 1000 раз, а плутониевый стержень примерно вчетверо. Сжатие и нагрев инициируют термоядерную реакцию, а плутониевый стержень играет роль "запальной свечи", продуцируя нейтроны для превращения лития в тритий.
Ученые придумали, из чего можно было бы создать бомбу мощнее водородной
Таким образом, атомные бомбы, водородные бомбы и нейтронные бомбы — это все типы ядерного оружия, которые различаются по своей взрывной мощности, механизмe детонации и радиационному эффекту. Самая мощная ядерная бомба в истории, когда-либо испытанная США, имела эквивалент в 15 мегатонн, а её испытания произошли в 1954 году вблизи атолла Бикини. Вслед за "чистой водородной бомбой" в 58 мегатонн, которую сбросили с самолета над Новой Землей 30 октября 61-го, на том же Северном полигоне и в том же году испытали еще не менее десяти мощных термоядерных бомб и боеголовок мегатонного класса. Ключевая разница: Основное различие между водородной бомбой и атомной бомбой состоит в том, что атомная бомба использовала ядерное деление для создания энергетического взрыва, тогда как водородная бомба использует ядерный синтез. «Царь-бомба» — мощнейшее взрывное устройство в истории, занесенное в книгу рекордов Гиннесса как прошедшее испытание самое мощное термоядерное устройство. Атомная (ядерная) и водородная (она же термоядерная) бомбы — это два сокрушительных типа оружия массового поражения.