Explore the 3D world of the Solar System. Learn about past and future missions. Оказалось, что Вселенная наполнена неизвестными объектами, которые можно засечь только в рентгеновском спектре. Британский физик Стивен Хокинг предположил, что во Вселенной имеются и сверхмалые черные дыры, которые можно сопоставить с массой горы, уплотнившейся до размера протона. Но существует целый ряд теорий, объясняющих, что находится за пределами нашей Вселенной.
Параллельные вселенные и квантовая механика
- Что находится за пределами вселенной и есть ли у вселенной конец?
- Пророчество об аресте Владыки Стефана Калужского
- 2. Карликовая планета
- 60 удивительных фактов о Вселенной, которые вы должны знать
- Что лежит за пределами наблюдаемой Вселенной
Темные тайны: что скрывается во мраке космоса за пределами наблюдаемой Вселенной
Чувствительная камера NIRCam телескопа «Джеймс Уэбб» улавливает инфракрасное излучение далеких объектов, которое доходит до нас в искаженном виде. Как правило, оно сдвинуто в красную область спектра. Это феномен и называют Красным смещением. Считается, что Красное возникает в следствии расширения Вселенной. Мол, галактики удаляются - разлетаются после Большого взрыва. И, чем дальше галактика, тем быстрее она удаляется. И тем больше, соответственно, смещение. По существующим сейчас представлениям Большой взрыв бабахнул 13,8 миллиардов лет назад.
В космосе нашли возможные «порталы» в отдаленные районы Вселенной Фото: Pixabay. Ими могут быть некоторые сверхмассивные черные дыры в центре галактик. Об этом сообщает журнал Monthly Notices of the Royal Society. Российские ученые выяснили, что черные дыры в очень ярких галактиках могут быть входами в эти «порталы» или «кротовые норы» wormholes. В теории, космический корабль может пройти сквозь такие порталы.
Просто космос iStock Новый взгляд на все существующие во Вселенной объекты предлагает исследование Австралийского национального университета. Оно фактически объясняет, как вообще формировалась Вселенная. Исследование опубликовано в журнале American Journal of Physics, а коротко о нем рассказывает Phys. Авторы работы пишут, что оно представляет собой наиболее полное обоснование всей истории Вселенной и предлагает новые идеи о том, как она могла возникнуть.
За Вселенной любые варианты возможны И такая бесконечная структура рождает парадоксы. Если Вселенная бесконечна, то имея достаточное количество времени, мы рано или поздно можем найти место, идентично нашей Солнечной системе. Причем оно будет соответствовать ей во всех деталях. Там может быть такая же планета , как наша. С теми же людьми, что и у нас. С теми же технологиями, машинами, самолетами… И единственное различие заключается в том, что сегодня утром Вы одели синюю футболку, а человек , идентичный Вам — красную. Представьте себе, что в космосе есть место, где вы стали чемпионом мира по футболу! И есть место, где вы правите всем миром! И любая, абсолютно любая ваша нереализованная возможность там реализована. Расстались с девушкой? В другом месте Вселенной Вы прожили с ней 80 лет… Однако некоторые астрономы не согласны с тем, что в бесконечной Вселенной мы в конечном итоге найдем идентичную копию себя. Они считают, что существует конечное количество способов заполнить пространство фундаментальными частицами. Конечная, но неограниченная Также возможно, что Вселенная конечна и безгранична одновременно. Похоже на противоречие, не так ли? Да, это так. Но только отчасти. Возьмем Землю в качестве примера. Мы все знаем, что Земля имеет форму шара примерно. И что она конечна.
Что лежит за пределами границы Вселенной?
В те времена наша Вселенная находилась в состоянии очень плотного и горячего объекта, который зовут «сингулярностью». Затем произошел «взрыв», и Вселенная начала расширяться и охлаждаться. Наблюдения показывают, что Вселенная действительно расширяется. Все галактики расположены далеко друг от друга, и дистанция между ними продолжает меняться с увеличивающейся скоростью. Но со временем в дело вступила гравитация, и расширение замедлилось. Однако недавние исследования показывают, что теперь расширение снова ускоряется из-за таинственной тёмной энергии, которая составляет большую часть энергетического содержания Вселенной, но о её природе сейчас мало что известно. Итак, у нас есть: сингулярность — Большой взрыв — расширение Вселенной.
Существует также гипотеза космической инфляции: она говорит, что никакой сингулярности не было, а Большому взрыву предшествовало другое, особое состояние Вселенной — инфляционное. Но об этом как-нибудь в другой раз. Границы Вселенной Сегодня мы видим Вселенную в том виде, в котором она существует спустя 13,8 миллиарда лет после Большого взрыва. И вот теперь как раз стоит поговорить о границах. Однако стоит отметить, что понятие «границ Вселенной» может быть не совсем корректным, поскольку само пространство и время на самом деле могут быть не такими, как мы привыкли их понимать. И размер вселенной из-за непостоянства её пространства-времени зависит от того, какое определение расстояния принять.
Сопутствующее расстояние до самого удалённого наблюдаемого объекта составляет около 14 миллиардов парсеков эквивалентно 46 миллиардам световых лет во всех направлениях.
Отдельные публикации могут содержать информацию, не предназначенную для пользователей до 16 лет. Интернет-журнал Новая Наука каждый день сообщает о последних открытиях и достижениях в области науки и новых технологий.
Читайте последние новости высоких технологий, науки и техники.
Миллиарды лет назад время текло медленнее. В наши представления о Вселенной они не вписываются. Состав звезды таков, что ей должно бы быть 16 миллиардов лет.
Два года назад, когда пятая «невозможная» галактика еще не была обнаружена, некто Ранжендра Гупта Rajendra Gupta — профессор Университета Оттавы в Канаде University of Ottawa in Canada в статье, опубликованной в журнале Monthly Notices of the Royal Astronomical Society , предположил, что дело, возможно, в том, что Вселенная гораздо старше, чем принято считать. И привел доводы, что ей не 13,8 миллиардов лет, а на самом деле, почти в два раза больше - 26,7 миллиардов лет. В «состаренной» Вселенной «невозможные» галактики и звезды вполне могли успеть образоваться и эволюционировать. Времени бы хватило.
Наблюдаемое красное смещение, по мнению Гупты, может свидетельствовать не столько о скорости расширения Вселенной, сколько о том расстоянии, которое проходит свет, как бы старея по пути и смещаясь в красную сторону спектра.
Подумайте об этом немного. Выходит, что Вселенная бесконечна и конечна одновременно. Совершенно неясно, как астрофизики не сходят с ума, вынужденные оперировать такими кардинально противоположными понятиями! В оригинале статьи есть видео с подробностями.
Как ученые готовятся к встрече с инопланетянами
- Что лежит за пределами наблюдаемой Вселенной
- Инфляционная модель, или Что происходило в секунду после Большого взрыва
- Напряжение Хаббла
- Как ученые готовятся к встрече с инопланетянами
- Исследование: Вселенная может оказаться черной дырой - ВФокусе
- Космическое пространство — Википедия
«Джеймс Уэбб» отыскал очень тусклую галактику в очень ранней Вселенной
На рисунке справа в кубической вырезке из Вселенной видны многие сотни больших и малых войдов, расположенных, как пузыри в пене, между многочисленными галактическими нитями. Дело в том, что самая первая популяция звёзд, сформировавшихся во Вселенной, была массивнее, ярче и горячее, чем современные светила. Новый взгляд на все существующие во Вселенной объекты предлагает исследование Австралийского национального университета. Грохочущую “космическую басовую ноту” гравитационных волн, которые, как полагают, возникают в результате замедленного слияния сверхмассивных черных дыр по всей Вселенной, обнаружили астрономы. В разработке находится OPEN — игра во вселенной «Первому игроку приготовиться». А где Млечный Путь находится во Вселенной?
Расширение Вселенной — миф? Новое исследование перевернуло модель строения нашего мира
И пока научный мир бьется над этой неразрешимой задачей, мы разберем самые интересные и удивительные теории о том, где находится край Вселенной. Лучшие снимки Вселенной за последние 30 лет от телескопа «Хаббл» — Naked Science. Согласно теории Большого взрыва, наша Вселенная родилась примерно 13,75 миллиарда лет назад и с тех пор смогла расшириться из невероятно плотной «точки» до сегодняшних размеров. Какие рукотворные предметы покинули или покидают Солнечную систему и что узнает о нас вселенная из посланий на их борту. Почему Вселенная так выглядит?
Мультивселенная действительно существует? Что об этом думали Стивен Хокинг и другие ученые
Мартин Рис указал на то, что большинство миров в Мультивселенной, в отличие от Земли, скорее всего, непригодны для жизни, при этом, по статистике, должны существовать и те, где жизнь всё-таки возможна. Заявление учёного совпало с поисками Европейского космического агентства EKA. В настоящий момент астрофизики расшифровывают данные миссии "Планк", прекратившей работу ещё 23 октября 2013 года. И одна из главных загадок этой миссии — аномалия, которая может указывать на наличие миллионов галактик, спрятанных за оболочкой других миров. Открытие, сделанное десять лет назад, до сих пор не даёт покоя учёным. Проблема в том, что даже при сегодняшнем уровне развития науки десять лет — ничтожно малый срок. Портрет нашей Галактики с видом на Млечный Путь показывает смесь из газа, заряженных частиц и нескольких видов пыли.
Это некая константа, образовавшаяся во времена Большого взрыва и заполняющая собой всё пространство. И это один из ключей к теории Мультивселенной. Автор термина "реликтовое излучение" советский астроном Иосиф Шкловский допускал наличие параллельных вселенных и был уверен, что параллельность — это не разность измерений, а физическое соседство, просто иногда скрытое.
По существующим сейчас представлениям Большой взрыв бабахнул 13,8 миллиардов лет назад. Стало быть, те 5 галактик, изображения которых передал телескоп, появились в числе первых — когда Вселенная находилась в младенческом состоянии.
Однако выглядят они гораздо старше — массивными и изрядно «пожившими». Будто бы у них «за плечами» миллиарды лет эволюции. Как могло появиться столько за какие-то сотни миллионов лет - даже под воздействием темной материи, которая вроде бы ускоряет звездообразование? Миллиарды лет назад время текло медленнее. В наши представления о Вселенной они не вписываются.
Состав звезды таков, что ей должно бы быть 16 миллиардов лет.
Сегодня этот край определяется как 15 миллиардов световых лет, но это ещё не значит, что Вселенная там и заканчивается О выпуске.
Пространство Вселенной постоянно расширяется. Из самой отдаленной от центра Вселенной области приходят фотоны реликтового излучения. Оно возникло сразу после Большого взрыва. То, что находится за этой областью, существующие приборы увидеть пока не могут, поскольку она непрозрачна для излучения.
Самые интересные космические открытия 2023 года
За пределами наблюдаемой Вселенной - Живой Космос | Космические тела находятся на расстоянии более 13 миллиардов световых лет от Земли и являются самыми древними из известных человечеству. |
Astronomy (США): где находится край Вселенной? (Astronomy Magazine, США) | 07.10.2022, ИноСМИ | Новое исследование, посвященное проблеме космологической постоянной, предполагает, что расширение Вселенной может быть иллюзией. |
Не видно и вооруженным глазом: что находится за пределами Вселенной
Также может быть и со Вселенной, то есть она может быть плоская, но одновременно замкнутая в саму себя и иметь ограниченный объём. А если граница есть, то что за ней? Если эти границы существуют и Вселенная имеет ограниченный объём, то точного понимания, что за ними, у нас нет, и, скорее всего, никогда не будет. Но существует целый ряд теорий, объясняющих, что находится за пределами нашей Вселенной. То есть такое пространство вне нашей Вселенной, которое простирается бесконечно и, в котором наша Вселенная может расширяться вечно.
А на расстоянии сотен миллиардов световых лет от нас могут быть другие вселенные, похожие на нашу. На этом моменте возникает вопрос: почему же мы тогда их не видим? Наиболее вероятным объяснением этого является то, что эти вселенные находятся настолько далеко, что к тому времени, когда их свет достигнет Земли, он может потерять столько энергии, что мы физически не сможем его заметить, или вообще наша Вселенная может погибнуть, если она не вечна, к тому времени, когда этот свет достигнет нас. Согласно другой теории: за пределами нашей расширяющейся Вселенной существует другая пространственно-временная вселенная, с большим количеством измерений, в которой наша Вселенная расширяется.
Не только реликтовое излучение было значительно горячее — в инфракрасном, а не микроволновом диапазоне волн — но и каждая галактика во Вселенной должна была быть молодой и полной молодых звёзд; эллиптических галактик на таком раннем этапе, скорее всего, не существовало. Такие дальние расстояния уже находятся на пределе возможностей наших современных приборов, но телескопы, такие как Кек, Спитцер и Хаббл, начали доставлять нас туда, начиная с 1990-х годов. Как только мы возвращаемся в прошлое на расстояние примерно 29 миллиардов световых лет или дальше — что соответствует временам, когда возраст Вселенной составлял 700-800 миллионов лет — мы начинаем сталкиваться с первым «краем» Вселенной: краем прозрачности. Сегодня мы считаем само собой разумеющимся, что космическое пространство прозрачно для видимого света, но это верно только потому, что оно не заполнено блокирующим свет материалом, таким как пыль или нейтральный газ. Но в ранние времена, до образования достаточного количества звёзд, Вселенная была полна нейтрального газа, который не был полностью ионизирован ультрафиолетовым излучением звёзд. В результате большая часть света, который мы видим, заслоняется этими нейтральными атомами, и только после образования достаточного количества звёзд Вселенная становится полностью реионизованной. Отчасти именно поэтому инфракрасные телескопы, такие как новейший флагман НАСА JWST, так важны для изучения ранней Вселенной: существует «граница», за которой мы не можем видеть на привычных нам длинах волн. На расстоянии 31 миллиарда световых лет, что соответствует времени всего 550 миллионов лет после Большого взрыва, мы достигаем края того, что мы называем реионизацией: когда большая часть Вселенной становится в основном прозрачной для оптического света. Реионизация — процесс постепенный и происходил неравномерно; во многом она похожа на неровную, пористую стену.
В некоторых местах реионизация происходила раньше, именно так Хаббл обнаружил самую удалённую галактику на расстоянии 32 миллиардов световых лет, всего через 407 миллионов лет после Большого взрыва , но другие регионы останутся заполненными частично нейтральным газом, пока не пройдёт почти миллиард лет. Теперь JWST пошёл ещё дальше, показав нам галактики уже через 330 миллионов лет после Большого взрыва, где они всё ещё выглядят большими, развитыми и не совсем «девственными» с точки зрения элементов, которые в них присутствуют. Должно быть, звёзды и галактики всё ещё существуют за пределами даже того, что JWST показал нам до сих пор.
Как же нам найти эти миниатюрные черные дыры, ведь мы даже крупные не можем разглядеть? Именно в этом нам может помочь Луна, предполагают авторы нового исследования, опубликованного в Monthly Notices of the Royal Astronomical Society. И эти столкновения должны были оставить следы. Пусть мы не видим саму темную материю, но мы видим её влияние на видимую материю.
Собственно, именно так ученые её и заметили. В общем, единственная проблема — невидимость темной материи. Ученые описали уже много разных кандидатов на это "звание". Один из них — миниатюрные черные дыры. Но астрономы пока что отдают предпочтение изучению сверхмассивных черных дыр, потому что у нас гораздо больше доказательств их существования. Авторы нового исследования показали, что мы, возможно, сможем изучить и доисторические миниатюрные черные дыры, если присмотримся к лунным кратерам. Наука микроскопических черных дыр Эта идея появилась у Ялиневича и его коллеги Мэтта Каплана, доцента кафедры физики в Иллинойском университете, около трех лет назад.
Всё началось с простого вопроса: Можно ли по форме кратера определить, сформировался ли он от удара астероидом или от удара компакного объекта вроде черной дыры? Если кинуть монетку в муку, частицы взлетят вверх, а потом осядут по краям монеты. Кратеры формируются также. По его словам, это скорее похоже на подрыв закопанной вертикально шашки динамита. Внешне такой кратер будет похож на кратер от астероида, но его склоны будут более высокими и крутыми. А еще черная дыра должна будет оставить выходное отверстие на другой стороне Луна. И теоретически, по расчетам Шандеры, дыры из темной материи могут быть меньше в размере, чем черные дыры той же массы, но сформированные из обычной материи.
Почему именно Луна? Просто потому, что она хорошо изучена. Теоретически, следы могли сохраниться и на Меркурии, и на спутниках Нептуна и Юпитера. Как же мы можем подтвердить, что кратер образовался именно от черной дыры? По словам авторов, настолько мощное столкновение должно было бы изменить свойства материи в месте удара. Нужно будет искать соединения, которые не могли сформироваться при температурах, возможных при ударе камня о камень. И чтобы найти эти следы, нужно вернуться на поверхность Луны и собрать образцы.
Но это уже после того, как мы найдем подходящие для изучения кратеры. Ученые предлагают искать их с помощью суперкомпьютеров и алгоритмов, которые смогут быстро проанализировать структуру всех кратеров. Посмотрим, что найдут... Старец Нектарий Оптинский: «Антихриста будут избирать как единого царя планеты» Нектария Оптинского относят к последним чудотворцам и провидцам нашего времени. Жизнь благочестивого старца не была насыщена событиями. Тем не менее, он получил известность благодаря своим откровениям. Действительно, священнослужитель сделал немало признаний, которые поражают точностью, и свершил действа сравнимые с волшебством.
Пророчество о революции 1917-го года Главным пророчеством старца называют его слова о свершении революции. Он стал говорить о грядущем событии за несколько лет до его начала. Подобные признания делали и другие прорицатели. Но они говорили о том, что революция случится в 20-30 годах прошлого столетия. Свое видение Нектарий приписал неизвестному монаху. Якобы это он увидел страшное будущее, когда будут закрыты монастыри и разрушены храмы. Вот как описывается событие в письменных источниках того времени: монах вышел на крыльцо посреди ночи и увидел в кромешной тьме строительство масштабного здания.
Оно озарялось загадочным светом. Не хватало лишь последнего ряда до завершения стройки. Старец сказал, что как только будет выстроен последний ряд, наступит конец света. Произошло видение в 1915-м году. А уже через два года так и случилось. Начались гонения большевиков на православных священников, церкви закрывали, низвергали религиозные символы, жгли иконы и кресты. Свершилась революция.
Пророчество об аресте Владыки Стефана Калужского Стефан Калужский перед смертью слезно вспоминал о своей вине перед Нектарием. Он говорил, что виноват перед ним, и нет ему прощения. Однажды владыка посетил Оптинского старца в келье. Тот никак не отреагировал на приход священнослужителя. Нектарий продолжил свое странное занятие. Он играл в куклы. Причем весьма необычно.
Одна кукла избивала другую и повелевала садить ее в тюрьму. Стефан Калужский решил, что ввиду преклонного возраста Нектарий лишился рассудка. Он покачал головой и вышел из кельи. Только спустя время, когда его пришли арестовывать представители большевистской власти, он вспомнил о прошлом событии. Владыка понял, что таким образом, старец предостерегал его от скорых гонений и тюремного заключения. Пророчество о собственной смерти Свою смерть Нектарий также предвидел.
Судя по всему, у этой экзопланеты, радиус которой составляет 0,5 радиуса Юпитера, есть свой спутник размером с Нептун. Возможно, нам впервые удалось обнаружить экзолуну, и это может дать большой толчок поиску подходящих для колонизации небесных тел, хотя для подтверждения открытия еще предстоит провести немало исследований, но уже с помощью орбитального телескопа Хаббл Hubble. Активность темной энергии Фото: astronomynow.
Астрономы уже почти 6 последних лет с помощью данных с орбитального телескопа Хаббл пытаются увеличить точность своих подсчетов. Выходит, что две галактики, находящиеся друг от друга на расстоянии 3,3 миллиона световых лет, должны лететь в противоположном направлении на скорости 73,8 километра в секунду. Однако новые данные говорят о том, что эта скорость равна 67-69 километрам в секунду на мегапарсек. Согласно новому исследованию темная энергия оказалась намного более сложной для нашего понимания, чем мы полагали ранее. Возможно, она растет, или этот гипотетический вид энергии «общительнее», чем мы считали, и он постоянно взаимодействует с Вселенной по какому-то своему сценарию. А, может, мы обнаружили абсолютно новый вид субатомных частиц, влияющий на происходящее с нашей Вселенной. Так или иначе, ученым, вероятно, предстоит изменить свои представления о законах физики… 1. Большинство похожих на Солнце звезд принадлежит парной системе Фото: space. Новое исследование гласит, что чаще всего звезды, похожие на наше светило, зарождаются именно в двойной системе.
Некоторое время астрономы наблюдали за молодыми одиночными звездами и двойными звездами в созвездии Персея Perseus , находящемся в 600 световых годах от Земли. По их подсчетам практически все звезды в этой системе, похожие на наше Солнце, - участницы двойной системы, расстояние между компонентами которой может достигать примерно 500 астрономических единиц. Для справки, 1 астрономическая единица AU равна в точности 149 597 870 700 метрам среднее расстояние от Земли до Солнца. Впрочем, партнерство это часто распадается еще на ранних этапах развития двойных звезд — спустя примерно миллион лет, что по вселенским меркам не так уж и много. Таким образом появляются так называемые разделенные двойные системы. Обнаружение давно утраченного компаньона нашего Солнца, возможно, могло бы лучше объяснить ученым нынешнее состояние нашей планетной системы. Не исключено, что Немезида Nemesis , предположительная пара нашего Солнца, скрывается где-то среди других звезд в нашей галактике. RU Поддержи Бугага.
Послание Вселенной для землян: астрологи запечатлели удивительный космический объект
Тем не менее, наблюдаемая Вселенная, включающая все местоположения, которые могут воздействовать на нас с момента Большого взрыва, конечна, поскольку конечна скорость света. Границей космического светового горизонта является расстояние 4,19 гигапарсека. Действительное расстояние до границы наблюдаемой Вселенной больше благодаря всё увеличивающейся скорости расширения Вселенной и оценивается в 78 миллиардов световых лет, или около 1,5 х десять в 26 степени метров.
Таким образом, живя в пустоте, мы в конечном итоге получаем завышенную оценку скорости расширения космоса. Более того, эта модель совпала с последними данными по темным потокам. Для Лопес эти результаты интересны тем, что они потенциально могут объяснить найденные ею гигантские структуры. Тем не менее, MOND - довольно спорная гипотеза, поскольку она отвергает существование темной материи - идею, которая хорошо подтверждается наблюдениями. Вместе с тем Баник подчеркивает, что не считает свою работу решением проблемы как таковой. Скорее, по его словам, она иллюстрирует, что некоторые изменения в стандартной космологической модели могут позволить ускорить процессы формирования гигантских космических структур. Баник считает, что для этого достаточно лишь слегка "подкорректировать" законы общей теории относительности, так чтобы гравитация стала чуть сильнее на расстояниях свыше миллиона световых лет, но не настолько, чтобы это повлияло на все остальное в стандартной модели, включая темную материю.
Впрочем, пишет эксперт, сила гравитации на таких масштабах пока не проверялась. Не исключено, что "менее заметная" материя может группироваться совершенно иначе, возможно, создавая крупномасштабные структуры или зияющие пустоты гораздо чаще, чем мы думаем. Если это так, то войды не такая уж редкость. Одна из гипотез предполагает, что темная материя тянется нитями по всему космосу. Стандартная космологическая модель предполагает, что темная материя "холодная", то есть медленно движущаяся и почти не взаимодействующая с обычной материей или светом, кроме как через гравитацию. Но некоторые космологи утверждают, что темная материя может быть "горячей", движущейся со скоростью, близкой к скорости света. Согласно этой модели, космические структуры растут иерархически: мелкие объекты объединяются в более крупные. В таком случае темная материя должна состоять из безмассовых частиц, таких как нейтрино. При этом структуры будут формироваться в обратном порядке - начиная с гигантских образований, которые распадаются на более мелкие объекты, например, галактики.
В конечном итоге это лучше согласуется с существованием мегаструктур - и войдом KBC - но хуже с результатами других наблюдений. А может быть, темная материя взаимодействует с барионной материей через неизвестную нам пятую силу природы. Есть и более удивительные идеи. Один из самых смелых вариантов - который, тем не менее, допускается в стандартной космологической модели - космические струны. Это гипотетические астрономические объекты длиной в миллиарды световых лет, при этом их диаметр значительно меньше размеров протона. Лопес выдвинула идею, что подобные струны могут функционировать как дополнительный механизм гравитационного притяжения материи. Однако Баник говорит, что это вряд ли решит проблему, потому что, даже если такие объекты существуют, они будут большой редкостью. Натараджан говорит, что нашу существующую космологическую модель "чрезвычайно трудно опровергнуть". Хотя внесение некоторых "изменений" в природу темной материи может объяснить наличие нашей пустоты, я не знаю, как это повлияет на формирование звезд, галактик или черных дыр", - говорит она.
В свою очередь, Шанкс задается вопросом, не являются ли космические пустоты на самом деле более распространенным явлением, чем мы думаем. Большая часть наших данных о структуре Вселенной основана на анализе ярких галактик, что вполне естественно, ведь именно за этими объектами легче всего наблюдать.
Происхождение Вселенной Это загадка из загадок, над которой еще будет долго биться человечество. Одна из самых первых научных гипотез — теория «Большого Взрыва» выдвинутая советским геофизиком А. Фридманом в 1922 году и сегодня является наиболее популярной при объяснении происхождения Вселенной.
Согласно гипотезе, в начале вся материя была сжата в одну точку, представляющую из себя однородную среду с чрезвычайно высокой плотностью энергии. Как только критический уровень сжатия был преодолен — произошел Большой Взрыв, после которого Вселенная начала свое постоянное расширение. Но ученых интересует, что же было до Большого Взрыва? По одной из гипотез - ничего, по другой — все. Большой Взрыв это лишь очередная стадия бесконечного цикла расширений и сжатий пространства.
Однако теория Большого Взрыва имеет и уязвимые места. По мнению некоторых физиков, расширение Вселенной после Большого Взрыва сопровождалось бы хаотичным распределением вещества, а оно напротив — упорядочено. Границы Вселенной Вселенная постоянно растет, и это установленный факт. Еще в 1924 году американский астроном Эдвин Хаббл с помощью 100-дюймового телескопа обнаружил расплывчатые туманности. Это были такие же галактики как наша.
Через несколько лет он доказал, что галактики удаляются друг от друга подчиняясь определенной закономерности: чем дальше галактика — тем быстрее она движется. С помощью мощных современных телескопов астрономы погружаясь в глубины Вселенной одновременно переносят нас в прошлое — в эпоху формирования галактик. По свету, приходящему из дальних рубежей Вселенной астрономы высчитали ее возраст — около 13,7 млрд.
Именно звёзды с низкой металличностью потенциально способны образовывать рекордно массивные чёрные дыры после своей смерти, так как они в процессе жизни не так активно «разбазаривают» вещество, как звёзды с высоким содержанием металлов. До обнаружения чёрной дыры в системе Gaia BH3 самой массивной чёрной дырой звёздной массы считался объект Лебедь Х-1 массой 21 солнечная на удалении около 7000 световых лет от нас. Самая близкая к нам чёрная дыра солнечной массы расположена в 1500 световых годах — это чёрная дыра Gaia BH1 с массой в 10 солнечных. Также была найдена ещё одна чёрная дыра подобной массы — Gaia BH2 , которая расположена на удалении 3800 световых лет от Солнечной системы. Новое открытие затмевает предыдущие находки и делает его крайне интересным. Это стало моментом регистрации сильнейшего в истории наблюдений гамма-всплеска, который получил индекс GRB 221009A и официальное прозвище BOAT английская аббревиатура от «ярчайший за всё время». Событие оказалось настолько ярким, что на месяцы затмило послесвечение, по которому можно было определить его источник.
Но теперь эта тайна раскрыта. Источник изображения: IHEP Группа американских астрономов из Северо-Западного университета Чикаго в сегодняшнем номере журнала Nature Astronomy опубликовала статью, в которой сообщила о происхождении всплеска BOAT и о процессах, его сопровождавших, что также стало открытием. Учёные смогли приступить к поискам источника только полгода спустя после регистрации всплеска. До этого высокоэнергичные фотоны гамма-излучения буквально слепили все направленные на потенциальный объект излучения датчики. Следует сказать, что учёные не сильно удивились, когда обнаружили на месте «преступления» останки сверхновой. Взрывы сверхновых — это один из вероятных источников гамма-всплесков. Интересно здесь то, что взорвалась, в общем-то, рядовая сверхновая, а не нечто рекордное по своему масштабу, как можно было бы ожидать. Другое дело, что гамма-излучение, возникшее в результате взрыва, оказалось очень сильно сфокусированным. Именно эта концентрация, да ещё направленная в сторону Земли, привела к столь яркому эффекту. Такое может происходить не чаще одного раза в 10 тыс.
Учёные считают, что предельная фокусировка гамма-лучей произошла по причине высокой скорости вращения звезды перед взрывом. В теории такие процессы могут вести к образованию наиболее тяжёлых металлов во Вселенной. Считается, что в звёздах в обычных условиях не могут быть синтезированы вещества тяжелее железа. Но в ряде экстремальных процессов, например, подогреваемые интенсивным гамма-всплеском, могут появиться и более тяжёлые элементы, включая золото и платину. Обратив свой взор к месту рождения события BOAT, учёные начали поиск золота и платины. Помог им в этом спектрометр космического телескопа «Джеймс Уэбб». Ни золота, ни платины в результате обнаружить на месте взрыва сверхновой не удалось. Это позволяет отодвинуть в сторону теорию о GBR-канале, как катализаторе синтеза тяжёлых элементов. В то же время это лишь повод обнаружить больше похожих событий и набрать достаточно данных либо для полного опровержения такой возможности, либо для создания списка исключений. В любом случае, изучение события BOAT дало целый спектр данных, чтобы учёным было чем занять свои головы в поиске ответов на загадки Вселенной.
Сегодня опубликованы данные первого года наблюдений, и они оказались интригующими. Это ещё не доказательство открытия, а только намёк на то, что основную на сегодня космологическую модель эволюции Вселенной, возможно, потребуется в корне изменить. Трёхмерная карта участка Вселенной. Возникла идея тёмной энергии, которая заставляет вещество разлетаться с ускорением. Согласно модели Лямбда-CDM , влияние тёмной энергии на вещество постоянно в течение всей её истории, что, в сухом остатке, приведёт Вселенную к тепловой смерти. Проект DESI кроме решения других задач также преследовал цель повысить точность измерения влияния тёмной энергии на вещество во Вселенной. Делает он это разными способами. На расстояние до 11 млрд световых лет изучаются спектры квазаров, а относительно близко расположенные галактики картографируются с помощью анализа спектров сверхновых и переменных звёзд. Это особенно ценно для ранней Вселенной, о которой мы знаем исчезающее мало, но которую можем изучать новыми инструментами и подкреплять модели своими наблюдениями. Так, анализ распределения галактик и квазаров в те ранние времена, когда эти объекты разлетались «на гребне волны» так называемых барионных акустических осцилляций — волн или пузырей распространения плотности «первичной» плазмы, позволяет с новой точностью измерить влияние тёмной энергии на этот процесс.
Согласно данным DESI за первый год наблюдений, скорость разлёта вещества в ранней Вселенной и в окружающей нас Вселенной отличаются. Достоверность данных пока ниже открытия — на уровне трёх значений сигма при необходимых пяти значений и выше. Однако это намёк, что влияние тёмной энергии на вещество со временем может начать ослабевать. Если это так, то, по крайней мере, Вселенной не будет грозить тепловая смерть, ведь её расширение в таком случае замедлится или даже остановится до начала фатальных и необратимых последствий. В любом случае, придётся искать место для новой физики в наших моделях. Да, это еще не доказательство, но это интересно». Осталось дождаться 2026 года, когда проект DESI завершит сбор данных и подождать ещё несколько лет, пока их обработают. Но пока даже обнаружение звёзд второго поколения случается менее одного раза на 100 тыс. И всё же, обнаружить звезду второго поколения да ещё в другой галактике — это тоже удача и её только что поймали учёные из Чикагского университета. Эта звезда обнаружена у нас под боком в галактике-спутнике Млечного Пути Большом Магеллановом Облаке и она стала кладезем ценной информации.
Большое Магелланово Облако, наблюдаемое с помощью телескопа «Спитцер». Чем меньше в спектре звезды металлов — всего, что тяжелее гелия в таблице Менделеева, тем она старше. Поэтому от спектра первых звёзд учёные ждут линий водорода и гелия и немного лития — только того вещества, которое образовалось в процессе Большого взрыва. Считается, что первые звёзды были сверхбольшими и сверхгорячими, поэтому они просуществовали недолго и вследствие быстрого прогорания не встречаются нам при наблюдении за Вселенной. Но зато в их недрах в процессе термоядерных реакций успели возникнуть первые элементы тяжелее лития вплоть до железа по периодической таблице. Взорвавшись, первые звёзды образовали облака веществ для рождения звёзд второго поколения, в спектре которых мы можем обнаружить характерные металлы в определённых пропорциях. По совокупности таких предполагаемых признаков учёные и находят звёзды второго поколения.
Самые интересные космические открытия 2023 года
Но существует целый ряд теорий, объясняющих, что находится за пределами нашей Вселенной. Когда-нибудь наступит время, когда человек плотно освоит космос, и наш человек будет бороздить просторы вселенной, как у себя дома на планете Земля. Вселенная растёт, флуктуирует и воспроизводит себя в различных формах — можно сравнить эту модель с кактусом, от которого отпочковываются новые побеги. В одной из первых галактик Вселенной нашли сверхактивную черную дыру. Физики долгое время изучают саму природу Вселенной и кажется, они нашли, что находится за ее пределами. Тема предела Вселенной – весьма неоднозначна и зависит от того, что именно мы рассматриваем.