Анодирование — процесс создания оксидной плёнки на поверхности некоторых металлов и сплавов путём их анодной поляризации в проводящей среде. Цель этой статьи — глубоко изучить принцип процесса анодирования алюминия и его рабочий механизм, чтобы обеспечить четкое понимание и руководство для исследователей в инженерных и производственных областях.
Что такое анодирование?
Анодированные украшения: особенности технологии, советы по выбору и уходу | Что такое анодированная металлическая поверхность. Название анодирования носит процесс, протекающий при использовании электролита и электрического тока различной величины и позволяющий получить на изделии прочную оксидную пенку. |
Анодирование в домашних условиях - способы и технология | В этой статье вы узнаете, что такое анодирование и как происходит нанесения защиты на изделия. |
Какие преимущества дает анодирование алюминия?
Холодное анодирование характеризуется скоростью образования окисной пленки: она гораздо выше, чем скорость растворения металла с внешней стороны. Ответив на вопрос: анодирование – что это такое, необходимо разобраться с оборудованием, которое предназначено для проведения данного процесса. Что такое анодирование алюминия. Анодирование — что это такое? Анодирование алюминия — это электролитический способ улучшения коррозионной устойчивости путем образования оксидного слоя. Анодированный алюминий: черный, матовый, листовой Сферы применения материала, методики и технологии анодирования в промышленности и в домашних условиях.
Что такое анодированный алюминиевый профиль и для чего он нужен?
Анодирование алюминия или анодное окисление – процесс создания на поверхности металла оксидной пленки. Что такое анодирование и для чего оно нужно - разберем в данной статье. это электрохимический процесс, который превращает металлическую поверхность в декоративную., прочный, сопротивление ржавчине, анодно-оксидная отделка. Холодное анодирование характеризуется скоростью образования окисной пленки: она гораздо выше, чем скорость растворения металла с внешней стороны. Сегодня давайте посмотрим на анодирование алюминия, процессы и детали, которые помогут показать, почему анодирование так популярно и важно.
Что такое анодирование металлов и зачем его использовать?
Плёнки средней толщины 1—50 мкм , используются для защиты сплавов алюминия от коррозии и при декоративной отделке изделий. Толстые плёнки 50—300 мкм применяются для защиты поверхности от износа и истирания. Анодная плёнка состоит из примыкающего к металлу тонкого барьерного слоя, и пористого наружного слоя. Толщина барьерного слоя определяется напряжением процесса, и при этом не зависит от плотности тока, слабо уменьшается с температурой, и несколько меняется при переходе от одного электролита к другому. Наибольшее распространение для анодирования алюминиевых деталей получил сернокислый процесс.
Алюминий промывают в деионизованной воде, чтобы удалить остатки ионов, которые могут оставить пятна. Добавление цвета к анодированной заготовке Анодированная поверхность пористая, поэтому хорошо поддаётся окрашиванию. Этот этап не является обязательным, однако часто осуществляется, чтобы получить более привлекательное изделие. Герметизация После основных этапов заготовку погружают в раствор ацетата никеля, чтобы заполнить образовавшиеся поры и герметизировать полости на её поверхности. В результате получается изделие с гладкой, однородной структурой.
Технологии Анодирование алюминия проводится разными способами. У каждой технологии есть особенности, плюсы и минусы. На свойства поверхности влияет плотность тока и температура электролита. Чем выше плотность тока и ниже температура, тем твёрже получается оксидная плёнка. При высокой температуре получается мягкое и пористое покрытие, которое хорошо поддаётся окрашиванию. Рассмотрим технологии подробнее. Твердое анодирование Твердое анодирование — это способ обработки, при котором в роли электролита выступает не только раствор серной кислоты H2SO4, а сразу несколько кислот. Возможно применение щавелевой, уксусной, борной или ортофосфорной кислоты, триоксида хрома, различных органических соединений. Эта технология используется в современной промышленности чаще всего.
Она позволяет получить на поверхности заготовки очень тонкий, но при этом прочный оксидный слой. Алюминий обрабатывают до получения светло-молочной плёнки, а затем промывают струёй холодной воды и окрашивают составами на основе анилина. Таким способом можно получить привлекательную поверхность изделия. Но они не подходят для эксплуатации в тяжелых условиях, поскольку хуже защищены от коррозии, воздействия агрессивных сред и механических повреждений.
Гуглим дальше, был найден патент по окраске анодных плёнок при помощи ступенчатого анодирования при постоянном токе и последующего анодирования переменным, судя по описанию в патенте, можно получить большое количество цветов, причем с очень точной их повторяемостью что весьма сложно при окраске в анилиновых красителях, сложно попасть в тон на нескольких деталях, с каждой окраской падает концентрация красителя в растворе, Ph и тд. По описанию анодирование проводится в двух видах электролитов, в Сернокислом и Щавелекислом, так как хотел уйти от серняги, как более вредной, перешел на Щавелекислый электролит. Но увы, почему-то не удалось получить результат как описывалось в патенте, деталь отказывалась окрашиваться в какой-либо цвет вообще… Зато был собрана установка для анодирования с возможностью перемешивания раствора, его нагрева и охлаждения. Вот такой бурбулятор получился : Бак из титана, холодильник из титана, подогрев осуществляется установкой бака на плитку, охлаждение проточной водой через холодильник. Циркуляция осуществляется Бошевским насосом для системы охлаждения, крыльчатка насоса имеет магнитную муфту, тем самым исключаем протечки по валу или "сжирание" вала крыльчатки. Для более равномерного перемешивания из полипропилена изготовил рассеиватель, насверлив отверстий в трубке.
Поток получается более-менее равномерным, струи бьют в стенку и создают волну. В качестве источника тока был использован ЛАТР, выпрямительный мост и 2 показометра цифровых, главным минусом в отличии от специальных источников, приходится вручную регулировать тока и постоянно следить, чтобы он был в заданных границах, крутя ручку ЛАТРа туда-сюда. При температуре порядка 15-20град напряжение было 80-90в на фото выше видно плёнка получается плотной, голубоватого цвета в частности на Д16Т и практически не окрашиваемой… В тех же патентах упоминалось, что при повышении температуры до 35-40град слой растёт значительно быстрее, но при этом становится и более пористым, при 20 градусах слой растёт порядка часа, при 50град на ту же толщину достаточно будет 25мин По описанию в патенте но слой будет пористым, а для окраски оно и надо! В итоге сперва попробовал на 35град, деталь стала окрашиваться, но не насыщено, поднял температуру до 40град, окраска прошла успешно.
Процесс анодирования заключается в нанесении тонкой оксидной пленки на поверхность металла с помощью электрохимического процесса. Металл действует как анод в растворе кислотной ванны, и затем через ванну пропускают электрический ток, вызывая образование прочно прилипшего оксида металла на поверхности анода. Существует три основных типа анодирования: тип I хромовая кислота , тип II серная кислота и тип 3 твердое покрытие.
Эти методы различаются типом используемой кислоты и толщиной получаемой пленки. В этой статье мы обсудим виды анодирования, дадим пошаговое описание процесса анодирования и рассмотрим преимущества и недостатки анодирования. Что такое анодирование? Анодирование — это электрохимический процесс, при котором металлическая поверхность превращается в устойчивую к коррозии, долговечную и эстетически привлекательную поверхность. Процесс анодирования помогает защитить металл от износа и коррозии, а также улучшить его внешний вид. Когда впервые было использовано анодирование? Анодирование впервые было широко использовано для защиты гидросамолетов, сделанных из раннего алюминиевого сплава, называемого дюралюминием, от коррозии в морской воде.
Двое британцев, Бенгоу и Стюарт, подали заявку на патент на этот метод в 1923 году, и в том же году было внедрено промышленное анодирование. В 1927 году был запатентован новый процесс на основе серной кислоты, который остается наиболее распространенным методом анодирования, используемым сегодня. Как работает анодирование? Анодирование — это процесс создания тщательно контролируемого, плотно прилегающего слоя оксида на поверхности алюминия или другого цветного металла. Этот процесс работает с использованием электрического тока, чтобы заставить оксидный слой образоваться на заготовке. Заготовка действует как анод, притягивая к себе отрицательно заряженные ионы кислорода. Эти анионы кислорода поступают из кислого электролита.
Движущей силой для создания отрицательно заряженных ионов являются электроны, испускаемые катодом, который обычно изготавливается из алюминиевого сплава Т-6063, хотя он может быть изготовлен из других инертных проводящих материалов. Положительно заряженные ионы водорода, образующиеся из электролита, одновременно с отрицательно заряженными ионами кислорода восстанавливаются принимают электроны на катоде. Цепь дополняется источником питания и проводкой к аноду и катоду вне резервуара для анодирования. В чем важность анодирования? Анодирование дает металлу множество ключевых преимуществ. Наиболее важными преимуществами являются повышенная износостойкость, повышенная защита от коррозии и эстетические улучшения. Анодирование создает тонкий слой оксида на поверхности металла, который намного более устойчив к износу, а также защищает от коррозии.
Что такое анодированный алюминий
Анодирование производится посредством процесса электролитической диссоциации, когда покрываемую деталь присоединяют к электроду и погружают ее в электролит. это электрохимический процесс, который превращает металлическую поверхность в декоративную., прочный, сопротивление ржавчине, анодно-оксидная отделка. Что такое анодированный алюминий и как анодируют алюминиевый профиль Ссылка на основную публикацию.
Анодирование алюминия: что это за процесс?
О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. это процесс электрохимического наращивания оксидной пленки путем анодного окисления. Анодирование — Термин анодирование Термин на английском anodizing Синонимы anodising, электрохимическое оксидирование Аббревиатуры Связанные термины адгезия, нановискер, пористый материал. Что такое анодирование. Процессом анодирования называется электролитическая химическая реакция металла с окислителем. Наиболее частой технологией анодирования алюминия является так называемое сернокислое анодирование – по химическому составу анодного раствора (электролита).
Анодирование
В зависимости от плотности тока, состава сплава и электролита это может быть бронзовый и желтый, голубой и пурпурный, ярко-зеленый и ярко-синий электрик. Если же этих цветов недостаточно, то поверхность анодированного металла в отличие от необработанного хорошо удерживает неорганические пигменты и синтетические красители и может быть окрашена в любой цвет. Достоинства анодирования не исчерпываются широкой цветовой гаммой гальванического покрытия. Оксидные пленки в зависимости от условий процесса придают различные технологические свойства поверхностям металлов. Что дают оксидные покрытия, получаемые при анодировании? Низкую электропроводность оксидов.
На поверхности алюминия образуется диэлектрический слой, который может быть усилен эмалью или лаком.
Подготовительный этап, в ходе которого алюминиевое изделие механически и электрохимически обрабатывается. Поверхность очищается, шлифуется и обезжиривается. Затем изделие помещается в щелочной раствор, для его протравливания. Последней стадией подготовки становиться погружение в кислотный раствор, где оно осветляется, после чего изделие тщательно промывается от кислоты. Непосредственно этап химического анодирования алюминия. Для этого изделие подвешивают на специальные кронштейны и помещают в ванну с электролитом между двумя катодами. В качестве электролитов могут выступать растворы серной, щавелевой, хромовой и сульфосалициловой кислот, иногда с добавлением органической кислоты или соли.
Серная кислота является самым распространенным электролитом, однако с его помощью не удается качественно обработать изделия с мелкими отверстиями или зазорами. Для этих целей лучше подходят хромовые кислоты. Щавелевая кислота в свою очередь создает наилучшие изоляционные покрытия разных цветов. Разные концентрации кислот и плотность тока дают разные результаты конечной продукции. Повышение температуры и понижение плотности тока дает мягкую и пористую пленку. При понижении температуры и повышении плотности тока покрытие увеличивает свою твердость. В процессе анодирования анодные ячейки, включая поры образуют шестигранную структуру, которая, как считают специалисты, выполняет принцип минимальности энергии и не зависит от применяемого типа электролита. Шестигранная форма имеет энергетическое происхождение.
Следует обратить внимание на то, что такое покрытие представляет собой идеальную основу для нанесения лакокрасочных смесей. Поэтому если вы планируете изменить цвет металлической детали или конструкции в целом, стоит в обязательном порядке осуществить рассматриваемую процедуру. Это позволит вам получить более качественный результат. Краска будет закреплена более надежно и продержится в отличном состоянии более продолжительный временной период. Плюсы и минусы анодирования Анодированный алюминий — что это? Это металл, который прошел процесс соответствующей обработки. Стоит отметить, что обработка может быть различной по степени своей жесткости. Выбирать тот или иной вариант следует в зависимости от ваших целей и особенностей запланированных эксплуатационных мероприятий.
Что такое анодирование металла и для чего применяется Дата публикации: 27. Просмотров: 231 Существует много способов защитит алюминиевые изделия от разрушающего окисления. Одним из них выступает анодирование. В процессе этой операции на поверхности металла формируется прочная и одновременно очень тонкая защитная пленка, которая предотвращает любые виды повреждений. В этой статье вы узнаете, что такое анодирование и как происходит нанесения защиты на изделия. Понятие анодирования Анодировать алюминий начали еще ч 1920-х г. По этой причине возникла необходимость защитить его и одним из способов стали применять электрохимический процесс. Технология заключается в воздействии на изделие концентрированной кислотой, что приводит к быстрому формированию той заветной пленки. Похожими свойствами обладает и естественный слой оксида алюминия, который образуется под действием обыкновенного воздуха, но при этом она очень тонкая, из-за чего предмет не обладает должным уровнем защиты. Воздействие же концентрированной кислоты способствует созданию более толстого оксида, который не проникает глубже и создает герметичный защитный слой. Преимущества Процесс анодирования металла имеет много плюсов, из-за чего он стал массово применяться для разных сфер деятельности человека. Сформированное таким способом покрытие обладает великолепной механической стойкостью к любым воздействиям.
Анодирование алюминия что это такое: анодированный алюминий по выгодной цене
Однако анодирование может производиться без серной кислоты, с использованием таких всегда имеющихся в домашнем хозяйстве химических соединений, как кислый углекислый натрий питьевая сода и хлористый натрий поваренная соль. Для приготовления электролита готовят раздельно два насыщенных раствора питьевой соды и поваренной соли в кипяченой воде комнатной температуры. Для получения насыщенных растворов количество соды и соли берется избыточное, растворение ведут не менее получаса, время от времени помешивая растворы стеклянной палочкой. Затем растворам дают отстояться в течение десяти минут и сливают их с избытка нерастворившихся соды и соли, после чего целесообразно их профильтровать. Электролит готовится из девяти объемных частей раствора соды и одной объемной части раствора соли с тщательным их перемешиванием. Приготовление электролита ведется в стеклянной посуде. При изготовлении детали, подлежащей анодированию, необходимо оставить на ней небольшую площадку. Это - так называемый технологический контактный лепесток, который после анодирования удаляется. В нем сверлится отверстие диаметром 3,3 мм под винт МЗ. Деталь тщательно зачищается мелкой шкуркой, обезжиривается в любом стиральном порошке и промывается в проточной водопроводной воде, после чего к ее поверхности не следует прикасаться руками.
Винтом с гайкой к лепестку детали присоединяется провод, предназначенный для ее подключения к положительному полюсу источника тока. Лепесток, винт с гайкой и конец провода покрывают слоем пластилина, чтобы исключить их взаимодействие с электролитом.
Анодирование алюминия Анодирование алюминия Анодирование алюминия играет важную роль в промышленном и частном использовании этого металла и конструкций на его основе.
Эта процедура обеспечивает неоценимую пользу, защищая алюминиевые изделия от коррозии, повышая их прочность и долговечность в ситуациях, когда без этого никак не обойтись. Без анодирования, многие сферы применения алюминия претерпела бы серьезные изменения, ограничиваясь лишь базовыми функциями. В большинстве случаев, анодирование алюминия дает возможность раскрыть полный потенциал этого металла, сделав его неотъемлемой частью современного мира, его достижений и технологий.
Что такое анодирование? Анодирование алюминия — это уникальный процесс, который позволяет создавать защитное оксидное покрытие на поверхности алюминиевых изделий. Этот метод широко применяется в различных отраслях промышленности и имеет огромное значение в нашей повседневной жизни.
Анодируют, как правило, алюминий и его сплавы, при этом образуются оксидные плёнки толщиной 5 25 мкм,… … Энциклопедия техники анодирование — электрохимическое оксидирование , электролитическое нанесение оксидной плёнки на поверхность металлов, сплавов и полупроводников. Плёнка защищает изделие от коррозии, обладает электроизоляционными свойствами, служит хорошим основанием для… … Энциклопедический словарь Анодирование — Anodizing Анодирование. Формирование покрытия на металлической поверхности путем анодного окисления, наиболее часто применяемое для алюминия. Источник: «Металлы и сплавы.
С позиции теории Богоявленского рисунок 10 образование анодно-оксидных пленок начинается с возникновения мононов - мельчайших частиц оксида с адсорбированными анионами электролита. Зарождение мононов происходит в результате встречи потоков ионов.
Мононы - зародыши будущих мицелл. С увеличением числа мононов они превращаются в полиионы - волокнистые палочкообразные мицеллы коллоидной степени дисперсности, которые образуют скелет ориентированного геля оксида алюминия. В него внедряются анионы электролита, теряя частично при этом свою гидратную оболочку. Адсорбция анионов и воды, осуществляемая по межмицеллярным порам, обуславливает отрицательный заряд монон и мицелл, заставляя их плотно прижиматься к аноду и сращиваться с металлом, препятствуя слиянию мицелл в беспористый слой. Поры при таком рассмотрении представляют собой естественное межмицеллярное пространство. Наряду с процессами образования мицеллярных слоев с участием анионов протекают сопряженные процессы растворения образующегося оксида.
Рисунок 10 — Иллюстрация теории Богоявленского. Интересно отметить, что размеры ячеек Келлера близки размерам мицелл геля Al OH 3. Толкование механизма роста анодной пленки с позиций коллоидной химии позволяет объяснить внедрение в ее структуру анионов и катионов электролита и отдельных составляющих оксидируемого сплава. При этом сопряжение процессов образования оксида и его растворения в электролите также учитывается коллоидной теорией. Теперь следует заметить, что структура анодированного алюминия, на самом деле, может быть весьма далека от идеальной, описанной в теории. В частности теория говорит о правильных гексагональных ячейках, в центре которых находится одна пора.
На самом деле, получить такую структуру можно только специальными методами, например, многостадийным анодированием в определенных режимах. Примеры таких "правильных" покрытий приведены на рисунке 11. Более глубокое описание наноструктурированного аноднооксидного будет приведено ниже. Рисунок 11 — Примеры идеальных и близких к идеалу ячеек пористого слоя в аноднооксидном покрытии на алюминии. Чаще же можно наблюдать более "грязные" варианты. Примеры их были показаны в начале статьи.
Кроме этого, теории не предполагают возможности ветвления пор, что наблюдается в действительности. Рисунок 12 — Пример ветвления пор 4. Особенности роста оксида алюминия при анодировании. Формирование оксидного слоя протекает на дне пор, где препятствием для прохождения электрического тока служит только тонкий барьерный слой, толщина которого практически не меняется в процессе обработки. С этой точки зрения можно наращивать толщину оксидного слоя без существенного увеличения напряжения на ванне. Образующиеся поры имеют форму конуса, расширяющегося к внешней стороне покрытия, поскольку эта часть дольше подвергается агрессивному воздействию электролита.
Необходимо отметить, что формирование пористой структуры является необходимым условием роста оксидного слоя. Оксид алюминия является плохим проводником электричества, а поры, хотя и заполнены электролитом, имеют весьма малый диаметр, поэтому сопротивление анода во много раз выше сопротивления на катоде и сопротивления электролита. Изменение потенциалов самих электродов вследствие поляризации незначительно по сравнению с прикладываемым напряжением, поэтому изменение напряжения во времени при постоянной плотности тока определяется изменением омического сопротивления анода. Если проводить процесс при постоянной плотности тока, то есть при постоянной скорости формирования оксида, то рост пленки будет тормозиться возрастающим сопротивлением электролита в порах. Для дальнейшего роста требуется либо увеличение прилагаемого напряжения, либо растравливание пор. На практике преобладает второй фактор.
Этому способствует значительное выделение теплоты в процессе анодного окисления, причем основная часть тепла выделяется в барьерном слое на дне пор.
Анодирование – это эффективная обработка металла
Сначала образуется бесцветная защитная пленка, после чего продолжается технологический процесс в кислом растворе солей определенных металлов. Цвет напрямую зависит от того, какой используется компонент. Это распространенный вариант для окрашивания строительных профилей и стеновых панелей. В данном случае уже можно дополнительно получить светоотражающий слой, а также выбрать большое количество оттенков. В электролитический раствор сразу же добавляются органические соли, которые и отвечают за окрашивание детали. Существует ряд определенных требований, предъявляемых к процессу твердого анодирования: Удаление острых углов. Запрещено, чтобы на обрабатываемых заготовках были какие-либо острые углы, заусенцы и прочее остроугольные места, поскольку в них будет сконцентрирован электроток, что может привести к перегреву. Поэтому должна присутствовать фаска. Качественная предварительная подготовка поверхности, ведь от этого напрямую зависит качество анодированных изделий, глубина цвета и прочие важные свойства. Поэтому в промышленных условиях к этому этапу предъявляются повышенные требования. Размер детали.
Анодированный слой отличается большой толщиной. Поэтому если алюминиевые детали требуют дальнейшей обработки или сборки, то должен быть заранее оставлен определенный припуск. Твердое анодирование может изменить размер элементов, за счет чего они уже не подойдут для применения в тех или иных механизмах. Специальные инструменты и оборудование.
Осуществляется в процессе электролиза, когда эти изделия являются анодом. Анодируют, как правило, алюминий и его сплавы, при этом образуются оксидные плёнки толщиной 5 25 мкм,… … Энциклопедия техники анодирование — электрохимическое оксидирование , электролитическое нанесение оксидной плёнки на поверхность металлов, сплавов и полупроводников. Плёнка защищает изделие от коррозии, обладает электроизоляционными свойствами, служит хорошим основанием для… … Энциклопедический словарь Анодирование — Anodizing Анодирование. Формирование покрытия на металлической поверхности путем анодного окисления, наиболее часто применяемое для алюминия.
Этот процесс дает алюминию более стойкое к истиранию покрытие, но недостатком является стоимость: просто требуется гораздо больше электроэнергии, что делает его более дорогим вариантом. Электролитическая окраска. Этот вид обработки придает цвет алюминиевой детали, потому что процесс анодирования создает стабильные и устойчивые поры на поверхности алюминия, а краситель просто заполняет эти поры. Металл погружается в ванну, которая содержит неорганическую соль металла. Ток подается и откладывает соль металла в основании пор. Уплотнение оксидной пленки Перед тем, как использовать анодированную деталь, необходимо закрыть поры окрашенного металла. Если оставить его «незапечатанным», поверхность деталей будет подвержена повреждениям.
Части, которые не нуждаются в окрашивании, все еще имеют этот шаг, чтобы повысить устойчивость к коррозии и истиранию при сохранении естественного цвета металла. Преимущества анодированного алюминия, такие как устойчивость к коррозии и истиранию, в сочетании с удивительным внешним видом из огромной цветовой гаммы открывают множество областей применения. Возможности анодирования алюминия для коммерческих, промышленных и потребительских отраслей безграничны: Архитектурные панели;.
Сплав, который содержит слишком много примесей, после анодирования не блестит, непригоден для использования Плюсы и минусы Титан является самым популярным из металлов, поддающихся анодированию. Он применяется в ювелирной промышленности около двадцати лет. Главное достоинство анодированных украшений — их богатая цветовая палитра. Изготовленные из титана и ниобия, они еще и гипоаллергенны, подходят для того, чтобы использовать для свежих проколов. В их пользу говорит и небольшой вес изделий. Некоторые анодированные металлы вызывают раздражение и аллергию, поэтому перед покупкой украшения нужно обязательно уточнить состав сплава. Анодированные украшения Из анодированных металлов изготавливают пуссеты, кольца, подвески, броши, украшения для пирсинга. Сочетание с драгоценными и полудрагоценными камнями, эмалью рождает необыкновенные ювелирные композиции, выполненные в оригинальном цвете. Иногда анодированный металл используется только в качестве вставки Это особенно ценно при создании украшений в анималистическом и флористическом стилях.
Что такое анодированный алюминиевый профиль и для чего он нужен?
Выбор алюминия Производство компонентов из анодированного алюминия в Anomatic начинается с выбора основного металла и сплава. Алюминий — самый коммерчески пригодный для вторичной переработки металл, используемый сегодня. Поскольку переработанный алюминий уже находится в металлическом состоянии, вся энергия, затрачиваемая на очистку руды и превращение ее в металл, сохраняется при ее переработке. Простое плавление алюминия снова делает его пригодным для использования. Все отходы на предприятии Anomatic бракованные из-за несоответствия визуальным или габаритным характеристикам отправляются на местные предприятия по переработке.
Кроме того, алюминиевая отделка, которая снимается после штамповки, также отправляется на переработку. В то время как большая часть продукции, производимой компанией, производится из обычных базовых сплавов, таких как 5657 и 9020, некоторые производители косметической упаковки начали указывать переработанные алюминиевые сплавы, такие как 3004. Anomatic участвует в этой инициативе. Необходимо соблюдать осторожность, поскольку переработанный алюминий может содержать тяжелые металлы, особенно свинец и кадмий.
Тяжелые металлы вызывают беспокойство, потому что этапы предварительной анодирования влекут за собой удаление металла, поэтому эти металлы могут попадать в сточные воды. Многие из переработанных сплавов имеют более высокие концентрации перечисленных металлов в результате плохой изоляции источников тяжелых металлов от алюминиевого лома. Однако при соблюдении надлежащих критериев выбора переработанный сплав может использоваться в соответствии с ограничениями CONEG. Штамповка и обезжиривание Этап изготовления включает в себя глубокую вытяжку алюминиевой рулонной заготовки различных форм и размеров с использованием высокоскоростных трансферных прессов.
Масла для штамповки легко захватываются и используются повторно. Масляный лом пропускается через центробежный отжим для стружки, а затем чистый лом отправляется на переработку, а масло повторно используется в прессах. Штампованные изделия проходят обезжиривание на водной основе, где масла улавливаются через ультрафильтрацию и коалесцирующие фильтры, а затем отправляются на программу смешивания топлива. Поскольку при обезжиривании не используются какие-либо растворители, захваченные штамповочные масла не опасны и легко смешиваются с жидким топливом.
Процессы штамповки и обезжиривания не производят выбросов или вредных отходов. Анодирование В процессе анодирования используется несколько неорганических кислот азотная, серная и фосфорная. Кислоты смывают алюминиевые детали между этапами процесса, чтобы предотвратить загрязнение ванны. В этих кислотных ваннах растворяется металлический алюминий.
Твердые вещества удаляют с помощью обычного осаждения гидроксидом с последующим осветлением и фильтрацией. Фильтр-пресс производит твердый осадок гидроксида алюминия, который является неопасным отходом и отправляется на свалку. Осветленная промывочная вода нейтрализуется и отправляется в канализацию. Все сточные воды, покидающие предприятие, контролируются с помощью устройства для непрерывного отбора проб, которое работает 24 часа в сутки, 365 дней в году.
Аттестованная EPA химическая лаборатория на месте, в которой используется оборудование для влажного химического анализа и испытания металлов, укомплектована обученными специалистами в рабочее время. Результаты испытаний на чистоту сточных вод ежедневно передаются в местное предприятие по очистке сточных вод. Никель — это один из регулируемых тяжелых металлов, используемых в процессе анодирования Anomatic. Никель образуется из разбавленного раствора ацетата никеля, используемого в процессе герметизации, в котором анодная пора закрывается герметизируется путем гидролиза.
Промывочная вода со стадии герметизации отделяется и проходит через отдельную систему обработки никелем. Металлический никель удаляют из сточных вод путем осаждения гидроксида металла с последующим осветлением и фильтрацией. Полученный кек гидроксида никеля отправляется на никелевый завод для переработки. Этот процесс анодирования не приводит к остаточным опасным отходам.
Наконец, все кислотные выбросы в атмосферу улавливаются и тщательно очищаются системами очистки, которые разрешены и регулярно проверяются Агентством по охране окружающей среды Огайо. Газы оксидов азота NOx , образующиеся в ваннах для химического осветления, химически преобразуются в газообразный азот и водяной пар. Кислые газы нейтрализуются, а запахи устраняются с помощью многоступенчатых башенных скрубберов с насадкой и абсорбцией щелочи с высоким pH. Вторичная переработка Помимо усилий по переработке алюминия, штамповочного масла и металлического никеля, компания также имеет сложные процессы и программы по переработке фосфорной кислоты и титанового лома.
Его система рециркуляции фосфорной кислоты использует оборудование ионного обмена и вакуумного разделения для очистки и повторного использования воды с фосфорной кислотой, выделенной на линиях анодирования. Более 85 процентов всей фосфорной кислоты перерабатывается, тем самым предотвращая крупномасштабное загрязнение фосфатами последующих систем водоснабжения. Титан используется в запатентованной системе конвейерных лент Anomatic и в ее стойках для анодирования. Поскольку ремни и стойки со временем изнашиваются, титановый лом улавливается и продается обратно на титановые заводы для повторного использования.
Вопросы безопасности Процесс анодирования Anomatic не содержит никаких регулируемых тяжелых металлов хром VI, свинец, ртуть, кадмий, барий, мышьяк и селен , как указано в Z66. Единственными тяжелыми металлами, которые использует компания, являются никель II используется в процессе герметизации и хром III красители. Гидроксид никеля в анодном покрытии находится в микроскопической концентрации и либо химически связан с анодной порой, либо осаждается внутри пор. Он стабилен как химически, так и физически, не растворяется в воде, поэтому не может быть растворен.
Трехвалентный хром — это встречающаяся в природе форма хрома, которая является важным элементом нашего рациона и присутствует в витаминных добавках. Красители хрома III обычно считаются безопасными и полностью герметизированы внутри анодированного алюминиевого покрытия, предотвращая контакт или разрушение. Уильям Раш — президент Anomatic Corp. Что такое анодирование?
При анодировании используется основной металл — алюминиевый сплав — для создания тонкого, чрезвычайно прочного и устойчивого к коррозии покрытия. Анодированная поверхность очень твердая и, таким образом, сохраняет и продлевает срок службы алюминиевого изделия. В отличие от анодирования, покрытия — например, краска — могут значительно снизить возможность вторичной переработки алюминия и могут увеличить затраты. В производстве красок, пластмасс и гальванических покрытий используются проблемные материалы, которые могут поставить под угрозу экологические цели.
С другой стороны, анодирование является «нейтральным для вторичного использования» с минимальным использованием таких материалов, как летучие органические соединения ЛОС и тяжелые металлы. Коррозионная стойкость анодированного алюминия хорошо зарекомендовала себя для промышленного применения. В транспортных компонентах, строительных элементах, контейнерах для хранения и технологическом оборудовании используется анодирование, чтобы продлить срок службы и расширить возможности алюминиевых конструкций. Анодированный алюминий безопасен для кухонной посуды и обеспечивает прочные рабочие поверхности для применений, требующих превосходной стойкости к истиранию.
Анодирование также снижает трение и увеличивает смазывающую способность, что является преимуществом для установленных компонентов и для движущихся частей. Повышенная износостойкость означает более длительный срок службы. Анодирование с твердым покрытием дополнительно улучшает износостойкость и общую стойкость покрытия к физическим нагрузкам. Алюминий экономит энергию и материалы Металлический алюминий является хорошим проводником электричества; анодное покрытие — изолятор.
Комбинации двух свойств могут быть включены в системы, которые экономят энергию и материалы. Металл может служить как структурной, так и проводящей цели, в то время как анодное покрытие изолирует цепь и сохраняет структуру. Это упрощает физическую конструкцию электрических цепей и экономит место и проводку. Все вышеупомянутые свойства анодирования вносят существенный вклад в жизненный цикл продукта и снижают потребность в энергии.
Экологические аспекты процесса анодирования Анодирование — это процесс на водной основе без использования летучих органических соединений. В нем нет растворителей-носителей, смол-носителей, а любая пигментация, используемая при анодировании, создается чрезвычайно небольшими количествами металлов или красителя, надежно закрепленных на твердой поверхности. При анодировании не используются галогенированные углеводороды или аналогичные токсичные органические вещества. Подобная нейтрализация восстанавливает большинство анодирующих химикатов до обычных растворенных минералов.
Большая часть анодирования выполняется без образования опасных отходов, и во многих случаях отходы анодирования с высоким содержанием алюминия являются экологически ценными для удаления загрязняющих веществ и осаждения твердых частиц в процессах очистки бытовых сточных вод.
А светоотражающий эффект оксидных пленок делает велосипедистов заметными в темное время суток. Особого внимания и ухода требуют вилки и амортизаторы. Если поцарапанное или потертое покрытие на руле — проблема исключительно эстетическая, то его повреждение на подвижных частях конструкции, таких как ноги вилки, ведет к более серьезным неприятностям. Малейшие дефекты на этой детали могут стать причиной огромных проблем. По большому счету необходимо следить, чтобы на ногах вообще не было никаких изъянов. Если же повреждений все-таки избежать не удалось, следует постараться с помощью мелкой наждачной шкурки полностью удалить задиры.
В противном случае царапины начнут появляться на башинге и пыльниках, которые в свою очередь будут еще больше царапать покрытие ног вилки. В результате достаточно скоро образуется щель, через которую будет протекать масло. Обнаружив серьезные повреждения на поверхности ног вилки, нужно обращаться в ремонтную мастерскую. Если повезет, дефект устранят, пустив в ход лак для ногтей или восстановив оксидную пленку. К сожалению, часто проблему устранить не удается. Может оказаться, что отремонтировать вилку уже невозможно, а значит — деталь необходимо заменить. Важно отслеживать, в каком состоянии пыльники и башинги.
Если в них набивается песок, это приводит к повреждению покрытия на ногах. Также необходимо следить, чтобы вилка не оставалась без смазки, иначе придется столкнуться с аналогичными неприятностями. Анодирование — не очень сложный процесс. При необходимости можно нанести оксидную пленку на алюминиевые детали в условиях домашней мастерской, не потратив на это много денег. Эту универсальную технологию используют как для подготовки металлических изделий к покраске, так и для того, чтобы создать на поверхности металла прочное и долговечное защитное покрытие. Кроме того, анодное оксидирование широко применяют для того, чтобы придать металлическим деталям внешнюю привлекательность.
Воздействие на окружающую среду Анодирование — это метод обработки, который изменяет химию поверхности различных материалов, в частности, металлов.
Анодированная поверхность придает металлу ряд новых свойств, дополнительную защиту от коррозии, повышение долговечности, в частности, лучшую устойчивость к царапинам, и, конечно, эстетический внешний вид. Поскольку алюминий так широко используется в сотнях отраслей промышленности, имеет смысл анодировать алюминий, чтобы он приобрел новые свойства. Само покрытие может иметь толщину от 0,00393701 до 0,03937012. В отличие от других покрытий анодирование алюминия сохраняет естественный блеск металлов, его текстуру и эстетику самого металла. История анодирования Анодирование металлов впервые было использовано в промышленном масштабе в 1923 году. Первоначально оно было создано для защиты от коррозии деталей из дюралюминия в кораблестроительной промышленности. Очевидно, эта обработка использовалась, поскольку части морских транспортных судов требовали жесткого защитного покрытия, невосприимчивого к соленому, бурному морю.
Этот процесс все еще используется сегодня, несмотря на устаревшие требования сложного цикла напряжения, которые теперь считаются ненужными. К 1927 году этот процесс получил развитие, и был запатентован новый процесс анодирования в серной кислоте. Серная кислота остается наиболее распространенным анодирующим электролитом и по сей день.
Слайд 3 Описание слайда: Широко распространена технология анодирования алюминия, титана, тантала, ниобия, кремния, германия, арсенида галлия. Обычно анодирование проводят при постоянном токе в гальваностатическом или потенциостатическом режиме. Слайд 4 в водных растворах электролитов; в расплавах солей; в газовой плазме; плазменно-электролитическое оксидирование. Слайд 5 Описание слайда: При анодировании в газовой плазме оксид образуется в результате диффузии анионов кислорода из плазмы. При анодировании в водных растворах продукт представляет собой ориентированный электрическим полем полимеризованный гель оксида металла.
Анодирование в "домашних" условиях V2.0
это электрохимический процесс, который превращает металлическую поверхность в декоративную., прочный, сопротивление ржавчине, анодно-оксидная отделка. Анодирование – это электрохимический процесс, при котором поверхность алюминия превращается в оксидный слой., который тверже и долговечнее, чем исходный металл. Анодирование в обобщенном смысле – это электрохимический процесс образования стабильных оксидных покрытий на поверхности металлов.