Команда VK Cloud перевела статью, в которой дата-сайентист рассказывает о новых специальностях, появление которых в грядущие годы связано с развитием искусственного интеллекта. Команда VK Cloud перевела статью, в которой дата-сайентист рассказывает о новых специальностях, появление которых в грядущие годы связано с развитием искусственного интеллекта.
ТОП-5 профессий в сфере ИИ, которые изменят мир
Что такое нейросети, как они работают и что нужно освоить новичку в AI | Тенденция к большей заинтересованности рынка в гуманитариях со знанием ИИ, нежели в аналогичных навыках у программистов, может быть связана с относительной "молодостью" нейросети, считает генеральный директор EvApps Альфред Столяров. |
Маркетолог назвал профессии, которые могут исчезнуть из-за нейросетей | Наша гипотеза состояла в том, что скорее всего именно эти профессии нейросеть вряд ли заменит. |
5 перспективных профессий в области искусственного интеллекта | Создатель сайта Кремля предрек исчезновение ряда профессий из-за нейросетей. |
5 перспективных профессий в области искусственного интеллекта
Здесь нейросеть пока справляется хуже человека: ИИ допускает ошибки, хоть со временем их и становится все меньше. Нейронные сети еще в 2022 году научились составлять новостные сводки", - сказал Роман Губанов. Однако, по мнению специалиста, ИИ еще несовершенен и будет развиваться многие годы. Подписывайтесь одним нажатием!
Востребованности специалистов по кибербезопасности способствуют развитие блокчейна и рынка криптовалют, а также форм и механизмов киберпреступности. Нейропилот Нейропилотирование развивается параллельно с беспилотным транспортом, которому предсказывают большое будущее в космосе, под землёй и в Мировом океане. Профессиональные нейропилоты управляют БЛА буквально силой мысли, передавая мозговые импульсы на нейроинтерфейс: поднимает дрон в воздух, расслабляясь, а опускает, напротив, сосредотачиваясь. Отсюда особые требования не только к хард-, но и к софт-скилам — и в первую очередь необходимы стрессоустойчивость и самоконтроль.
По прогнозу Минпромторга, объём рынка БЛА к 2030 году составит 120 миллиардов рублей — и часть их точно уйдёт нейропилотам. В круг задач специалистов по переработке отходов входят генерация и внедрение новых технологий, которые позволяют минимизировать или скомпенсировать воздействие на окружающую среду, повторно использовать материалы и приблизиться к безотходной экономике, или экономике замкнутого цикла. Рециклинг-технолог — кросс-функциональная специальность: такие профессионалы сочетают компетенции химика, инженера и эколога. В обществе потребления и даже перепотребления технологи со специализацией на переработке отходов не останутся без работы по крайней мере до тех пор, пока не сформируется устойчивый тренд на антипотребительство.
Цифровой лингвист Когда мы общаемся с голосовыми помощниками, вводим промт для нейросети или пользуемся переводчиками, то даже не думаем, что часть работы за нас уже проделал цифровой лингвист.
Этот же специалист будет отвечать за ремонт и обслуживание машин. Следующий в перечне — ответственный за кибербезопасность. В нашем неспокойном мире компьютерные системы и сети стали более уязвимы, поэтому профессионалу предстоит анализировать риски и обеспечивать защиту.
Для этого и понадобятся инженеры и кураторы данных в области ИИ. Именно они будут искать информацию и делать её пригодной для моделей ИИ. Нужно помнить, что данные, которые собирают и хранят для массивных языковых моделей, часто довольно сильно отличаются от данных для традиционного применения в интересах бизнеса.
Это объясняется диспропорцией таких факторов, как разнообразие, объём и качество данных. Чтобы быть на шаг впереди остальных, можно освоить разные навыки и инструменты для работы с типами данных, подходящими для больших моделей. Думаю, такая должность появится не только в крупных компаниях, занимающихся обучением больших моделей ИИ вроде GPT. Поскольку ИИ становится демократичнее, все компании захотят обучать большие языковые Open-Source-модели для собственных задач, например для обслуживания клиентов и подготовки документации.
Не предполагаю, что спрос на таких специалистов начнёт падать в обозримом будущем. Навыки и компетенции Представление о форматах и источниках данных, таких как текст, аудио, видео, изображения и т. Умение собирать, очищать, маркировать и классифицировать данные для моделей ИИ — например, работать с пайплайнами данных, инструментами аннотирования, проверки качества данных и т. Умение организовать хранение и работу с крупномасштабными наборами данных, в том числе с использованием облачных платформ, баз данных, хранилищ и озёр данных и т.
Способность понимать и применять принципы этики и конфиденциальности данных, такие как Общий регламент ЕС по защите персональных данных GDPR , законы о защите конфиденциальности потребителей, деперсонализация данных, Data Governance и т. Знакомство со средствами и фреймворками ИИ, включая обработку текстов и речи, компьютерное зрение, TensorFlow, PyTorch и т. Специалист по комплаенсу использования данных ИИ Конечно, всё вертится вокруг данных, но как-то не до конца понятно, кому, собственно, они принадлежат. В разных странах действуют разные законы о защите персональных данных, разные представления о том, какие данные разрешается использовать для обучения больших моделей.
По-видимому, компаниям понадобятся юристы, чувствующие себя в серой зоне законодательства по обращению с данными как рыбы в воде, потому что именно в этой зоне все сейчас и работают. На OpenAI, Microsoft и GitHub уже подали в суд за то, что они брали чужой программный код, распространяющийся по лицензии. Размышляют и о том, что многие модели обучаются на пиратских книгах и другом контенте. А ещё модели часто обучают на тексте или изображениях, которые предоставляют пользователи.
Вот ещё дополнительная область, где всё как-то мутно. Всё это актуальная повестка, и вскоре компаниям понадобятся люди с юридическим образованием и опытом работы с данными на должность специалиста по комплаенсу использования данных ИИ. Именно такие люди помогут разобраться в этих трудностях и снизить риски судебных разбирательств. Навыки и компетенции Представление о законах и нормах о защите персональных данных, таких как GDPR, законах о защите конфиденциальности потребителей и т.
Умение оценить воздействие на защиту данных DPIA , выявлять потенциальные риски и меры по уменьшению рисков в связи с использованием персональных данных в системах ИИ. Умение применять и анализировать законодательные нормы и требования к комплаенсу в области ИИ, сопоставлять их с целями компаний и мерами защиты бизнеса. Умение проводить мониторинг и аудит производительности и эффективности систем ИИ, следить за их соответствием принципам и стандартам этики. Умение взаимодействовать и сотрудничать со стейкхолдерами, включая дата-сайентистов, инженеров, специалистов по надзору, клиентов и т.
Специалист по правовому регулированию ИИ Конечно, компании стремятся соблюдать закон и избегать юридических проблем; другим же придётся всерьёз напрячься, чтобы понять, как вписать в законодательство невиданные ранее системы ИИ. Каждый год принимают всё больше законов об искусственном интеллекте. Думаю, по мере развития ChatGPT нас ожидает взрывной рост такого законодательства. Скорее всего, оно зародится в аналитических центрах, университетах и профильных группах.
Назван список профессий, по которым сильнее всего ударит ИИ. Программисты в безопасности
На модуле по Deep Learning студентов знакомят с продвинутыми технологиями по работе с нейросетями, например трансформерами — архитектурой нейронных сетей, которая лежит в основе ChatGPT. Нейросети вместо человека: каким специалистам впору задуматься о смене профессии. Профессия требует не только применять нейросети, но также строить и обучать модели для новых задач. Реже специалистов по нейросетям ищут в госсекторе, строительстве, логистике, здравоохранении и тяжелом машиностроении – по 1% вакансий.
Восстание машин: как нейросети «вытесняют» людей из профессий
Незаменимых нет: вытеснят ли нейросети творческие профессии? | Анализ интернет-спроса на профессии, связанные с разработкой и ИТ, показал, что больше всего растет спрос на создание нейросетей (+1749%). |
ИИ для самозанятых: что может, чему научиться, новые профессии | Это связано с тем, что нейросеть хоть и обладает интеллектом, но все же является программой, а потому нуждается в четких командах. |
Специалист по нейросетям | Профессия требует не только применять нейросети, но также строить и обучать модели для новых задач. |
Промт инженер – новая профессия, связанная с ИИ | — Какие профессии заменят нейросети? 19 реальных примеров! — Заменит ли ИИ специалистов этих профессий на 100%? |
8 перспективных профессий, связанных с ИИ
Около трети респондентов считают, что нейросеть сможет заменить бухгалтеров и менеджеров по продажам, меньшее число опрошенных рассказали, что рискуют быть замененными финансисты, HR-специалисты, социологи. Инженер нейросетей – это перспективная профессия, представители которой востребованы в разных отраслях. Специальность оператора нейросетей представляет собой перспективное направление развития, особенно в контексте быстро меняющегося мира IT. Недавно телеканал RTVI захотел рассказать о профессиях будущего и обратился за помощью к нейросети MidJourney. Профессию тренера нейросетей можно назвать работой будущего. Изучите дата-аналитику на Хекслете Пройдите нашу профессию «Аналитик данных» — это станет вашим первым шажком в работе с нейросетями.
Аналитики выяснили, какие профессии могут быть заменены нейросетями
Использовать нейросети под силу каждому, независимо от опыта и профессии. Быстрое развитие нейросетей обуславливает появление новых профессий. Анастасией Абышевой.
Россиянам назвали самые перспективные профессии на ближайшие пять лет
Read More До обучения: прошла разные курсы в нашей школе и на каждом из них заработала, потом попала в первый поток учеников по ChatGPT Во время обучения: cтарается 3-4 часа в неделю посвящать обучению, благодаря курсу привела 3 новых клиента, от них доход составляет 75 000 р. Сейчас: цель - создание своего онлайн-курса, сейчас доход составляет от 300 000 - 500 000 в мес. Тяжелая жизненная история заставила столкнуться с заработком в интернете Во время обучения: обучалась глубокой ночью, по возможности. С нейросетями была знакома немного до обучения. Read More До обучения: живет в Воркуте далеко от родственников, хочет зарабатывать, чтобы переехать поближе к дочке и снимать жилье, текущего дохода не хватает. Во время обучения: изучил только 4 из 7 модулей и сконцентрировался на поиске заказчиков. Нашел больше 15 заказчиков и заработал 41 700 р. Read More До обучения: работа в найме, желание найти дополнительный заработок Во время обучения: активный искал клиентов по нашей технологии и как результат заработал 27 000 р. Сейчас: совмещает работу в найме и онлайн-работу.
Однако путь в эту профессию достаточно тернистый. Чтобы добиться успеха, надо иметь уникальный склад ума. В основном требуются знания математики, Python, алгоритмов и библиотек машинного обучения. В среднем предлагают зарплату 100-300 тыс. Но за первоклассными специалистами ведется настоящая охота крупнейшими компаниями. Потолка дохода для них нет. Аналитик данных Такие специалисты области ИИ работают с большими объемами данных для выявления тенденций и закономерностей, создания моделей и прогнозов на основе этих данных. Для работы в этой сфере необходимо иметь знания в статистике и программировании, уметь взаимодействовать с базами данных и специальными инструментами. У опытных сотрудников доход может достигать 200 000-300 000 руб. Нейро-иллюстратор Эта специальность ИИ занимается созданием изображений, используя технологии искусственного интеллекта и нейросетей. Работа художника заключается в разработке алгоритмов и моделей AI, которые смогут создавать художественные произведения, отталкиваясь от определенных правил и параметров.
Ввод данных — это рутинная и трудоемкая задача, которую можно автоматизировать с помощью систем ИИ. Такой тип работы предполагает ввод больших объемов данных в компьютерную систему. Эта работа может быть выполнена намного быстрее и точнее с помощью ИИ. Специалисты по телемаркетингу. Телемаркетинг включает в себя повторные звонки потенциальным клиентам и является еще одной задачей, которую можно автоматизировать с помощью ИИ. Системы искусственного интеллекта можно запрограммировать на совершение звонков и общение с потенциальными клиентами, что устраняет необходимость в привлечении людей. Служба поддержки клиентов. Системы искусственного интеллекта можно запрограммировать для обработки простых запросов в службу поддержки клиентов, таких как ответы на вопросы о продуктах и услугах. Этот тип работы часто включает однотипные задачи и может быть автоматизирован с помощью ИИ, что снижает потребность в представителях службы поддержки клиентов. Что касается копирайтеров и программистов, то эти профессии с меньшей вероятностью будут непосредственно затронуты искусственным интеллектом в краткосрочной перспективе. Хотя системы ИИ можно использовать для создания простого текста, такого как описание продуктов, ИИ по-прежнему сложно сравниться с творческими нюансами текстов, написанных людьми. Копирайтинг часто требует глубокого понимания человеческого поведения и эмоций, что в настоящее время трудно воспроизвести системам ИИ. С другой стороны, программирование включает узкоспециализированные задачи, требующие передовых технических навыков.
Чат-бот ChatGPT и его аналоги научились писать код быстро и качественно, поэтому вероятно, что скоро работодатели предпочтут использовать нейросеть для решения рутинных задач, отметил Губанов. Также чат-бот сейчас обучают вести школьные занятия. Здесь нейросеть пока справляется хуже человека: ИИ допускает ошибки, хоть со временем их и становится все меньше. Нейронные сети еще в 2022 году научились составлять новостные сводки", - сказал Роман Губанов.
Нейросети наступают: специалистов каких профессий уже готов заменить искусственный интеллект
Развитие нейросетей дало старт новым профессиям в России | Ямал-Медиа | Самая известная нейросеть ChatGPT составила рейтинг специальностей, которые, по ее мнению, будут наиболее востребованы в будущем. |
Профессии будущего. Как нейросети открывают новые направления в edtech | Уже сейчас идут бурные обсуждения, что нейросети, вероятно, в будущем смогут полностью заменить специалистов ряда профессий. |
Огонь нейросетей: как попасть в индустрию
С помощью ML можно рассчитывать риски — например, предсказать, выплатит ли человек кредит, или рассчитать будущие цены на квартиры. Есть отдельная группа задач, для которых нейросети особенно хороши: находить похожие картинки, звуки и посты, генерировать изображения и тексты. Конечно, искать похожие аудио можно и без нейросетей — приложение Shazam прекрасно работало даже в первых версиях. Но обучение алгоритмов с помощью нейросетей дает дополнительные возможности. Творчество нейросети Midjourney Как разрабатываются нейросети В этой части статьи будет немного хардовой информации, связанной с математикой и ML. Если вы ничего не поймете или захотите понять больше, советуем пройти наш курс по математической логике для программистов Нейросеть — это формула, которая из одного массива чисел делает другой массив. Формула большая и длинная, может быть с миллионами параметров, но собирается из довольно простых операций — арифметики, элементарных функций синусы, косинусы, экспоненты и даже более простые, вроде взятия степени и суперпозиции. Выше пример одной из решаемых задачек: классификация изображений на условные тысячу классов.
Входной массив здесь — просто массив пикселей картинки, выходной — вектор с вероятностями, что изображено на картинке. Выходной массив может быть и картинкой например, как в задачах pix2pix на улучшение картинок или дорисовывание. Входной массив может быть не картинкой, а последовательностью слов — так, например, происходит в генерации картинок по тексту. С отдельными элементами входного массива обычно не работают: действия собирают в слои и применяют операцию ко всему массиву сразу. Котика на картинке распознают независимо от того, в какой части картинки он находится. Саму формулу пишут не как аналитическую формулу, а вычислительным графом — это рецепт для калькулятора, в каком порядке и что делать с входным и промежуточным массивами. Очень популярная, старая и довольно простая моделька.
Она может показаться сложной, но операции — простые, а концепция вычислительного графа позволяет работать со сложными формулами. В этих слоях скрываются числа, они же — веса — коэффициенты в большой формуле. Сначала параметры инициализируют небольшими случайными числами, а затем улучшают с помощью градиентного спуска. Так система самообучается. Обвязку к этому движку обычно делают на Python. Но на них сейчас нейросети почти не пишут, кроме низкоуровневых сетей для устройств. Знания Python достаточно, чтобы писать крутые вещи.
Есть библиотеки, позволяющие упростить процесс разработки. Крутые обертки и сборники моделей — одна из причин, почему сейчас стало популярно разрабатывать нейросети. Например, проект Hugging Face — это платформа для разработки и использования моделей и приложений на основе искусственного интеллекта, особенно в области обработки естественного языка Natural Language Processing. Интерфейсы моделей отвязаны от математики, это простые и конкретные инструкции, что именно сделать, чтоб получить результат. А вот при использовании фреймворков PyTorch, Jax и TensorFlow для работы с данными и машинного обучения придется плотнее взаимодействовать с математикой. Как попасть в индустрию Нейросетями можно заниматься как прикладной технологией в коммерческой разработке, так и использовать их в качестве инструмента для исследований в научных лабораториях. В 2016 году, чтобы попасть в лабораторию, занимающуюся нейросетями, ничего особенного знать и уметь не требовалось.
Сейчас порог входа в исследовательские лаборатории, где применяют эту технологию, увеличился. Нужно соответствовать высоким требованиям: знать математику, хорошо кодить, иметь научные публикации. Такой уровень экспертизы есть у небольшой части людей. Вакансий публикуется больше не в области исследований, а в прикладных проектах. Прикладными проектами может заниматься обычный разработчик. Для этого нужно уметь кодить, решать задачи и использовать системный подход. Нужно учиться делать базовые вещи максимально аккуратно.
А все остальное получится в свое время. Самое тяжелое умение — на грани hard skills и soft skills — понимать, что делаешь. Подвох в том, что данные могут лежать в каком угодно виде, и надо уметь грамотно их обрабатывать.
Это могут быть: Системы распознавания лиц; Системы «компьютерного зрения» для беспилотного транспорта; Системы распознавания и синтеза речи; Средства сбора и анализа текстовой информации; Системы диагностики и выявления неполадок на транспорте например, в авиации ; Боты-консультанты для бизнеса с функциями, близкими к человеку. Поэтому работа разработчика нейросетей строится на том, что сначала он получает техзадание и концепт будущей программы. Далее он: Изучает информацию по области применения нейросети и какие задачи она должна решать; Проводит исследование архитектуры уже готовых нейронных сетей, либо проектирует собственную; Проводит бета-тестирование нейросети, отладку её работы на основе промежуточных данных; Интегрирует полученный продукт в программную платформу заказчика, пишет специальное ПО для поддержания работы нейросети; Взаимодействует с командами аналитики, тестирования и технической поддержки. Требования к квалификации разработчиков нейросетей Программист должен в первую очередь хорошо разбираться в алгоритмах работы нейронных сетей и быть подкованным в математике. Качества разработчика нейросетей:.
На протяжении последних нескольких лет нейросети стали широко применяться в различных отраслях, включая медицину, финансы, рекламу, транспорт и другие. Это приводит к появлению все большего числа вакансий для инженеров нейросетей, и перспективы роста этой профессии в ближайшие годы кажутся очень многообещающими. Инженеры нейросетей могут рассчитывать на высокий уровень заработной платы. Средняя зарплата квалифицированного инженера нейросетей в США составляет около 150 000 долларов в год, что является значительно выше, чем средняя зарплата в других отраслях. Более того, с ростом спроса на этих специалистов можно ожидать, что заработная плата будет продолжать расти в ближайшие годы. Одной из причин высокой заработной платы инженера нейросетей является сложность работы.
В то же время чатбот может не только помогать сотрудникам выполнять рабочие задачи, но и полностью дублировать их функции, что в конечном итоге способно привести к массовым сокращениям. Итак, список возглавили маркетологи, за ними следуют преподаватели иностранного языка и литературы, географии, истории, права, философии , культурологии и религии, социологии, политологии, уголовного правосудия, психологии, деловой и межличностной коммуникации. Под удар могут попасть также социологи , политологи, специалисты по библиотечному делу, юристы по гражданским делам, судьи, клинические и школьные психологи и коучи. Ученые уверены, что на область юриспруденции ИИ повлияет сильнее всего. Также под раздачу могут попасть турагентства, грантовые фонды, спортивные агенты и музыкальные продюсеры. Программистов в списке не оказалось, хотя чат-бот умеет писать код. Для этого исследователи рассмотрели профессии как набор навыков и способностей, которые требуются сотрудникам, чтобы исполнять свои обязанности. Ученые взяли 10 самых распространенных приложений ИИ, которые умеют генерировать изображения или текст, и проанализировали, как они связаны с различными профессиональными навыками. Оказалось, что, к примеру, преподаватели вузов могут использовать ChatGPT для создания учебного плана или лекций. Технология, уверены ученые, может «высвободить руки» высококлассных специалистов, которые раньше тратили время на рутинные задачи. В то же время ученые не пришли к консенсусу о том, какие именно рабочие места будут созданы в результате повсеместного внедрения ИИ-технологии. В беседе с CNews Кирилл Чеханков , руководитель отдела ИТ-решений Konica Minolta Business Solutions Russia , отметил, что в последние годы нейросети стали более популярными в таких сферах, как медицина, финансовый сектор, телеком, наука и других. Вырос также спрос на сотрудников, которые умеют работать с нейросетями, растет.
Популярные посты
Программисты в безопасности Чат-бот с искусственным интеллектом, разработанный компанией OpenAI, представляет угрозу для представителей, как минимум, 20 профессий. Среди них — маркетологи, преподаватели, социологи, судьи и другие, уверены исследователи. В некоторых сферах технология ChatGPT в буквальном смысле начнет отбирать хлеб у дипломированных специалистов. Больше всего технология повлияет, как минимум, на 20 профессий, пишет Cbcnews. Умение искусственного интеллекта быстро и качественно обрабатывать большие объемы информации и генерировать связный текст, превращает его в полезный для работников ресурс. Так, профессионалы в сфере недвижимости используют ChatGPT для составления различных списков, юристы — для написаний завещаний. В то же время чатбот может не только помогать сотрудникам выполнять рабочие задачи, но и полностью дублировать их функции, что в конечном итоге способно привести к массовым сокращениям.
Итак, список возглавили маркетологи, за ними следуют преподаватели иностранного языка и литературы, географии, истории, права, философии , культурологии и религии, социологии, политологии, уголовного правосудия, психологии, деловой и межличностной коммуникации. Под удар могут попасть также социологи , политологи, специалисты по библиотечному делу, юристы по гражданским делам, судьи, клинические и школьные психологи и коучи. Ученые уверены, что на область юриспруденции ИИ повлияет сильнее всего. Также под раздачу могут попасть турагентства, грантовые фонды, спортивные агенты и музыкальные продюсеры. Программистов в списке не оказалось, хотя чат-бот умеет писать код. Для этого исследователи рассмотрели профессии как набор навыков и способностей, которые требуются сотрудникам, чтобы исполнять свои обязанности.
Вы можете освоить ее целиком или выбрать для изучения только один из модулей. Знакомство с нейросетями. Принципы работы, направления развития. ИИ-этика — 11 часов Тема 1. История создания нейросетей и основные принципы их работы — 3 часа Тема 2. Обзор чат-систем нейросетей, генерирующих тексты и графических нейросетей — 3 часа Тема 3. Правила безопасности при работе с нейросетями. Защита персональных данных. Практика защиты и разделения авторского права — 5 часов Чат-системы с искусственным интеллектом — 26 часов Тема 1.
Это химик, инженер и эколог в одном лице. И такие профессионалы действительно не останутся без работы, считает эксперт hh. Обрабатывает и оцифровывает языковые данные, генерируя их в технологические и производственные процессы. Нейросеть видит в таком специалисте баланс между "технарем" и "гуманитарием", безупречную грамотность и системное мышление. Шансы у этой профессии будущего есть, по крайней мере, в компаниях, связанных с machine-to-machine-технологиями.
Но учитывайте, что пока что в компаниях все еще нужно проверять много такого контента, после которого потом придется долго лечится у психотерапевта. Но также улучшились модели, которые создают качественные и логичные тексты см. Возможно, в ближайшие годы появится ИИ для видео контента. Но уже сейчас появился огромный простор для креатива и блогерства. Виртуальные блогеры уже не новость, но теперь и живые смогут себя "подменять" и давать писать посты нейросетям или делать реалистичный фото контент со своим лицом не выходя из дома. Также появятся целые агентства, которые будут воплощать в жизнь ранее недоступные или дорогие идеи. Зарплата: тут опять же зависит от популярности и умения креативить с новыми инструментами, выжимая из них максимум. В любом случае хорошим конкурентным преимуществом в ближайшие годы будет умение пользоваться подобными инструментами.
Профессии, связанные с нейросетями: какой бывает работа будущего и как на нее устроиться
Из этой статьи вы узнаете о трех новых профессиях, которые стали востребованными на рынке после появления нейросетей, и какие навыки нужны для того, чтобы успешно в них развиваться. В России за последние несколько месяцев на 62 % выросло число вакансий специалистов по работе с нейросетями, пишут «Ведомости» со ссылкой на сервис HeadHunter. Сначала нейросети пришли за художниками, дизайнерами, композиторами, теперь добрались и до нас — работников телевидения. Нейронная сеть может найти решение проблемы, но ей необходимо изучить структурированный набор данных.