Новости незатухающие колебания примеры

Акустические незатухающие колебания Акустические незатухающие колебания — это колебания звуковой волны в среде, которые не теряют энергию и продолжают распространяться на большие расстояния без изменения амплитуды. Свободные колебания могут быть незатухающими только при отсутствии силы трения. Затухающие колебания — это колебания, амплитуда которых со временем уменьшается из-за внешней силы или трения, в то время как незатухающие колебания продолжаются неопределенно долго с постоянной амплитудой.

Основные сведения о затухающих колебаниях в физике

Примеры незатухающих колебаний в природе 1. Плазменные колебания: В плазме, которая является четвертым состоянием вещества, происходят незатухающие колебания. Примеры незатухающих колебаний Незатухающие колебания встречаются в различных физических системах и процессах. Еще одним примером незатухающих колебаний является колебания вокруг равновесного положения пружины.

Математическое описание

  • § 27. Незатухающие электромагнитные колебания
  • Гармонические колебания и их характеристики.
  • Свободные незатухающие колебания
  • Характеристики затухающих колебаний
  • Свободные незатухающие колебания
  • Ответы : Примеры затухающих и незатухающих колебаний

Свободные незатухающие колебания

Свободные незатухающие колебания: понятие, описание, примеры Незатухающие колебания широко используются в различных областях науки и техники.
Вынужденные колебания. Резонанс. Автоколебания Незатухающими колебаниями называют гармонические колебания с постоянной амплитудой.
Механические колебания | теория по физике 🧲 колебания и волны Возбуждение незатухающих электрических колебаний возможно с помощью других методов, но все они подобны описанному.

Приведи пример вариантов незатухающих колебаний

Затем он продолжает движение до состояния 3. И в это время он проходит расстояние 2—3, равное еще одной амплитуде колебаний. Чтобы вернуться в исходное положение состояние 1 , нужно снова проделать путь в обратном направлении: сначала 3—2, затем 2—1. Груз немного смещают от положения равновесия вдоль оси пружины и отпускают из состояния покоя, после чего он начинает колебаться, двигаясь вдоль оси пружины, параллельно которой направлена ось Ox.

В таблице приведены значения координаты груза х в различные моменты времени t. Выберите все верные утверждения о результатах этого опыта на основании данных, содержащихся в таблице. Абсолютная погрешность измерения координаты равна 0,1 см, времени — 0,05 с.

Алгоритм решения: Проверить истинность утверждения 1. Для этого необходимо установить зависимость ускорения тела, колеблющегося на пружине, от его координаты. Проверить истинность утверждения 2.

Для этого необходимо установить зависимость кинетической энергии тела, колеблющегося на пружине, от его координаты. Проверить истинность утверждения 3. Для этого необходимо записать формулу, отображающую зависимость между силой, действующей на колеблющееся тело, и координатой этого тела.

Затем найти модули силы для указанных значений времени и сравнить их. Проверить истинность утверждения 4. Для этого необходимо дать определение периоду колебаний, установить период колебаний тела и сравнить его со значением, приведенным в утверждении 4.

Проверить истинность утверждения 5.

Момент инерции - это величина, зависящая от массы тела, его размеров и положения относительно оси вращения. Вычисляется момент инерции по специальным формулам.

Гармонические колебания и их характеристики. Колебаниями называются процессы, которые характеризуются определенной повторяемостью во времени, то есть колебания - периодические изменения какой-либо величины. В зависимости от физической природы различают механические и электромагнитные колебания.

В зависимости от характера воздействия на колеблющуюся систему различают свободные или собственные колебания, вынужденные колебания, автоколебания и параметрические колебания. Колебания называются периодическими, если значения всех физических величин, изменяющихся при колебаниях системы, повторяются через равные промежутки времени. Период - это время, за которое совершается одно полное колебание: ,.

С течением времени она может изменяться по разным законам. Определение 1 Установившиеся вынужденные колебания всегда происходят с частотой внешней силы. Частоту свободных колебаний определяют параметры системы.

Однако из-за сил трения свободные колебания в определенный момент затухают, поэтому по прошествии времени в системе сохраняются лишь стационарные колебания с той частотой, которая соответствует внешней вынуждающей силе.

Для этого можно применить триод. На рис. В анодное круг триода включен последовательно колебательному контуру, батарее Ба, в цепи сетки — катушка Lc, связанная индуктивно с катушкой L колебательного контура. Далее конденсатор разряжается через катушку индуктивности, а в контуре, возникнут синусоидальные электрические колебания. Однако угасающий синусоидальный ток, проходя через катушку L контура, возбуждает в катушке Lc ЭДС индукции. Так между сеткой и катодом образуется переменное напряжение. Это напряжение регулирует энергию, подводится от источника к колебательному контуру.

Вынужденные колебания. Резонанс. Автоколебания

Вынужденные колебания. Резонанс. Автоколебания ударь по своему стоячему члену, вот пример колебаний которые затухают.
Характеристика затухающих колебаний, какие колебания называют затухающими Свободные колебания могут быть незатухающими только при отсутствии силы трения.

Приведи пример вариантов незатухающих колебаний

Kvant. Незатухающие колебания — PhysBook Примерами незатухающих колебаний могут служить колебания маятника или звуковой волны, распространяющейся в открытом пространстве.
Свободные незатухающие колебания: понятие, описание, примеры Примеры незатухающих колебаний Незатухающие колебания — это колебания системы, которые продолжаются вечно без потери энергии.
Свободные незатухающие колебания: понятие, описание, примеры Автоколебания — незатухающие колебания, которые существуют за счет поступления энергии в систему под ее же управлением.

Гармонические колебания и их характеристики.

Незатухающими колебаниями называют гармонические колебания с постоянной амплитудой. Самым простым видом колебаний являются свободные незатухающие колебания. Главная» Новости» Незатухающие колебания примеры. Приведи пример вариантов незатухающих колебаний Просмотров 43 Незатухающие колебания — это физический процесс, при котором система продолжает колебаться без потери энергии. Уравнение незатухающих колебаний Незатухающие колебания являются одним из видов колебаний, при которых отсутствует потеря энергии со временем.

Приведи пример вариантов незатухающих колебаний

Анкер даёт возможность ходовому колесу повернуться только на один зуб за каждые половины периода маятника. Пока зуб ходового колеса соприкасается с изогнутой поверхностью левой или правой пластинки 5, маятник не получает толчка, а лишь слегка тормозится из-за трения. Но в те моменты, когда зуб ходового колеса "чиркает" по торцу пластинки 5, маятник получает толчок в направлении своего движения. Таким образом, маятник совершает незатухающие колебания, так как он сам в определённых положениях даёт возможность ходовому колесу подтолкнуть себя в нужном направлении.

Эти толчки и восполняют расход энергии на трение. Период колебаний почти совпадает с периодом собственных колебаний маятника, то есть зависит от его длины. Итак, при автоколебаниях система сама управляет действующей на неё силой и сама регулирует поступление энергии для создания незатухающих колебаний.

Характерная черта автоколебаний состоит в том, что их амплитуда определяется свойствами самой системы, а не начальным отклонением или толчком, как у свободных колебаний. Рулёва, к. Подписывайтесь на канал.

Ставьте лайки. Пишите комментарии. Предыдущая запись: Истоки развития телефона, радиосвязи и звукозаписи.

Следующая запись: Колебательный контур.

Эталоны времени Сверхстабильные генераторы с кварцевым резонатором обеспечивают точность хода эталонных часов. Медицина Незатухающие электрические колебания применяются в электрокардиографии для диагностики сердечной деятельности. Исследования незатухающих колебаний Изучение незатухающих колебаний имеет давнюю историю и продолжается по сей день. В XIX веке Максвелл разработал теорию электромагнитных колебаний. Галилей, Гюйгенс, Ньютон заложили основы исследования механических колебаний.

Максвелл, Герц экспериментально обнаружили и описали электромагнитные волны. В настоящее время ведутся работы по созданию сверхстабильных эталонов частоты, по применению незатухающих колебаний в нанотехнологиях. Разрабатываются оптические эталоны частоты на основе лазеров и атомных переходов. Изучаются колебания наномеханических резонаторов, применение их в сенсорике. Дальнейшие исследования незатухающих колебаний позволят расширить возможности науки и техники. Колебания в окружающем мире Незатухающие колебания широко распространены в природе, быту, технике.

Давайте рассмотрим некоторые примеры: Колебания в живой природе. В организмах постоянно происходят колебательные процессы - пульс, дыхание, электрическая активность мозга. Ритмические сокращения сердечной мышцы обеспечивают кровообращение. Вдохи и выдохи создают колебательные движения воздуха в легких. Звуковые колебания. Звук представляет собой упругие волны в воздухе, возникающие при колебаниях источника.

Музыкальные инструменты. Струнные, духовые, ударные инструменты создают музыкальные звуки за счет колебаний. Звуки речи образуются колебаниями голосовых связок и резонаторов речевого аппарата. Бытовые колебательные процессы. Многие привычные вещи в быту работают за счет колебаний.

Учитывая, что , запишем второй закон Ньютона в виде:. В новых обозначениях дифференциальное уравнение затухающих колебаний имеет вид:. Это линейное дифференциальное уравнение второго порядка. Уравнение затухающих колебаний есть решение такого дифференциального уравнения:. В приложении 1 показано получение решения дифференциального уравнения затухающих колебаний методом замены переменных. Частота затухающих колебаний: физический смысл имеет только вещественный корень, поэтому. Период затухающих колебаний:. Смысл, который вкладывался в понятие периода для незатухающих колебаний, не подходит для затухающих колебаний, так как колебательная система никогда не возвращается в исходное состояние из-за потерь колебательной энергии. При наличии трения колебания идут медленнее:. Периодом затухающих колебаний называется минимальный промежуток времени, за который система проходит дважды положение равновесия в одном направлении. Для механической системы пружинного маятника имеем: , , для пружинного маятника.

Так между сеткой и катодом образуется переменное напряжение. Это напряжение регулирует энергию, подводится от источника к колебательному контуру. В отрицательный полупериод когда на сетке отрицательный потенциал на катоде - положительный лампа «заперта» и источник тока не работает. Напротив, в положительную полупериод когда на сетке положительный потенциал, на катоде - отрицательный источник Ба создает анодный ток, пополняя энергию колебательного контура, которая расходуется на теплоту и электромагнитное излучение. Благодаря этому в контуре существуют незатухающие колебания. Полупроводниковые генераторы электрических колебаний Кроме генераторов на электронных лампах широко используют полупроводниковые генераторы электрических колебаний - на транзисторах. По структуре они аналогичны рис.

Характеристика затухающих колебаний, какие колебания называют затухающими

Главная» Новости» Незатухающие колебания это как примеры. Примером незатухающих колебаний может быть колебания маятника или электрическое колебание в резонансном контуре. Незатухающими колебаниями называют гармонические колебания с постоянной амплитудой. Главная» Новости» Незатухающие колебания примеры. Примеры автоколебаний Незатухающие колебания маятника часов за счёт постоянного действия тяжести заводной гири; Колебания скрипичной струны под воздействием равномерно движущегося смычка.

Свободные незатухающие механические колебания.

  • Затухающие и незатухающие колебания: разница и сравнение
  • Механические колебания | теория по физике 🧲 колебания и волны
  • Свободные незатухающие колебания
  • Динамика колебательного движения
  • § 27. Незатухающие электромагнитные колебания
  • Затухающие и незатухающие колебания: разница и сравнение

Основные сведения о затухающих колебаниях в физике

Частота — количество колебаний, совершенных в единицу времени. Определить частоту колебаний груза, если суммарный путь, который он прошел за 2 секунды под действием силы упругости, составил 1 м. Амплитуда колебаний равна 10 см. Во время одного колебания груз проходит расстояние, равное 4 амплитудам.

Посмотрите на рисунок. Положение равновесия соответствует состояние 2. Чтобы совершить одно полное колебание, сначала груз отводят в положение 1.

Когда его отпускают, он проходит путь 1—2 и достигает положения равновесия. Этот путь равен амплитуде колебаний. Затем он продолжает движение до состояния 3.

И в это время он проходит расстояние 2—3, равное еще одной амплитуде колебаний. Чтобы вернуться в исходное положение состояние 1 , нужно снова проделать путь в обратном направлении: сначала 3—2, затем 2—1. Груз немного смещают от положения равновесия вдоль оси пружины и отпускают из состояния покоя, после чего он начинает колебаться, двигаясь вдоль оси пружины, параллельно которой направлена ось Ox.

В таблице приведены значения координаты груза х в различные моменты времени t. Выберите все верные утверждения о результатах этого опыта на основании данных, содержащихся в таблице. Абсолютная погрешность измерения координаты равна 0,1 см, времени — 0,05 с.

Алгоритм решения: Проверить истинность утверждения 1.

Найди все, что тебе интересно! Приведи пример вариантов незатухающих колебаний Просмотров 51 Незатухающие колебания — это физический процесс, при котором система продолжает колебаться без потери энергии.

Это явление имеет множество применений и примеров в различных областях науки. В данной статье мы рассмотрим некоторые из них. Примером незатухающих колебаний может быть маятник.

Маятник представляет собой тяжелое тело, закрепленное на нити или стержне и подвешенное к точке подвеса. Когда маятник отклоняется от своего равновесного положения и отпускается, он начинает колебаться вокруг этого положения. В идеальных условиях, без учета сопротивления воздуха и трений, колебания маятника будут незатухающими.

Характерной чертой гармонических колебаний является независимость периода таких колебаний от амплитуды. Именно гармонические колебания являются самыми простыми с точки зрения математического описания такого движения. Отличными моделями для гармонических колебаний являются пружинный и математический маятники. Давайте более подробно рассмотрим гармонические колебания на примере пружинного маятника. Пружинный маятник Пусть возвращающая сила в данном случае сила упругости см. Колебания пружинного маятника Запишем второй закон Ньютона для данной системы:. Мы договорились, что в данном случае действует только сила упругости. Итак, мы получаем:. Разделим это выражение на массу m и получим выражение для ускорения колеблющегося тела:.

Записав это выражение для ускорения, мы вплотную приблизились к главной задаче механики для гармонических колебаний ведь сюда входит x, а мы знаем, что ускорение зависит от времени, то есть время сюда входит неявно. Решить такое уравнение строго математически мы пока не умеем, такие уравнения называются дифференциальными. Строгое решение такого уравнения мы запишем в 11 классе, а я отмечу тот факт, что решение будет выражаться периодическим законом — законом синуса или косинуса. А сейчас только обсудим, к какому результату приводит такое вот решение главной задачи для гармонических колебаний. Обратите внимание, что у нас ускорение зависит от координаты x и в этой зависимости есть некоторая величина. Так вот это отношение равно квадрату угловой частоты колебания системы:. Это доказательство мы получим в 11 классе. Таким образом, если нам при решении задачи удается представить второй закон Ньютона в виде , то мы автоматически узнаем угловую частоту колебаний, а, зная угловую частоту, мы можем вычислить линейную частоту или период колебаний:. Только что мы получили выражение для угловой частоты пружинного маятника, аналогичным образом можно получить выражение для угловой частоты математического маятника, естественно, там роль этого коэффициента будут выполнять другие величины.

Об этом вы узнаете, если посмотрите ответвление к уроку. Зависимость E t при свободных колебаниях Вы уже знаете, что энергия во время колебаний непрерывно меняется: кинетическая переходит в потенциальную и наоборот. Логично, что так же, как и координата, скорость, и ускорение, энергия будет меняться по гармоническому закону. Убедимся в этом. Давайте рассмотрим превращение колебаний на примере математического маятника, но расчеты будем вести для пружинного маятника — в данном случае это проще. Итак, как же происходит превращение энергии при колебаниях маятника? В верхней точке максимальна потенциальная энергия, а кинетическая равна 0 см. Верхняя точка математического маятника Когда отпустим маятник, он начнет колебаться. Рассмотрим маятник, когда он проходит положение равновесия: здесь кинетическая максимальная, а потенциальная 0.

Потенциальная энергия равна 0, потому что мы выберем именно этот уровень см. Уровень нулевой потенциальной энергии Дальше происходит обратное превращение энергии: кинетическая начинает падать, а потенциальная увеличиваться и так происходит постоянно.

При наличии обратной связи в них устанавливаются самоподдерживающиеся почти синусоидальные колебания. Частота таких колебаний задается резонатором. Но автоколебания могут происходить и в системах, не содержащих резонатора. Колебания при этом, как правило, не являются гармоническими. Типичный пример релаксационных колебаний Типичными примерами таких систем могут служить генератор пилообразных колебаний на неоновой лампе и гидравлическое устройство, показанное на рис. В сосуд, снабженный сифоном С, с постоянной скоростью натекает вода из крана К. Пока сифон не заполнен водой, уровень воды в сосуде растет со временем по линейному закону.

Но как только уровень достигает высоты сифон срабатывает и уровень воды в сосуде падает до значения после чего сосуд снова начинает заполняться водой из крана. Скорость опорожнения сосуда через сифон можно сделать гораздо больше скорости его наполнения через кран так как скорость воды в сифоне зависит от разности уровней Далее описанный процесс будет повторяться периодически. Зависимости уровня воды А и скорости его изменения от времени показаны в правой части рис. Видно, что колебания уровня воды и скорости не являются синусоидальными. Соответствующая этим колебаниям фазовая диаграмма приведена на рис. Фазовая диаграмма релаксационных колебаний, показанных на рис. Его электрическая схема показана на рис. Неоновая лампа обладает тем свойством, что ток через нее не проходит до тех пор, пока приложенное к лампе напряжение не достигнет определенного значения, называемого напряжением зажигания Если после возникновения тлеющего разряда в лампе напряжение на ней несколько уменьшить, то лампа будет продолжать гореть. Ток через лампу прекратится лишь тогда, когда напряжение будет уменьшено до определенного значения, называемого напряжением гашения Рис.

Генератор пилообразных колебаний на неоновой лампе При замыкании ключа конденсатор С начинает медленно заряжаться через сопротивление Как только напряжение на конденсаторе достигнет значения, равного напряжению зажигания лампы в лампе возникает газовый разряд и конденсатор начинает быстро разряжаться через лампу, так как сопротивление горящей неоновой лампы очень мало. Когда напряжение на конденсаторе уменьшится до значения гашения разряд в лампе прекращается и конденсатор опять начинает заряжаться. Затем все повторяется снова. График зависимости напряжения на конденсаторе от времени приведен на рис. Автоколебания, происходящие в генераторе на неоновой лампе и рассмотренном выше гидравлическом устройстве, носят название релаксационных. Зависимость напряжения на конденсаторе от времени Для таких колебаний характерно постепенное накопление энергии системой до некоторого значения, а затем быстрое «избавление» от накопленной энергии.

Урок 9: Гармонические, затухающие, вынужденные колебания. Резонанс (Колебошин С.В.)

  • Явление резонанса
  • Kvant. Незатухающие колебания — PhysBook
  • Явление резонанса — условия, формулы, график
  • 2.5. Вынужденные колебания. Резонанс. Автоколебания

Основные сведения о затухающих колебаниях в физике

В системе присутствуют различные виды трения Силы трения могут быть внутренними например, в подвесе маятника , а могут быть и внешними например, со стороны окружающего воздуха или другой среды, в которой может находиться маятник. Естественно, что силы трения зависят от свойств среды: в воде колебания будут затухать быстрее, чем в воздухе см. Затухание в воздухе и воде В итоге амплитуда колебаний будет постепенно уменьшаться, и в конце маятник остановится. На рисунке представлены смещения груза маятника от времени: видно, что амплитуда постепенно уменьшается, стремясь к нулю, такие колебания называются затухающими см. Затухающие колебания — это колебания, которые происходят в незамкнутой системе, то есть колебания, которые происходят в том числе под действием силы трения. Амплитуда таких колебаний постепенно затухает.

Большинство колебаний в мире — затухающие, так как в окружающем нас мире, постоянно существуют силы трения. Итак, мы выяснили: в реальности колебания маятников механических систем затухающие, то есть их амплитуда постепенно уменьшается, стремясь к нулю. Что же нам сделать, чтоб колебания не были такими, чтоб амплитуда постоянно поддерживала свое значение? Для этого нам необходимо разомкнуть систему и подкачивать энергию извне. Таким образом, мы добьемся незатухающих колебаний.

Как же разомкнуть систему? Вспомним простой пример из жизни: катание на качелях. Для того чтобы качели колебались без остановки, человек периодически толкает их, а если перевести это на язык физики, то человек действует на качели с силой, величина которой зависит от времени периодическим образом. Если построить график зависимости модуля силы от времени, то получим следующий результат: сила зависит от времени периодически см. Зависимость силы от времени Мы прекрасно понимаем, что если мы будем воздействовать на качели постоянно, то они не будут колебаться.

Колебания системы, совершающие ею под действием внешней периодической силы, называются вынужденными. Силу, являющейся мерой этого внешнего воздействия, называют вынуждающей. При этом, как вы понимаете, мы уже не можем считать систему замкнутой, то есть в системе уже не совершаются свободные колебания — в системе совершаются вынужденные колебания. Примерами систем, в которых совершаются вынужденные колебания, могут быть также в полнее привычные вам часы — это могут быть настенные маятниковые часы, а могут быть и обычные пружинные механические часы. В каждом таком случае колебания совершаются за счет подвода энергии извне.

Вынужденные колебания Самым простым видом колебаний являются свободные незатухающие колебания. О них подробнее мы говорили на предыдущих занятиях. Давайте поговорим о некоторых характерных особенностях затухающих колебаний и вынужденных колебаний. Начнем с затухающих колебаний. Как вы уже знаете, любая реальная колебательная система — затухающая, ведь нам всегда приходится преодолевать силу трения или силу сопротивления.

Если мы говорим об электромагнитных колебаниях, то там тоже есть факторы, вызывающие их затухания, — это сопротивление проводников. Итак, как же выглядят затухающие колебания? Если вывести маятник из положения равновесия, то со временем его колебания затухают, здесь два основных фактора: сопротивление воздуха, а также трение в подвесе.

Их колебания описываются разными формулами. Механические осцилляторы Пружинный маятник - груз на пружине. Математический маятник: где l - длина нити, g - ускорение свободного падения. Физический маятник описывается моментом инерции тела относительно оси вращения.

Квазиупругая сила и потенциальная энергия возвращают осциллятор в положение равновесия. Электрический осциллятор Колебательный контур, состоящий из катушки индуктивности и конденсатора, создает незатухающие колебания на резонансной частоте. Чем выше добротность контура, тем меньше потери энергии за период колебаний. Генераторы незатухающих колебаний используются в радиотехнике для создания радиосигналов. Механические осцилляторы Рассмотрим более подробно различные виды механических осцилляторов. Физический маятник Физический маятник представляет собой твердое тело, подвешенное на оси вращения. Торсионный маятник Торсионный маятник - стержень, подвешенный в середине на оси.

Он совершает затухающие крутильные колебания. Период зависит от жесткости стержня на кручение. Маятник Максвелла Маятник Максвелла состоит из стержня, подвешенного на нитях. Он демонстрирует механический аналог молекулярного хаоса при определенной частоте внешнего воздействия. Получение незатухающих колебаний Существует несколько способов получения незатухающих колебаний в осцилляторах. Рассмотрим их подробнее. Автоколебания При автоколебаниях энергия поступает от внешнего источника и пополняет потери осциллятора за счет обратной связи.

Пример - маятниковые часы. Параметрический резонанс При параметрическом резонансе параметр осциллятора периодически изменяется, вызывая рост амплитуды колебаний. Вынужденные колебания Вынужденные колебания возникают под действием внешней периодической силы, компенсирующей потери энергии. Автоколебания Автоколебания обеспечивают поддержание незатухающих колебаний за счет обратной связи в системе.

Автор: Роман Адамчук Преподаватель физики Если колебания совершаются под воздействием внешней силы, они называются вынужденными. Работа внешней силы, которая обеспечивает колебательную систему энергией, при этом является положительной. Благодаря ей колебания не затухают и могут противодействовать силам трения. Внешняя сила не обязательно должна быть постоянной.

Электромагнитные волны могут быть представлены, например, световыми волнами, радиоволнами или микроволнами. В идеальных условиях, без учета потери энергии на поглощение или рассеяние, электромагнитные колебания будут незатухающими. Незатухающие колебательные процессы имеют множество практических применений. Например, в часах и механических часовых механизмах используются незатухающие колебания для точного измерения времени.

Также незатухающие колебания находят применение в музыкальных инструментах, оптических приборах, электронных устройствах и многих других системах. В заключение можно сказать, что незатухающие колебания являются важным явлением в физике и науке в целом. Они позволяют изучать и практически применять различные системы, сохраняя энергию и обеспечивая стабильные колебания в течение продолжительного времени. Эти примеры незатухающих колебаний демонстрируют возможности и применения этого явления в различных областях наших жизней.

Вынужденные колебания. Резонанс. Автоколебания

Давайте более подробно рассмотрим гармонические колебания на примере пружинного маятника. Пружинный маятник Пусть возвращающая сила в данном случае сила упругости см. Колебания пружинного маятника Запишем второй закон Ньютона для данной системы:. Мы договорились, что в данном случае действует только сила упругости. Итак, мы получаем:. Разделим это выражение на массу m и получим выражение для ускорения колеблющегося тела:. Записав это выражение для ускорения, мы вплотную приблизились к главной задаче механики для гармонических колебаний ведь сюда входит x, а мы знаем, что ускорение зависит от времени, то есть время сюда входит неявно. Решить такое уравнение строго математически мы пока не умеем, такие уравнения называются дифференциальными.

Строгое решение такого уравнения мы запишем в 11 классе, а я отмечу тот факт, что решение будет выражаться периодическим законом — законом синуса или косинуса. А сейчас только обсудим, к какому результату приводит такое вот решение главной задачи для гармонических колебаний. Обратите внимание, что у нас ускорение зависит от координаты x и в этой зависимости есть некоторая величина. Так вот это отношение равно квадрату угловой частоты колебания системы:. Это доказательство мы получим в 11 классе. Таким образом, если нам при решении задачи удается представить второй закон Ньютона в виде , то мы автоматически узнаем угловую частоту колебаний, а, зная угловую частоту, мы можем вычислить линейную частоту или период колебаний:. Только что мы получили выражение для угловой частоты пружинного маятника, аналогичным образом можно получить выражение для угловой частоты математического маятника, естественно, там роль этого коэффициента будут выполнять другие величины.

Об этом вы узнаете, если посмотрите ответвление к уроку. Зависимость E t при свободных колебаниях Вы уже знаете, что энергия во время колебаний непрерывно меняется: кинетическая переходит в потенциальную и наоборот. Логично, что так же, как и координата, скорость, и ускорение, энергия будет меняться по гармоническому закону. Убедимся в этом. Давайте рассмотрим превращение колебаний на примере математического маятника, но расчеты будем вести для пружинного маятника — в данном случае это проще. Итак, как же происходит превращение энергии при колебаниях маятника? В верхней точке максимальна потенциальная энергия, а кинетическая равна 0 см.

Верхняя точка математического маятника Когда отпустим маятник, он начнет колебаться. Рассмотрим маятник, когда он проходит положение равновесия: здесь кинетическая максимальная, а потенциальная 0. Потенциальная энергия равна 0, потому что мы выберем именно этот уровень см. Уровень нулевой потенциальной энергии Дальше происходит обратное превращение энергии: кинетическая начинает падать, а потенциальная увеличиваться и так происходит постоянно. Теперь попытаемся вывести закон, по которому меняются потенциальная и кинетическая энергии см. Изменение энергий Потенциальная энергия пружинного маятника имеет вид: , где k — коэффициент жесткости пружины, x — координата. Кинетическая энергия:.

Математический маятник: где l - длина нити, g - ускорение свободного падения. Физический маятник описывается моментом инерции тела относительно оси вращения. Квазиупругая сила и потенциальная энергия возвращают осциллятор в положение равновесия. Электрический осциллятор Колебательный контур, состоящий из катушки индуктивности и конденсатора, создает незатухающие колебания на резонансной частоте. Чем выше добротность контура, тем меньше потери энергии за период колебаний. Генераторы незатухающих колебаний используются в радиотехнике для создания радиосигналов. Механические осцилляторы Рассмотрим более подробно различные виды механических осцилляторов. Физический маятник Физический маятник представляет собой твердое тело, подвешенное на оси вращения.

Торсионный маятник Торсионный маятник - стержень, подвешенный в середине на оси. Он совершает затухающие крутильные колебания. Период зависит от жесткости стержня на кручение. Маятник Максвелла Маятник Максвелла состоит из стержня, подвешенного на нитях. Он демонстрирует механический аналог молекулярного хаоса при определенной частоте внешнего воздействия. Получение незатухающих колебаний Существует несколько способов получения незатухающих колебаний в осцилляторах. Рассмотрим их подробнее. Автоколебания При автоколебаниях энергия поступает от внешнего источника и пополняет потери осциллятора за счет обратной связи.

Пример - маятниковые часы. Параметрический резонанс При параметрическом резонансе параметр осциллятора периодически изменяется, вызывая рост амплитуды колебаний. Вынужденные колебания Вынужденные колебания возникают под действием внешней периодической силы, компенсирующей потери энергии. Автоколебания Автоколебания обеспечивают поддержание незатухающих колебаний за счет обратной связи в системе. Рассмотрим несколько примеров автоколебательных систем. Маятниковые часы В маятниковых часах маятник связан через кинематическую цепь с заводным механизмом.

Они актуальны для упрощения решения практических задач: где не требуется высокая точность; поставленных с целью обучения школьников решать их; в системах, которые совершают много циклов до заметного снижения амплитуды. Незатухающие колебания превращается в затухающие, когда возникает потеря энергии. График затухающих колебаний выглядит следующим образом. Амплитуда и частота значит и периодичность синусоиды снижаются.

При незатухающих характеристики остаются постоянными. Примеры затухающих колебаний Затухающие колебания встречаются в природе и быту: качающиеся от дуновения ветра ветки; маятники;.

Скорость и ускорение при гармонических колебаниях: Свободные незатухающие механические колебания. Свободными или собственными называются колебания, которые совершает система около положения равновесия после того, как она каким-либо образом была выведена из состояния устойчивого равновесия и представлена самой себе.

Как только тело или система выводится из положения равновесия, сразу же появляется сила, стремящаяся возвратить тело в положение равновесия.

Похожие новости:

Оцените статью
Добавить комментарий