Найдите бесплатную анимационную графику мыльные пузыри, которую вы искали для своего следующего проекта.
«Это магия!» — видео с «заклинателем» мыльных пузырей
Житель Воронежа Евгений Власов специально для того, чтобы доставить радость землякам, установил на своём велосипеде генератор мыльных пузырей. 1) Маленькие генераторы пузырей с мыльным колесом Это достаточно компактные аппараты, у них чаще всего одно колесо, которое вращается с мыльной плёнкой, и один вентилятор для создания потока воздуха. Они выдували мыльные пузыри, а те моментально замерзали.
Спецэффекты для дискотеки
Тюменка установила рекорд страны по надуванию мыльных пузырей (ВИДЕО) | Наша Газета | Чаще всего эти инновационные «мыльные пузыри» образуются в компаниях, где нет четкого позиционирования на рынке. |
Как сделать бизнес на мыльных пузырях? | Ранее Пятый канал публиковал видео с замороженными мыльными пузырями, а также рассказывал, как сделать набор для пузырей своими руками. |
Автоматические мыльные пузыри "ЮНЛАНДИЯ" | Attivio Пистолет для выдувания мыльных пузырей Паровозик +2 бутылочки 60 мл. |
Автоматические мыльные пузыри "ЮНЛАНДИЯ" | На 1А показана схема того, как мыльные пузыри, содержащие пыльцевые зерна, готовятся с помощью пузырькового пистолета. |
Мир без пчел: роботизированное опыление мыльными пузырями - | В городе Барнауле Алтайского края ребенок получил ожог руки на шоу мыльных пузырей. |
Генераторы мыльных пузырей с дымом в работе!
Зал гудел как растревоженный улей. Еще бы! Столько детворы собралось сегодня здесь! Ребята бегали по залу, ерзали на креслах, поглощали поп-корн и неустанно спрашивали у родителей: скоро ли буду пускать мыльные пузыри. Когда началось представление, неугомонные зрители затихли. Сначала на сцену поднялись артисты Клепа, Конфетка и Бантик. Они шутили, танцевали, показывали смешные сценки и раздавали мальчишкам и девчонкам призы. А потом перед зрителями появились Принц и Принцесса из Страны мыльных пузырей. И вот тогда начались настоящие чудеса. Артисты выдували пузыри из больших и маленьких сачков, с помощью специального реквизита пускали сразу сотню крошечных пузыриков, а еще делали гигантские пузыри, которые бы не обхватили и двое ребят.
Принц опускал руки в чудо-раствор и прям на ладони выдувал пузырь, а потом еще несколько легких движений - и вот он уже держит огромный пузырь, внутри которого летает несколько маленьких. Пузыри были малюсенькие и гигантские, сферические и вытянутые, они переливались в свете прожекторов и тихо летали по залу. Зрители заворожено смотрели на это чудо, многие ребята вскочили с мест и изо всех сил старались поймать огромные мыльные пузыри. С неохотой детвора отпускала со сцены Принц и Принцессу, еще и еще просили выдуть гигантский пузырь и отправить его в зал. А артисты сделали зрителям необычный подарок: сегодня каждый мог побывать внутри огромного мыльного пузыря. Достаточно было просто стать внутрь сачка на подиум со специальным раствором.
Для опыления Эйдзиро Мияко и его команда вооружились пузырьковыми пистолетами, в которые предварительно налили смесь из зерен пыльцы груши и мыльного раствора, содержащего питательные вещества.
Исследователи начали выпускать мыльные пузыри таким образом, чтобы на каждый цветок попадало 2-10 штук. После этого они посчитали те из них, которые принесли плоды. Однако способ Эйдзиро Мияко менее трудоемкий и травматичный для нежных цветов, потому что мыльные пузыри являются более мягкими.
У нас два таких устройства и они отличаются друг от друга. Например, хрюша, которую можно носить на шее сама выдувает пузыри при нажатии кнопки. Что понравится вашим детям решать вам и им, но мне кажется что и тот и другой вариант подходит идеально для летних забав на свежем воздухе.
Сначала она принимает вогнутую форму, а потом её стенки расширяются и превращаются в стабильный пузырь, который может держать форму около десяти минут. Новые пузыри отличаются от обычных тем, что у мыльных шаров под воздействием гравитации жидкость стекает вниз пузыря, делая его верх очень тонким.
Но если на пузырь воздействовать ультразвуком, волны подавляют течение жидкости и шар становится более стабильным.
Самая лучшая летняя забава для детей - автоматические МЫЛЬНЫЕ пузыри
Мыльные пузыри не долговечны, обычно перед тем, как лопнуть, они дарят всего несколько секунд детского восторга. В результате получается мыльная пленка, способная растягиваться достаточно тонко, чтобы гигантский пузырь не лопнул. Даже обыкновенную мыльную каплю ультразвук сумел раздуть в воздухе в ровный, крепкий мыльный пузырь. Даже обыкновенную мыльную каплю ультразвук сумел раздуть в воздухе в ровный, крепкий мыльный пузырь. Владелец сайта предпочёл скрыть описание страницы.
Рынок мыльных пузырей в России в 2021-2022 гг. | Обзор маркет-плейса WB
Но за пузырем не видно ничего похожего на этот пейзаж, только однородный зеленый фон. Откуда же взялась эта картинка? Это изображение — отражение объектов, находящихся позади фотографа. Для нас передняя поверхность пузыря представляет собой сферическое выпуклое зеркало, которое в своем фокусе создает прямое мнимое изображение далеких объектов — деревьев, дома, озера... В самом деле, может показаться, что в нижней половине пузыря видна водная гладь, отражающая те самые дом и деревья. Но их отражение выглядит довольно странно — оно антисимметрично: там, где ожидаешь увидеть отражение дома, находятся деревья, и наоборот. Конечно, никакого озера там нет — только небо, дома и деревья.
Мы имеем дело с еще одним отражением, созданным мыльным пузырем, — но не передней его поверхностью, а задней. Не весь свет отражается от выпуклой передней стенки: часть, преломляясь, проходит сквозь мыльную пленку и отражается уже от задней поверхности пузыря, которая с нашей точки зрения является вогнутым сферическим зеркалом. Она-то и создает это перевернутое действительное изображение. Построение изображений в сферическом мыльном пузыре. Вверху: вид сбоку. О — оптический и геометрический центр пузыря.
F1 и F2 — фокусы выпуклого и вогнутого зеркал, соответственно; оба фокуса находятся на расстоянии половины радиуса от центра пузыря, но по разные стороны от него. При отражении света от передней поверхности пузыря образуется расходящийся пучок лучей, и изображение формируют их продолжения на схеме они изображены пунктирными красными линиями — такое изображение называется мнимым. По построению мы видим, что оно является прямым, а поскольку источник света находится на очень большом расстоянии от пузыря, то изображение оказывается практически в фокусе F1 выпуклого зеркала. При отражении света от задней поверхности пузыря изображение формируется непосредственно лучами, сходящимися после отражения в одной точке. Такое изображение называется действительным. Оно также расположено в фокусе F2 вогнутого зеркала, но является перевернутым.
Внизу: вид сверху. Фотограф находится между объектом АВ и пузырем; слева от него находится половина объекта АВ, окрашенная желтым цветом, справа — половина, окрашенная фиолетовым. Видно, что отражение в выпуклом зеркале симметрично исходному объекту AB, а отражение в вогнутом — антисимметрично. То есть в перевернутом изображении левая желтая и правая фиолетовая части меняются местами. Это и есть эффект «ненастоящего озера»: действительное изображение полностью повторяет мнимое, но относительно него оно перевернуто с ног на голову и отражено слева направо. Рисунок Анны Мухиной Но загадки «ненастоящего озера» еще не закончились.
Почему верхнее изображение пейзажа гораздо четче нижнего? Здесь придется вспомнить о понятии оптической плотности — это свойство вещества, определяющее то, насколько хорошо оно пропускает свет. По сравнению с воздухом мыльная пленка гораздо более оптически плотная, и когда свет проходит сквозь пленку или отражается от нее, он теряет часть энергии, то есть его интенсивность уменьшается. А чем меньше интенсивность света, исходящего от предмета, тем менее ярким и детализированным мы видим сам предмет. Именно поэтому верхнее изображение, которое получилось при простом отражении от внешней поверхности пленки, видится нам более четким, чем нижнее, которому пришлось пройти длинный путь и дважды пересечь границу пузыря.
Скоро герой этого материала масштабирует свою задумку и запустить мыльные пузыри уже с вершины маяка в том же «Дельфине». Интересно, что о своей профессиональной деятельности Евгений рассказал так: — Нигде не работаю и давно это бросил. Делаю разные творческие штуки, какие-то за деньги. Какие-то просто так. Учусь постоянно и нигде, жизнь — мой учитель. Если что-то нужно изучить для создания определенной вещи, я это изучаю и делаю.
Чтобы повысить эффективность опыления, следовательно, и коэффициент прорастания, ученые также оптимизировали компоненты раствора мыльного пузыря. Одним из важных показателей, влияющих на рост пыльцевых трубок, является pH. Коэффициент прорастания достиг своего максимального значения около 30. Более того, умеренное добавление бора, кальция, магния и калия стимулирует прорастание пыльцы и увеличение длины трубки. Особенно кальций, который улучшает прорастание благодаря связыванию кальция с пектатами карбоксильных групп вдоль стенки пыльцы. А остальные элементы бор, калий, магний усиливают этот эффект. Добавление в мыльный раствор H3BO3 0—60 мд; мд — частей на миллион привело к росту пыльцевой трубки до 1187 мкм, что в 1. Также было обнаружено, что концентрация CaCl2 в диапазоне 0. KCl при концентрации 1 мМ сопутствовал удлинению трубки до 1232 мкм, что в 1. Желатин представляет собой водорастворимый белок, который состоит из большого количества глицина, пролина и гидроксипролина. Эти компоненты могут играть существенную роль в прорастании пыльцы и удлинении трубки. Добавление 0. Для повышения стабильности мыльных пузырей был дополнительно использован небольшой процент гидроксипропилметилцеллюлозы ГПМЦ. Добавление в раствор 0. Ручное опыление с помощью мыльных пузырей Как мы уже знаем, в качестве подопытных выступили цветки белой груши. Первоначально изучалась активность пыльцевых зерен груши в оптимизированном растворе мыльного пузыря во время процесса опыления в течение 3 часов для сравнения с другими методами, такими как порошковое опыление и опыление неоптимизированным раствором. Однако даже они были в 5. Следовательно, внедрение в раствор дополнительных элементов имеет значимое положительное влияние на рост семян. Чтобы продемонстрировать возможности нового метода опыления, ученые провели наблюдения, где использовалось различное количество 0, 1, 2, 5, 10, 20 и 50 мыльных пузырей на цветках груши 2C. Флуоресцентная микроскопия показала, что пыльцевые зерна успешно приземлились на пестики, а после фактического опыления виден рост пыльцевых трубок. В контрольной группе, где не использовались мыльные пузыри, пыльцевые зерна или трубки вообще не наблюдались. Логично и то, что количество пыльцевых зерен на каждом пестике увеличивалось с числом используемых пузырей. Однако, применение более 10 пузырей приводит к обратному эффекту, что может быть связано с токсичностью накопления раствора на цветке. Стоит отметить, что раствор не токсичен для цветков, токсично большое его количество между лекарством и ядом разница в дозировке, как говорят.
Наконец, оптическая обратная связь поддерживает и стабилизирует свет внутри полости. В лазерах на мыльных пузырях этот механизм естественным образом интегрирован благодаря сферической форме пузыря, что позволяет свету циркулировать непрерывно и усиливаться с каждым проходом. Мыльный пузырь, сформированный на конце капилляра. Мыльная пленка состоит из слоя воды, молекул ПАВ и флуоресцирующих гемомолекул. Видны интерференционные цвета. Результатом этого процесса является миниатюрный лазер, заметно отличающийся от обычных лазеров по структуре и принципу действия. Простой и доступный процесс Простота этого прорыва поражает. По словам Хумара, для создания лазера из мыльного пузыря не требуется никаких специализированных материалов или оборудования. Напротив, для этого необходимы обычные, легкодоступные ингредиенты. Хумар отмечает, что практически любой мыльный пузырь может быть превращен в лазер. Неважно, используется ли для этого обычное мыло для рук или смеси, предназначенные для детских игр, — процесс все равно остается эффективным. Такая доступность потенциально делает использование лазеров доступным для множества применений и исследований даже вне специализированных лабораторий.
В Уфе водители от скуки запускали в пробке мыльные пузыри
Оригинальные новогодние промо-сувениры | Жидкость для мыльных пузырей Attivio 1литр в ассортименте 513. |
Генераторы мыльных пузырей | Владелец сайта предпочёл скрыть описание страницы. |
Тюменка поставила новый рекорд России в шоу на Первом канале, надувая мыльные пузыри | Мыльные пузыри делают всю тяжелую работу за вас, автоматически выдувая тысячи пузырьков в минуту. |
Удивительные химические опыты, шоу трансформеров и мыльных пузырей | Вендоры, консультанты и интеграторы дружно раздувают мыльные пузыри и запускают их в направлении армии заказчиков, которая с замиранием предвкушает чудодейственные технологии для скорейшей победы над всеми проблемами автоматизации. |
Генераторы мыльных пузырей с дымом в работе! | Инженеры из Японского передового института науки и технологии предложили для опыления растений использовать мыльные пузыри. |
Автоматические мыльные пузыри "ЮНЛАНДИЯ"
Пробка тянулась от торгового центра "Июнь". Как сообщили очевидцы Спутник FM, в одном из автомобилей молодые парни решили заставить улыбнуться пассажиров многочисленных автобусов и маршруток, начав пускать мыльные пузыри. Действительно, у многих вокруг мгновенно поднялось настроение от такого неожиданного поступка.
В результате пузыри из чистой воды лопались примерно за час. Если же в воду добавить глицерин, который мешает испарению, то пузыри могли прожить до 465 дней. Ученые предполагают, что в итоге схлопыванию пузырей способствовало размножение в них микроскопических организмов. Подписывайтесь на «Газету. Ru» в Дзен и Telegram.
Функционирует при финансовой поддержке Министерства цифрового развития, связи и массовых коммуникаций Российской Федерации Регион Царство мыльных пузырей. Самые спорные технологические стартапы в мире От ховербордов до биотехнологий: Лайф собрал самые противоречивые и переоценённые стартапы последних лет. За последние несколько лет слово "стартап" из модного превратилось в почти ругательное. Все давно привыкли, что идеи, казавшиеся перспективными, регулярно проваливаются в силу самых разных причин: от некачественных материалов и сырого ПО до слабого пиара и сумасшедшей конкуренции. Элизабет Холмс и её капля крови Брошенный университет, чёрные водолазки, стремление изменить мир — эти три пункта объединяют Стива Джобса и Элизабет Холмс, девушку, ставшую миллиардером в 30 лет. Когда ей было 19, по миру гулял вирус атипичной пневмонии и Элизабет разрабатывала новые методы его распознавания. Результат исследований — "умный пластырь" с двумя функциями: выделение вещества для ускорения заживления раны и анализ изменений в крови пациента.
Уже тогда, в нулевых, девушка понимала: если прикрепить к такому пластырю чип, то лечащий врач сможет получать уведомления о состоянии крови пациента прямо на свой мобильный телефон. Дело в том, что во многих странах нельзя просто пойти в первую попавшуюся частную клинику и попросить сделать анализ крови — всегда необходимо направление от врача. Чтобы преодолеть эти рамки, Элизабет основала стартап Theranos — на тот момент Холмс было чуть за двадцать. Компания долго оставалась безвестной, но в июне 2014 года Элизабет объявила о привлечении 400 миллионов долларов от венчурных инвесторов. Всю компанию Theranos оценили в 9 миллиардов: соответственно, Холмс, которой принадлежит половина, стала самой молодой леди-миллиардером на планете. Однако уже два года назад настораживало молчание Элизабет по поводу самого процесса обработки крови. Впрочем, тогда это можно было списать на страх за компанию — идею могли скопировать.
В патентах все описывалось очень расплывчато, но инвесторов это не отпугивало. Мы хотим, чтобы наши центры находились в радиусе пяти километров от каждого американца", — декларировала Элизабет, продвигая компанию. За ней действительно быстро закрепился образ Стива Джобса в женском обличье: чтобы соответствовать, Холмс повесила в рабочем кабинете краткую биографию основателя Apple. Скандал грянул осенью 2015 года. Газета The Wall Street Journal опубликовала шокирующее расследование, которое мощно ударило по репутации Theranos и по самой Элизабет Холмс. Во-первых, оказалось, что бизнесвумен предоставляла партнёрам и инвесторам неполные и некорректные данные об исследованиях. Во-вторых, реклама компании вводила в заблуждение.
Фирменная технология "Эдисон" использовалась только в 15 видах анализов, а не в 200, как гласила реклама. Все остальные тесты проводились на обычном оборудовании — например, производства Siemens.
Подход исключает механические повреждения растений и минимизирует объемы требуемой пыльцы. Биологи относятся к подобным методам весьма скептично - многие инициативные группы разработали собственные версии дронов-опылителей, однако никто так и не представил сколь-либо серьезного решения.
Тем не менее, оптимизацию можно назвать частично-успешной - в отличие от дронов с механическими кисточками, которые повреждали растения пропеллерами и требовали 1800 мг пыльцы на один цветок, доставка пыльцы мыльными пузырями позволила сократить эту массу до 0.
Тюменка установила рекорд страны по надуванию мыльных пузырей (ВИДЕО)
Специалисты Бристольского университета представили свою новую разработку – работа, который общается с людьми при помощи мыльных пузырей. На шоу мыльных пузырей в Тамбове собралось несколько сотен детей. Это и другие чудеса увидели зрители на шоу гигантских мыльных пузырей [видео и фоторепортаж]. В результате получается мыльная пленка, способная растягиваться достаточно тонко, чтобы гигантский пузырь не лопнул. Автоматический генератор мыльных пузырей в виде пистолета на батарейках с пенным раствором в комплекте для купания в ванной и игр.
Новости по теме "мыльные пузыри"
Как сообщили очевидцы Спутник FM, в одном из автомобилей молодые парни решили заставить улыбнуться пассажиров многочисленных автобусов и маршруток, начав пускать мыльные пузыри. В городе Барнауле Алтайского края ребенок получил ожог руки на шоу мыльных пузырей. Мыльные пузыри делают всю тяжелую работу за вас, автоматически выдувая тысячи пузырьков в минуту. Затем танцзал переквалифицировался в цирковую арену: Егор Хахуляк из московского шоу «Фэнси Баблс» продемонстрировал, до каких размеров можно надуть мыльный пузырь, как сделать так, чтобы тот засветился, задымился и даже вспыхнул.
Ставропольцы побывали внутри мыльного пузыря
Макросъемка в России и конкретно в Новосибирске не редкость. Исследовать микроскопический мир с помощью объектива интересно и другим, как, например, известному астрофотографу Алексею Полякову, когда его камера не обращена к звездам. Но коллег, которые занимались бы именно каталогизацией снежинок, новосибирцу найти не так просто. Но на фотобанках найти в России их можно. Лично не знаком ни с кем, учился снимать методом проб и ошибок, до всего дошел сам, — признается Андрей Пристяжнюк. Популярное за сутки.
Несоблюдение данного показателя создает риск для здоровья детей и может привести к аллергическим реакциям и отравлениям. При длительном воздействии способен вызвать усталость, кожные раздражения, проблемы с дыханием", - разъяснили специалисты.
Выступы могут выполняться как cглаженные ребра, а впадины - как углубления между ребрами. В зависимости от толщины трубки складки могут быть жесткими иди деформируемыми, они могут иметь вид чередующихся борозд или вид гофр. Складки выступы и впадины могут находиться либо только на внешней поверхности трубки при этом внутренняя поверхность остается гладкой , либо только на внутренней поверхности трубки внешняя поверхность гладкая , или на внешней и на внутренней поверхности трубки одновременно. Количество выступов и впадин на внешней и внутренней поверхности трубки и их размеры могут быть различными. На поверхности стенки трубки, по крайней мере, имеется три выступа и три впадины, образующих ее поверхность, причем количество складок в верхней и нижней части стенки трубки может отличаться. Количество складок на поверхности трубки может быть различным и связано с диаметром трубки, размером получаемых мыльных пузырей, свойствами пленкообразующего состава, а также конструкционными особенностями устройства. Обычно складки выполняют в виде длинных продольных борозд, распространяющихся на всю длины трубки или на часть ее длины. Также трубка может выполняться складчатой частично, например с одного конца, или складки могут находиться на обоих концах трубки, которая в центральной части не имеет складок. Форма складок может быть различной: скругленной, прямоугольной, треугольной или иметь более сложную конфигурацию. Дополнительно на складках могут выполняться прорези, каналы и капилляры для увеличения площади поверхности и лучшего удержания пленкообразующего состава, в том числе за счет капиллярных сил. Кроме изготовления складок продольными, они могут выполняться косыми, винтовыми, а также поперечными или в различных сочетаниях. В этом случае за счет регулируемого растекания пленкообразующего состава по поверхности складчатой трубки удается осуществлять его постепенное перемещение по трубке при ее наклоне или повороте вокруг оси, что позволяет получать мыльные пузыри большего размера или в большем количестве, чем на трубке с ровной поверхностью. Для удобства пользования устройством для пускания мыльных пузырей предпочтительно, чтобы при выдувании пузырей его можно было держать горизонтально или с некоторым углом выше горизонта это наиболее удобная поза и оперативно регулировать угол наклона во время выдувания, что дает возможность управлять направлением полета мыльного пузыря. В этом случае образующиеся на конце трубки устройства мыльные пузыри вылетают преимущественно вверх, то есть после отрыва от трубки пузырь взлетает над головой, а затем постепенно опускается вниз, проделывая в воздухе значительно больший путь, чем при ориентации трубки устройства отверстием вниз. Возможность выдувания мыльного пузыря вверх в значительной мере зависит от условий смачивания и пленкообразования на нижнем конце трубки. Как указывалось выше, наличие на поверхности трубки выступов и впадин способствует улучшенному снабжению мыльного пузыря пленкообразующим составом. Кроме этого, значительное влияние на выдувание мыльных пузырей оказывает угол наклона среза торцевой части трубки, а также толщина среза торцевой части трубки. Изготовление на нижнем конце трубки расширения уступа , представляющего собой утолщение стенки трубки, улучшает пленкообразование и позволяет выдувать мыльные пузыри существенно большего размера, чем на трубке без расширения, особенно при ориентации устройства для пускания мыльных пузырей горизонтально или с некоторым углом выше горизонта. Наиболее эффективно для выдувания мыльных пузырей большого размера и пускания их вверх является выполнение трубки, сочетающей уступ со складками на внешней поверхности трубки, а также уступ, имеющий выемки в торцевой части. Использование трубки устройства с расширенной нижней частью также существенно увеличивает время существования мыльного пузыря, что связано с образованием более толстой пленки и лучшим снабжением ее пленкообразующим составом, приводящим к увеличению размеров пузыря при выдувании. Это особенно актуально в условия низкой влажности воздуха, когда пленка мыльного пузыря подвержена быстрому высыханию, что часто приводит к преждевременному разрушению пузыря. Расширение нижней части трубки выполняется как утолщение стенки, преимущественно расположенное у торца. Такое расширение обычно изготавливается в виде уступа, находящегося на внешней стороне стенки трубки. Толщина расширения стенки трубки в оптимальном варианте соответствует толщине наиболее широкой части уступа в пределах 2-10 мм, однако может отличаться от этого размера, в зависимости от диаметра трубки и применяемого пленкообразующего состава. Чтобы мыльные пузыри стабилизировать на максимальном диаметре трубки, расширение обычно выполняют в виде уступа небольшой ширины длины , обычно 2-10 мм. При этом углы среза нижней части уступа с торца и верхней части уступа с тыльной стороны торца могут отличаться. При выдувании мыльного пузыря пленкообразующий состав, смачивающий поверхность торца трубки, поступает на образование пленки мыльного пузыря. Пленка, первоначально образующаяся на внутренней поверхности трубки в самом узком ее месте, при выдувании пузыря перемещается на внешнюю поверхность трубки, в ту часть, где трубка имеет наибольший диаметр - уступ. При этом получается, что мыльный пузырь закрепляется на максимальном диаметре трубки и при колебаниях воздуха может перемещаться по трубке, но все время возвращается на максимальную часть расширения. Выполнение торцевого среза или части торцевого среза трубки под углом облегчает эту задачу, пузырь перемещается по трубке плавно, без скачков, собирая с нее пленкообразующий состав. Стабилизация пузыря на максимальном диаметре трубки улучшает условия пленкообразования. Воздух, выходя из внутреннего отверстия трубки, проходит в мыльный пузырь на расстоянии от края пленки мыльного пузыря, которая перемещается в максимальный диаметр и за счет этого менее подвержена воздействию конвективных потоков воздуха. Пленка мыльного пузыря, перемещенная на уступ, получается более прочной и толстой, это позволяет выдувать пузыри вверх, придавая им ускорение при отрыве от трубки, получать пузыри большего размера на пленкообразующих составах в условиях низкой влажности воздуха. Время живучести пленки пузыря увеличивается, так как она медленнее сохнет при контакте с сухим воздухом, поступающим в пузырь. При этом выдувание мыльных пузырей большого размера происходит значительно эффективнее, чем на трубке без расширения уступа. Конструктивно уступ выполняется как единая деталь с трубкой или как отдельное кольцо, которое надевается на трубку с внешней стороны или вставляется в торец трубки, образуя сужение внутренней части и расширение внешней части трубки. Обычно уступ выполняют у торца трубки, но он может быть выполнен на расстоянии от торца или быть передвижным. При изготовлении уступа на трубке единой деталью он имеет вид расширения стенки трубки. Типично, уступ с торцевой стороны имеет участок с конусным сужением, а с тыльной стороны имеет выемки. Конусное сужение с тыльной стороны образуется уменьшающимися выступами, переходящими от уступа на трубку. Выступы на поверхности трубки могут быть выполнены в виде небольших ребер, впадины образованы пространством между выступами, в нижней части выступы расширяются, переходя в уступ, который затем сужается на торец трубки. При выполнении на внешней поверхности трубки выступов и впадин, складок или ребер, последние могут упираться в уступ. В тыльной стороне уступа можно выполнять выемки, совпадающие с впадинами на поверхности трубки, что увеличивает накопление на уступе пленкообразующего состава. Выемки и прорези в тыльной стороне уступа выполняются с учетом снижения толщины объема уступа при изготовлении детали из пластмассы литьем под давлением. При изготовлении уступа в виде кольца его закрепляют на трубке без зазора, когда он прилегает к трубке вплотную, или у зазором со щелью , имеющимся между трубкой и кольцом. Ширина зазора предпочтительно находится в пределах 0,1-10 мм. Кольцо закрепляется на гладкой поверхности трубки, может закрепляться на выступах трубки, имеющей выступы и впадины, либо на ребрах, выполненных в трубке или кольце и пр. При этом выемки на трубке могут образовывать сквозные каналы и отверстия, проходящие между трубкой и кольцом. При закреплении кольца на ребрах, выполненных на трубке или на кольце, обеспечивающих зазор между трубкой и кольцом, ширина зазора также предпочтительно составляет 0,1-10 мм. На поверхности уступа могут выполняться щели, выемки, борозды, канавки для лучшего смачивания его пленкообразующим составом. Уступ может иметь различную геометрическую форму с вогнутой или выпуклой конусной частью. А также может иметь волнообразную поверхность, выполняться скругленным и другой формы. Наличие уступа в сочетании со складками на трубке позволяет выдувать мыльные пузыри вверх за счет кинетической энергии потока воздуха, и за счет меньшей плотности более теплого воздуха внутри мыльного пузыря пускать пузыри над головой и управлять их полетом. Помимо своего основного назначения уступ служит лопаткой для съема из емкости с пленкообразующим составом пены, образующейся при выдувании мыльных пузырей. Изготовление поверхности трубки складчатой делает возможным производить изменение ее функциональных размеров за счет уплотнения или распрямления складок. Для этого трубку изготавливают из тонкого материала, позволяющего осуществить его деформацию при незначительном усилии, достигаемом при сжатии рукой или простейшими приспособлениями. Применительно к специфике выдувания мыльных пузырей различного размера возможность деформации складчатой трубки позволяет получить ряд преимуществ перед трубкой с обычной поверхностью. Наличие продольных складок гофр дает возможность менять диаметр трубки в целом, а также ее отдельных частей, что является весьма существенным фактором, влияющим на образование мыльного пузыря. При радиальном сжатии трубки с продольными складками происходит деформация складок и их уплотнение, при этом диаметр трубки уменьшается. Для трубки, деформируемой пластично, распрямление или складывание гофр позволяет непосредственно менять ее размеры. Для трубки из упругого материала можно зафиксировать новое положение трубки и получить трубку меньшего диаметра. Например, можно сжать упругую гофрированную трубку рукой, вставить такую сжатую трубку в кольцо меньшего диаметра или обхватить ее хомутом и получить трубку меньшего диаметра. При освобождении трубки от кольца или хомута она возвратится к исходному диаметру. Аналогичным образом можно увеличить диаметр трубки относительно исходного, если предварительно расширить трубку. Для упругой трубки можно закрепить внутри нее кольцо большего диаметра и зафиксировать новый больший диаметр трубки, так как кольцо распирает трубку, складки распрямляются, приводя к увеличению диаметра.
Концентрации A-20AB и пыльцевых зерен оказали непосредственное влияние на образование мыльных пузырей 1E. Логично, что более высокая концентрация поверхностно-активного вещества может помочь создать много мыльных пузырей. А большое количество пыльцевых зерен может помешать образованию пузыря. Например, при концентрации A-20AB от 0. Если же концентрация A-20AB будет 1. В итоге было решено использовать следующие параметры: концентрация A-20AB — 0. При перерасчете получается, что на каждый мыльный пузырь можно загрузить около 2000 пыльцевых зерен. Чтобы повысить эффективность опыления, следовательно, и коэффициент прорастания, ученые также оптимизировали компоненты раствора мыльного пузыря. Одним из важных показателей, влияющих на рост пыльцевых трубок, является pH. Коэффициент прорастания достиг своего максимального значения около 30. Более того, умеренное добавление бора, кальция, магния и калия стимулирует прорастание пыльцы и увеличение длины трубки. Особенно кальций, который улучшает прорастание благодаря связыванию кальция с пектатами карбоксильных групп вдоль стенки пыльцы. А остальные элементы бор, калий, магний усиливают этот эффект. Добавление в мыльный раствор H3BO3 0—60 мд; мд — частей на миллион привело к росту пыльцевой трубки до 1187 мкм, что в 1. Также было обнаружено, что концентрация CaCl2 в диапазоне 0. KCl при концентрации 1 мМ сопутствовал удлинению трубки до 1232 мкм, что в 1. Желатин представляет собой водорастворимый белок, который состоит из большого количества глицина, пролина и гидроксипролина. Эти компоненты могут играть существенную роль в прорастании пыльцы и удлинении трубки. Добавление 0. Для повышения стабильности мыльных пузырей был дополнительно использован небольшой процент гидроксипропилметилцеллюлозы ГПМЦ. Добавление в раствор 0. Ручное опыление с помощью мыльных пузырей Как мы уже знаем, в качестве подопытных выступили цветки белой груши. Первоначально изучалась активность пыльцевых зерен груши в оптимизированном растворе мыльного пузыря во время процесса опыления в течение 3 часов для сравнения с другими методами, такими как порошковое опыление и опыление неоптимизированным раствором.