Ученые из университета Райса в Хьюстоне создали охлажденную лазером нейтральную плазму, температура которой достигает -273 градусов по Цельсию. Это примерно в 50 раз холоднее, чем температура в космосе. В космосе присутствует остаточное реликтовое излучение, благодаря которому температура близка к абсолютному нулю, но не падает до него. Учёные из Санкт-Петербургского государственного университета разработали бесконтактный термометр, который может измерять крайне низкие температуры, включая те, которые встречаются в открытом космосе. Например, дневные температуры возле экватора Луны достигают 120 градусов по Цельсию, что выше точки кипения воды. Средняя температура Вселенной довольно холодная и колеблется около 3 градусов выше абсолютного нуля.
Какая температура в разных частях космоса и почему в нем так холодно
Однако как узнать, что произойдёт с человеком в открытом космосе без скафандра? На тему космоса снято множество фильмов, такие как «Гравитация», «Звёздные войны», «Звёздный путь» и многие другие. В некоторых из них показано, как астронавт снимает шлем своего скафандра и за пару мгновений покрывается слоем льда, но это всего лишь миф. Температура в открытом космосе составляет порядка -270,45 градусов по Цельсию. Следуя логике, при таком холоде человек и вправду мгновенно замёрзнет насмерть, но это не совсем так. Эксперты Naked Space рассказывают, что вода в верхних слоях кожи и на ней почти сразу же закипит и испарится, тело человека покроется тонким слоем льда, однако это не сильно вредит человеку.
Отмечается, что «изменения температурного режима сейчас не критичны для работы техники и комфорта экипажа станции». Возможной причиной утечки исполнительный директор госкорпорации «Роскосмос» по пилотируемым программам Сергей Крикалев назвал попадание в корпус «Союза МС-22» микрометеорита.
А вот в жидких средах и газах передача тепла осуществляется при помощи конвекции. В то же время конвекция невозможна в твердых телах. Зато при помощи электромагнитного излучения тепло может быть передаваться в любых средах. Исходя из того, что космос представляет собой вакуум, излучение является единственным эффективным способом передачи тепла. И мы можем это увидеть в повседневной жизни «невооруженным глазом», когда, например, загораем на пляже. Как только излучение в нашем случае излучение Солнца , достигает какого-то тела, оно начинает поглощать энергию этого излучения. За счет этого частицы начинают двигаться быстрее, возрастает температура. Таким образом, любые тела, попадающие под солнечное излучение, могут быть нагреты до определенных температур.
В результате появилось и развилось новое направление по созданию гипертеплопроводящих панелей. Одним из таких решений является использование гипертеплопроводящих плоских структур, способных передавать тепло на порядки эффективнее традиционных материалов. Новоуральск и ОАО «ИСС» были разработаны гипертеплопроводящие панели, эффективная теплопроводность которых в 100 раз превышает теплопроводность алюминия! Гипертеплопроводящие панели являются не новым материалом, а настоящим компактным тепловым устройством со сложной внутренней структурой. В основу их создания легла концепция так называмой тепловой трубы. Классическая тепловая труба представляет собой запаянную с обеих сторон герметичную трубу, на внутренней стенке которой располагается фитиль, содержащий жидкий теплоноситель. При нагреве одного из концов такой трубы жидкий теплоноситель начинает испаряться из фитиля и в виде пара перемещаться к противоположному концу, где конденсируется и снова впитывается в фитиль. За счет капиллярных сил фитиля жидкость постоянно возвращается к месту подвода тепла. Замечательным свойством такого устройства является то, что для передачи большого количества тепла требуется очень маленький перепад температуры, при этом не нужно никаких насосов и вообще движущихся частей. Гипертеплопроводящая панель является двухмерной тепловой трубой. Внутри тонкой плоской панели находится заполненный жидким теплоносителем пористый материал. Внутренняя структура каналов в пористом материале такова, что теплоноситель способен перемещаться в любом направлении вдоль всей плоскости панели, обеспечивая перенос тепла. Вычислительное моделирование показало чрезвычайно высокую эффективность передачи тепла таким устройством. Самой сложной проблемой оказалась разработка самой технологии изготовления, однако эти трудности удалось преодолеть. Экспериментальные исследования образцов гипертеплопроводящих панелей подтвердили, что они обладают всеми ожидаемыми характеристиками. Точность во всем Высокоточные системы терморегулирования требуют и соответствующих высокоточных систем измерения температуры. Однако ни один из видов современных температурных датчиков не способен сохранять свои характеристики в течение долгих лет работы спутника на орбите. Со временем, медленно, но неизбежно, их характеристики меняются, а жесткие космические условия только ускоряют этот процесс. В результате работа систем термостабилизации ухудшается, что снижает надежность спутника в целом. Одним из решений этой проблемы является создание специального устройства — бортового стандарта температуры, пригодного для калибровки температурных датчиков прямо в космическом полете. Принцип работы этого устройства основан на том факте, что температура плавления и отвердевания некоторых веществ с высокой точностью постоянна. Такие вещества называются эвтектическими сплавами. И задача измерения температуры сводится в результате к сравнению температуры с эталонной температурой плавления эвтектического сплава.
Лекция «Какая температура в космосе» 8+
Сегодня в новостях Владимир Путин Владимир Владимирович Путин — российский государственный и политический деятель, действующий президент Российской Федерации и верховный главнокомандующий Вооружёнными силами Российской Федерации с 7 мая 2012 года Ранее занимал должность президента с 31 декабря 1999 года по 7 мая 2008 года, в 1999—2000 и 2008—2012 годах находился на посту председателя правительства Российской Федерации. Выпускник юридического факультета Ленинградского государственного университета.
В слоях атмосферы, которые ученые прозвали солнечной короной, стоит невообразимая жара. Корона — внешняя часть атмосферы звезды, состоящая из разряженных ионизованных газов, температура которых выше, чем в других частях солнечной атмосферы.
Напрашивается вопрос: почему Parker Solar Probe не расплавится? Исследователи из NASA разложили все по полочкам. Ученые продумали все спектры проблем, с которыми может столкнуться зонд.
Аппарат соорудили таким образом, чтобы он выдержал немыслимую жару. Секрет его неуязвимости заключен в специальном щите и автономной системе, которая помогает защитить миссию от воздействия солнечного пекла. Тут возникает еще один вопрос: как зонд будет работать с частицами, если не увидит их за щитом?
Почему он не расплавится Мы ведь не хотим повторения истории с Икаром? Ключ к пониманию причин, почему аппарат и его системы в безопасности, лежит в концепте противостояния температур. Другими словами, высокие температуры не всегда передают свое тепло другим объектам.
В космосе температуры могут составлять тысячи градусов и без внешнего воздействия. Температура измеряет, как быстро частицы движутся, тогда как тепло измеряет общее количество энергии, которое они переносят.
Обсудить Редактировать статью Мы привыкли к тому, что нам показывает Голливуд - в космосе вечный холод. Но так ли это на самом деле? Ученые утверждают, что в бесконечном космическом пространстве, наполненном вакуумом, нет температуры. Она появляется только в случае помещения в него какого-то тела, которое обладает температурой. В вакууме не существует конвекции — движения теплых слоев воздуха, так как там нет воздуха.
Сколько градусов в космосе: неужели там такая низкая температура? Мы все знаем, что в космосе холодно.
Но насколько низкая там температура и можно ли замерзнуть в открытом космосе? Прежде чем ответить на этот вопрос, нам сначала нужно дать научное определение понятию тепла. Тепло — это мера скорости движения атомов и молекул.
Ученые создали плазму, которая в 50 раз холоднее космоса
Ранее учеными была выдвинута теория, согласно которой существует некий предел показателя. При его достижении все тепловые перемещения в веществе должны остановиться. Это значение называется абсолютным нулем и согласно термодинамической шкале Кельвина обозначается, как 0 К. Ниже этой цифры опуститься невозможно! Читайте также: Разрушит ли астероид Апофис нашу Землю 13 апреля 2029 году или это все сказки Экстремальные условия космоса Итак, по словам ученых, в открытом космосе температура равна -273,15 градусам Цельсия. Но это совершенно не значит, что все попадающие в космос объекты мгновенно обретают ту же температуру. Как и на поверхности нашей планеты, космические корабли, спутники и другие объекты могут нагреваться и охлаждаться, причем до экстремальных уровней. Но передача тепла в космосе возможна только одним способом. Вообще, существует три способа передачи тепла: проводимость, которую можно наблюдать при нагревании металлического стержня — если нагреть один конец, со временем горячей станет и противоположная часть; конвекция, которую можно наблюдать, когда теплый воздух перемещается из одной комнаты в другую; излучение, когда испускаемые космическими объектами элементарные частицы вроде фотонов частиц света , электронов и протонов объединяются, образуя движущиеся частицы.
Как вы уже догадались, в космосе объекты нагреваются под воздействием активности элементарных частиц — ведь мы уже выяснили, что температура является результатом движений молекул? Фотоны и другие элементарные частицы могут излучаться Солнцем и другими космическими объектами. Насколько сильно и быстро будут нагреваться или охлаждаться попавшие в космос объекты, напрямую зависит от их местоположения относительно звезд и планет, размеров, формы и так далее. Например, летящий в космосе космический корабль будет буквально раскален со стороны Солнца, а его теневая сторона будет очень холодной. Чем дальше корабль находится от небесного светила — тем сильнее будет разница в степени нагрева. При строительстве космических кораблей важно учитывать экстремальные изменения температур. Международная космическая станция постоянно находится под воздействием солнечного света. Сторона, которая обращена к Солнцу, нагревается до 260 градусов Цельсия.
Теневая сторона, в свою очередь, охлаждена до 100 градусов Цельсия. Экипажу космической станции иногда приходится выходить на поверхность конструкции и подвергаться резким сменам температур. Поэтому их костюмы оснащены системой нагрева и охлаждения, благодаря которой исследователи космоса чувствуют себя относительно комфортно. О том, какие бывают скафандры, недавно писал мой коллега Артем Сутягин. Оказывается, они бывают не только космическими. Чем дальше от Солнца расположены космические объекты, тем они холоднее. Например, температура на Плутоне, которая расположена очень далеко, равняется -240 градусам Цельсия. А самое холодное место во Вселенной расположено в туманности Бумеранг — температурный режим в этом регионе равен -272 градусам Цельсия.
В общем если вы когда-нибудь фантастическим образом окажетесь в открытом космосе, вам понадобится костюм, внутри которого температура будет регулироваться автоматически. Но резкие изменения температуры — не единственная проблема, которая будет вас поджидать. В космическом пространстве человеческое тело терпит много изменений, о которых можно почитать в этом материале. Как нагреваются объекты в космосе Озоновый слой, который оберегает нас от экстремального воздействия космического пространства, «сглаживает» диапазон, в котором колеблется температура воздуха. Давайте представим, что вы осуществили детскую мечту о том, чтобы стать космонавтом.
Температура в космосе при удалении от Земли Как изменяется температура с удалением от Земли? Вспомним слои атмосферы. В тропосфере самом первом слое теплота очень быстро сменяется холодом. После неё падение температуры останавливается и она становится стабильно низкой. И снова мезосфера-морозильник. В ста километрах от поверхности Земли расположилась так называемая Линия Кармана. Её называют той самой границей между космосом и атмосферой Земли. Затем снова «разморозка» в термосфере — словом, этакая «температурная зебра» позволяет снизить разницу значений на нашей планете для поддержания благоприятной среды существования живых организмов. Защита от перепадов температуры в космосе Атмосфера Земли отлично справляется с циркуляцией солнечного тепла посредством проводимости, конвекции и излучения. Вот почему мы так остро чувствуем изменения температуры на нашей планете. Частицы движутся немного быстрее из-за солнечного света или погодных условий, т. Какая температура в космосе за бортом Международной космической станции на орбите Земли? Поэтому астронавты, выходящие за пределы безопасных границ нашей планеты, надевают изоляционные скафандры, которые помогают защитить их от экстремальных температурных значений. Например, скафандры эпохи Аполлона имели системы обогрева, включавшие гибкие катушки и литиевые батареи. Современные скафандры оснащены крошечными микроскопическими шариками химикатов, реагирующих на температуру, помогая защитить астронавтов от низких и высоких температур. Скафандры Artemis, которые доставят астронавтов на Луну в 2024 году, оснащены портативной системой жизнеобеспечения. Она поможет будущим луноходам регулировать температуру на Луне и за ее пределами. Почему в космосе холодно? На Земле существуют миллиарды частиц газа, и они постоянно движутся, но не очень быстро. Именно их количество нагревает нашу планету, а небольшие изменения в скорости движения определяют время года и погоду. Вы постоянно сталкиваетесь с миллионами частиц и нагреваетесь от этого взаимодействия. В космическом пространстве очень мало газовых частиц, и, хотя они движутся очень быстро, поскольку их энергией заряжают звезды, такие как Солнце, им приходится преодолевать огромные расстояния, чтобы врезаться во что-нибудь. Если бы вы оказались в космосе без скафандра, во-первых, вы бы погибли, а во-вторых, вам было бы очень холодно, потому что никакие частицы не сталкиваются с вами. Теплообмен практически отсутствует. Именно поэтому в космосе нет звука. Там недостаточно молекул, чтобы вибрировать и переносить звук. Однако в космосе есть области, где температура чрезвычайно высока, достигая миллионов градусов, и они, как правило, находятся вблизи гигантских звёзд в космосе, таких как наше Солнце, или в прямой видимости. По этой причине в скафандрах есть как нагреватели, так и охладители. Почему же галактические путешественники не замерзают? Дело в том, что в космическом пространстве вакуум — отсутствие всего.
Теневая сторона, в свою очередь, охлаждена до 100 градусов Цельсия. Экипажу космической станции иногда приходится выходить на поверхность конструкции и подвергаться резким сменам температур. Поэтому их костюмы оснащены системой нагрева и охлаждения, благодаря которой исследователи космоса чувствуют себя относительно комфортно. О том, какие бывают скафандры , недавно писал мой коллега Артем Сутягин. Оказывается, они бывают не только космическими. Чем дальше от Солнца расположены космические объекты, тем они холоднее. Например, температура на Плутоне, которая расположена очень далеко, равняется -240 градусам Цельсия. А самое холодное место во Вселенной расположено в туманности Бумеранг — температурный режим в этом регионе равен -272 градусам Цельсия. Если вам интересны новости науки и технологий, подпишитесь на наш канал в Яндекс. Там вы найдете материалы, которые не были опубликованы на сайте! В общем если вы когда-нибудь фантастическим образом окажетесь в открытом космосе, вам понадобится костюм, внутри которого температура будет регулироваться автоматически.
Никто никогда не говорит о наблюдении за никелем. Чтобы мы могли их увидеть, элементы должны светиться в газе. Значит, чтобы мы могли увидеть никель, в звездах внутри галактик может быть что-то уникальное. Эллисон Стром , руководитель исследования из Северо-Западного университета Второе неожиданное открытие: изученные галактики были чрезвычайно горячими. Подобно подросткам галактики испытывают периоды бурного роста и развития, говорят ученые. И эти «годы» важны, потому что они определяют химию и физику зрелой галактики.
Зонд NASA улетел к Солнцу. Как он переживет горячее путешествие?
В космосе температуры могут составлять тысячи градусов и без внешнего воздействия. В космосе температура может составлять тысячи градусов, при этом объект не нагревается и не ощущает жар своей поверхностью. Он также обеспечит температуру до -235°C на стороне, обращённой от Солнца. Когда смотришь новости про МКС, то возникает множество вопросов, относительно того, как космическая станция вообще может работать в экстремальных условиях космоса, как она летает по орбите и не падает, как в ней могут жить люди, не страдая от высоких температур и. Что же касается температуры в космосе, то этот вопрос вообще некорректен, потому что никакой температуры в космосе быть не может по одной простой причине. Смотрите видео онлайн «Лекция «Какая температура в космосе» 8+» на канале «Учим Делать Искусно» в хорошем качестве и бесплатно, опубликованное 6 сентября 2023 года в 17:53, длительностью 00:09:54, на видеохостинге RUTUBE.
Ученые из России разработали наносенсоры для замеров температуры в открытом космосе
Но вот на Солнце произошла вспышка. Уже через 8 минут она коснется земной ионосферы. В самой нижней ее части на высотах 50—90 км сразу резко возрастает ионизация — пришедшее первым рентгеновское излучения вспышки "разбивает" нейтральные частицы на ионы и электроны. Возрастание концентрации последних может быть столь сильным, что прекратится радиосвязь в диапазоне коротких волн КВ на всем освещенном полушарии Земли. А через несколько часов в ее окрестности прибудут жесткие протоны. Магнитное поле загородит им путь в среднеширотную атмосферу и сбросит протоны, словно в воронку, в приполярную зону. Они вызовут сильнейшую ионизацию в нижней ионосфере и как следствие — практически полное поглощение КВ-радиоволн на всех полярных трассах. Усилится солнечный ветер, оказывая давление на магнитосферу. С дневной стороны она начнет сжиматься, станут сближаться и изгибаться магнитные силовые линии.
Они создали специальный состав, который нанесли на поверхность объекта, и после испарения раствора на объекте остаётся оксидный слой.
Затем, при облучении инфракрасным светом, частицы начинают светиться, и это свечение позволяет определить температуру. Эта технология может быть полезной для исследований в области низкотемпературных сверхпроводников и для измерения температур в космосе. Учёные также планируют расширить диапазон измеряемых температур до крайне низких значений, таких как температура жидкого гелия.
Сегодня в новостях Владимир Путин Владимир Владимирович Путин — российский государственный и политический деятель, действующий президент Российской Федерации и верховный главнокомандующий Вооружёнными силами Российской Федерации с 7 мая 2012 года Ранее занимал должность президента с 31 декабря 1999 года по 7 мая 2008 года, в 1999—2000 и 2008—2012 годах находился на посту председателя правительства Российской Федерации.
Выпускник юридического факультета Ленинградского государственного университета.
В 1990—1991 годах работал помощником ректора ЛГУ по международным вопросам, советником председателя Ленинградского городского Совета народных депутатов Собчака, в 1991—1996 возглавлял Комитет по внешним связям мэрии Ленинграда, был советником мэра, первым заместителем председателя правительства Санкт-Петербурга. С августа 1996 года начал работать в Москве в должности заместителя управляющего делами президента Российской Федерации.
Светящиеся наночастицы расскажут о температуре в открытом космосе
Другим примером, показывающим полярность температуры в космосе, является влияние солнца на солнечный зонд Parker. – А как же "температура открытого космоса -273 С", "абсолютный ноль" и все такое?» Дело в том, что температура вещества – это скорость движения молекул. Из-за аварии в российском модуле 15 декабря пришлось отменить выход в открытый космос на МКС. Итак, по словам ученых, в открытом космосе температура равна -273,15 °С. Но это совершенно не значит, что все попадающие в космос объекты мгновенно обретают ту же температуру.
Светящиеся наночастицы расскажут о температуре в открытом космосе
Второе — у баков с горючим есть система подогрева, но нет системы охлаждения. Соответственно, при повышении температуры до определённого уровня всё это может просто взорваться Дмитрий Струговец Эксперт в области космонавтики "Союз МС-22" прибыл на орбиту в сентябре 2022 года, он доставил туда космонавтов Сергея Прокопьева и Дмитрия Петелина и астронавта Фрэнка Рубио. То, что произошло с космическим кораблём "Союз МС-22", было абсолютно ожидаемо, и то, что этого не случилось раньше, — чистое везение, заявил в интервью Лайфу ведущий научный сотрудник Института космических исследований РАН Натан Эйсмонт. По словам эксперта, в околоземном пространстве сейчас насчитывается около 30 тысяч обломков космического мусора, достаточно крупных для их отслеживания, то есть размером от нескольких сантиметров. Меж тем более мелких объектов гораздо больше и отследить их передвижение невозможно. Столь опасное повреждение из-за попадания в обшивку мелкой частицы на орбите происходит впервые, но подобное уже было, к примеру, подобный объект пробивал солнечные батареи модулей космической станции. Вопрос был не в том, попадут эти частицы или не попадут в космический корабль. Они точно попадут.
Однако глава американской программы МКС Джоэл Монталбано выразил убеждение , что начавшийся 14 декабря метеорный поток Геминиды к произошедшему не имеет отношения, потому что двигался совсем в другом направлении. Иной вероятный виновник произошедшего — обломок космического мусора. Немалую роль в нынешнем инциденте могла сыграть нарастающая в последнее время солнечная активность: Солнце заставляет частицы верхних слоёв атмосферы двигаться интенсивнее и таким образом "тормозить" вcё, что летает на орбите, объекты падают быстрее вниз, к Земле.
Таковая имеется в протопланетной туманности Бумеранг, размещенной в созвездии Центавра. Он удален от планеты Земля на целых 5 тысяч световых лет.
В рамках данного исследования у учёных получилось воссоздать очень холодные области. Ранее подобные опыты реализовались только на планетах.
Для создания таких аппаратов требуются точные современные методы контроля качества, гарантирующие их надежную работу на протяжении всего срока службы. Конечно, имеющиеся математические модели теплового режима можно использовать для расчета тепловых режимов отдельных электронных блоков и оптимизации их расположения, однако в расчетах невозможно учесть все технологические разбросы параметров теплового обмена в условиях реальной работы аппаратуры. Поэтому в ИВМ была разработана методика тепловакуумных испытаний с помощью тепловизионной измерительной системы. Методика основана на использовании тепловакуумного стенда — камеры, обеспечивающей имитацию космических условий и оснащенной специальным измерительным оборудованием и программным обеспечением.
В камеру помещаются модули с бортовой аппаратурой, а затем в условиях, приближенных к реальным, в автоматизированном режиме осуществляется наблюдение за тепловым полем всех элементов. Анализ температурных данных позволяет выявить теплонапряженные узлы и заменить их или улучшить качество монтажа. Такой тепловакуумный стенд для испытания элементов бортовой аппаратуры был изготовлен и введен в строй в ОАО «ИСС» в 2005 г. С того времени на этом стенде проходят проверку все радиоэлектронные приборы, предназначенные для использования на борту космических аппаратов. Термостабильное… время На каждом космическом аппарате имеется высокоточная бортовая шкала времени, для которой требуются высокостабильные генераторы частоты. Такие бортовые часы особенно важны для навигационных спутников, так как определение координат на поверхности Земли происходит по измерению расстояния от точки до самих космических аппаратов с использованием специальных сигналов, содержащих оцифрованную шкалу времени и сетку стабильных импульсов.
И чтобы определить расстояние с точностью до метра, бортовая шкала времени должна отличаться от наземной не более чем на 3 нс! В конечном счете тщательность соблюдения температурного режима работы таких часов определяет точность полученных координат. Создание прецизионных систем термостабилизации для негерметичных приборных отсеков спутников было начато в 2001 г. Такая панель особенно хорошо подходит для малогабаритных приборов, иначе ее вес будет слишком велик. Поскольку реальные атомные часы достаточно велики, в их системе терморегулирования были использованы гипертеплопроводящие панели, основанные на переносе тепла при фазовом переходе жидкость—пар. Система терморегулирования включает также датчики температуры и электрические нагреватели.
Точность стабилизации зависит от многих факторов, что потребовало разработки математической модели нестационарного теплообмена, а также алгоритма управления электрическими нагревателями. В 2008 г. В сто раз лучше алюминия Задача прецизионной термостабилизации оказалась многогранной. Ее решение потребовало, в частности, создания устройств для пространственного выравнивания температур в месте установки атомных часов. В результате появилось и развилось новое направление по созданию гипертеплопроводящих панелей. Одним из таких решений является использование гипертеплопроводящих плоских структур, способных передавать тепло на порядки эффективнее традиционных материалов.
Новоуральск и ОАО «ИСС» были разработаны гипертеплопроводящие панели, эффективная теплопроводность которых в 100 раз превышает теплопроводность алюминия!
К этому сообщению прикреплен соответствующий график. Данные уже прокомментировал сотрудник ISRO Би Дарукеша: по его словам, новая информация стала неожиданностью для специалистов.
Это на удивление выше, чем мы ожидали», — сказал Би Дарукеша.
Вселенную лихорадит: температура космоса выросла в несколько раз и чем это может грозить
Температура в пристыкованном к МКС российском корабле "Союз МС-22" достигла 50 градусов Цельсия из-за аварии в системе охлаждения, сообщил РИА Новости. Какая температура в космосе. «Реликтовое излучение», излучение звезд и галактик приводят к тому, что температура межзвездного пространства выше абсолютного нуля всего на 2,7 градуса и равна минус 270,45 °С. Это средняя величина. Какая температура в космосе. «Реликтовое излучение», излучение звезд и галактик приводят к тому, что температура межзвездного пространства выше абсолютного нуля всего на 2,7 градуса и равна минус 270,45 °С. Это средняя величина.
Зонд NASA улетел к Солнцу. Как он переживет горячее путешествие?
это свойство термодинамической системы, а температуру в космосе, не неосвещенной Солнцем стороне можно принять в 2,7 K (температура реликтового излучения). Из-за аварии в российском модуле 15 декабря пришлось отменить выход в открытый космос на МКС. Астрономы выяснили, что за последние восемь миллиардов лет температура вещества во Вселенной выросла втрое. Он также обеспечит температуру до -235°C на стороне, обращённой от Солнца.