Новости новости квантовой физики

Международная команда ученых-физиков из НИТУ «МИСиС», Российского квантового центра, Университета Карлсруэ и Университета Майнца из Германии научилась моделировать процессы, которые могут помочь в расшифровке механизмов фотосинтеза. Группа посвящена Квантовой физике и всем смежным областям науки. В основном публикуются новые статьи о теоретических и прикладных исследованиях, программы для вычислений, книги и видео. В журнале «The Journal of chemical physics» опубликована статья «Magnetic dipole and quadrupole transitions in the ν2 + ν3 vibrational band of carbon dioxide» резидента Института квантовой физики Чистикова Д.Н. Китайские физики обнаружили гигантский — на два порядка больше по величине обычного — невзаимный перенос заряда в топологическом изоляторе на основе тетрадимита допированного оловом (Sn—Bi1,1Sb0,9Te2S). квантовая физика. воздух6 августа 2015. Как создаются щит и меч квантовой физики.

О связи Канта с современной квантовой физикой рассказали в БФУ

Или построить новые методы долгосрочной защиты информации на основе квантовой и постквантовой криптографии, которые будут устойчивы к широкому классу атак, поскольку их надёжность сводится к фундаментальным законам физики. Нобелевскую премию по физике дали за новаторство в квантовой информатике Награды удостоились француз Ален Аспе, американец Джон Клаузер и австриец Антон Цайлингер. Эти две физики – теория относительности и квантовая механика.

Ученые продолжили попытки понять квантовую запутанность: есть большой прогресс

Актуальные новости и авторские статьи от Rusbase. Независимое издание о технологиях и бизнесе. В частности, в квантовой физике постулируется, что квантовые законы реализуются на сверхмалых расстояниях и в мире сверхмалых частиц. Уже лет пять как в сети ходят новости о прорывах в квантовых вычислениях. Изучение суперхимии открывает дорогу к ускорению химических реакций, а суперпарамагнетизма — к созданию очень мощных и быстрых компьютеров, работающих при комнатной температуре. Подробности — в обзоре новостей квантовой физики. Новости физики в Интернете — раздел журнала Успехи физических наук, ежемесячно публикующего обзоры современного состояния наиболее актуальных проблем физики и смежных с нею наук. В данном обзоре новостей представлены последние открытия в физике.

В МФТИ назвали главный прорыв года в квантовой физике

После эксперимента Джона Клаузера к процессу подключился Ален Аспект. Он усовершенствовал установку Клаузера и смог добиться того, чтобы изначальные условия, при которых испускались фотоны, не влияли на результаты измерений. Эксперимент подтвердил вывод ученых: квантовая теория верна, и нет никаких скрытых переменных. Опираясь на исследования коллег, Антон Цайлингер и его исследовательская группа продемонстрировала «квантовую телепортацию» — передачу квантового состояния от одной частицы к другой на расстоянии. Что это значит Первая квантовая революция в XX веке подарила миру транзисторы, лазеры, солнечные панели, мобильную телефонную связь и интернет. XXI век открыл новые возможности для квантовой механики. Открытия современных физиков позволяют найти применение свойствам квантовой механики в реальной жизни: от передачи и хранения данных до алгоритмов квантового шифрования.

Именно эта работа, которую цитируют под аббревиатурой ЭПР, проложила путь к концепции квантового спутывания. В свое время она не вызвала особого резонанса, однако сегодня ее относят к числу самых глубоких исследований теоретической физики двадцатого столетия. Фото из статьи O. Rousselle, 2019. Foundations of quantum physics and wave mechanics Эйнштейн, Подольский и Розен исходили из двух предпосылок, которые они считали самоочевидными. Во-первых, любой атрибут физической системы, который можно предсказать со стопроцентной вероятностью, не возмущая эту систему в процессе измерений, является, по определению, элементом физической реальности. Во-вторых, полное описание системы должно включать в себя сведения обо всех таких элементах естественно, ассоциированных именно с этой конкретной системой. Далее следует сам мысленный эксперимент. Предположим, что мы изготовили пару одинаковых частиц A и B, которые в начальный момент начинают движение в строго противоположных направлениях с равными импульсами и, следовательно, скоростями такая операция возможна и в сфере действия квантовой механики. Принцип неопределенности не позволяет одновременно точно измерить положение и импульс каждой частицы в любой из последующих моментов, но это и не требуется. Позволим квантовым близняшкам удалиться друг от друга подальше, а затем, когда нам это заблагорассудится, определим координаты частицы A, что в идеале можно сделать с нулевой погрешностью. Тем самым мы немедленно получаем стопроцентно достоверную информацию о том, где находилась в тот же момент и частица B. Отметим, что наша аппаратура взаимодействовала исключительно с частицей A, а состояние второй частицы оставалось невозмущенным. Следовательно, положение частицы B следует счесть элементом физической реальности. Вместо того, чтобы выяснять координаты частицы B, мы можем измерить ее импульс, причем опять-таки идеально точно. Поскольку суммарный импульс пары равен нулю, мы автоматически узнаем и величину импульса частицы A, ни в коей мере ее не трогая. Следовательно, и эта величина — элемент физической реальности. Однако уравнения квантовой механики позволяют вычислить положение и импульс частицы лишь приближенно, с той степенью точности, которую допускает соотношение неопределенностей. А если это так, делают вывод ЭПР, то квантовомеханическое описание реальности не является полным. Что и требовалось доказать. Реакция столпов физического сообщества на эту работу была предсказуемо жесткой. Вольфганг Паули без обиняков написал Гейзенбергу, что Эйнштейн поставил себя в дурацкое положение. Бор сначала сильно осерчал, а потом стал придумывать опровержение. После трехмесячных раздумий он провозгласил на страницах того же самого журнала, что мысленный эксперимент ЭПР отнюдь не отменяет соотношения неопределенностей и не создает препятствий для применения квантовой механики. Бор подчеркнул, что Эйнштейн вправе полагать квантовую теорию неполной, но ее практическая эффективность от этого не уменьшается. Правда, аргументы Бора были довольно невнятными, а лет через десять он как-то признался, что уже сам не может в них разобраться. С «Папой» Бором согласились почти все теоретики, кроме Эрвина Шрёдингера. Он тщательно продумал смысл ЭПР-парадокса и пришел к чрезвычайно глубокому выводу, который следует процитировать. Если две системы, состояния которых нам известны, временно вступают в физическое взаимодействие, а затем разделяются вновь, то их уже нельзя описывать прежним образом, то есть утверждать, что каждая система пребывает в своем собственном состоянии. Я считаю это обстоятельство самой характерной чертой квантовой механики, разделяющей ее и классическую науку. Так без большого шума в восьмистраничной статье одного из великих отцов-основателей квантовой механики впервые появилось это самое квантовое «спутывание» E. Discussion of probability relations between separated systems. Шрёдингер первым осознал, что логический анализ ЭПР-парадокса ведет к важнейшему выводу: квантовая механика допускает такие состояния физических систем, при которых корреляции между их элементами оказываются сильнее любых корреляций, допускаемых классической физикой! Эти состояния он и назвал спутанными, в немецком оригинале Verschrankung. Отсюда следует, что каждая такая система представляет собой единое целое, не допускающее разделения на независимые части. Это свойство квантовых систем принято называть нелокальностью. Шрёдингер с самого начала вполне осознал глубину этой идеи — не случайно он как-то сказал Эйнштейну, что тот своим мысленным экспериментом схватил за горло догматическую квантовую механику. Однако важность КС была по-настоящему осознана большинством физиков значительно позже. Стоит отметить, что в другой работе того же 1935 года Шрёдингер описал и ставший знаменитым воображаемый эксперимент с запертым в ящике котом E. Дэвид Бом и его схема В начале 50-х годов американский физик Дэвид Бом сформулировал новую версию ЭПР-эксперимента, которая резче демонстрировала его парадоксальность и упрощала его математический анализ. Он рассмотрел пару одинаковых квантовых частиц с половинным спином, изначально изготовленную так, чтобы их полный спин равнялся нулю. К примеру, такую пару можно получить при распаде бесспиновой частицы. Для определенности назовем эти частицы электронами. После распада они станут удаляться от зоны рождения в различных направлениях. Поставим на их пути магнитные детекторы, измеряющие спин. В идеальной модели такого прибора электроны движутся сквозь щель, пронизанную параллельными силовыми линиями постоянного, но неоднородного магнитного поля на деле, естественно, всё несколько сложнее. Из-за своей квантовой природы до измерения спин вообще не имеет определенной ориентации, а после него он ориентируется либо в направлении поля, либо против него скажем, вверх или вниз, если поле вертикально. Теперь проведем ЭПР-эксперимент «по Бому». Пусть один детектор сообщил, что спин «его» электрона направлен вверх. Теперь можно утверждать, что спин второго электрона глядит вниз. И опыт это подтверждает. Пусть второй электрон движется в сторону более удаленного детектора с такой же ориентацией поля. Этот прибор с некоторой задержкой отметит, что электронный спин направлен вниз, как и ожидалось. Таким образом, мы достоверно предсказали спин второй частицы, никак на нее не воздействуя. Согласно логике ЭПР, направление ее спина считается элементом физической реальности. В чем же парадокс? Допустим, что детекторы ориентированы иначе, скажем слева направо. Если спин одного электрона смотрит вправо, мы должны заключить, что спин второго направлен влево. Странный это элемент физической реальности, если его можно изменять по собственному усмотрению! Но это еще полбеды. Установим теперь ближний детектор вертикально, а дальний — ортогонально ему, слева направо. Если наблюдатель у первого детектора увидит, что спин смотрит вверх, он посчитает, что спин электрона-партнера направлен вниз. Однако второй прибор регистрирует значения спина не по вертикали, а перпендикулярно ей. Квантовомеханические расчеты показывают, что при повторении этого эксперимента спин второго электрона в половине случаев будет смотреть вправо, а в половине — влево. Тогда второй наблюдатель вроде бы сможет с полным основанием заключить, что спин первого электрона направлен, соответственно, влево или вправо. В итоге выводы двух наблюдателей окажутся несовместимыми друг с другом. Что же делать с физической реальностью? С точки зрения Бора, никакого парадокса тут нет. Если ориентация спина возникает лишь в ходе измерения, то не приходится говорить о ней вне экспериментального контекста. Однако вспомним, что мы вольны в выборе детекторов. Откуда спину заранее знать, в каком направлении его измерят? Похоже, что первый электрон мгновенно сообщает своему близнецу о том, что он проскочил через детектор. Но ведь никакого физического взаимодействия между ними нет, так как же они ухитряются общаться?

Именно в этот период начались первые исследования в области квантовой механики. Квантовая механика описывает поведение частиц на микроуровне с помощью волновой функции, которая предсказывает вероятность нахождения частицы в определенном состоянии. Основные постулаты квантовой механики включают принцип неопределенности Гейзенберга, что означает, что нельзя одновременно точно определить местоположение и импульс частицы, и принцип суперпозиции, согласно которому частица может находиться во всех возможных состояниях одновременно до момента измерения. Одним из ключевых достижений квантовой механики является объяснение свойств атомов и молекул. Благодаря квантовой механике стало возможным понять, почему атомы могут иметь только определенные энергетические уровни, что привело к созданию теории квантовых чисел и теории молекулярных орбиталей. Квантовая механика также оказала огромное влияние на развитие технологий. Например, создание лазеров, технология квантовых точек для создания полупроводниковых приборов, разработка магнитно-резонансной томографии и квантовых компьютеров — все эти технологии основаны на принципах квантовой физики.

В Чикагском университете доказали это на практике. Химические реакции протекали намного быстрее, чем в обычных условиях. Также ученые заметили, что взаимодействие трех атомов происходит чаще, чем двух, и при столкновении трех атомов два соединяются, образуя молекулу, а третий каким-то образом помогает процессу. По словам авторов исследования, все молекулы, которые получаются в итоге, находятся в одном и том же состоянии, что полезно для создания больших партий идентичных молекул. Их предлагают, в частности, использовать в качестве кубитов в квантовых вычислительных устройствах. В Техасском университете в Эль-Пасо США заявили, что придумали магнитный материал, позволяющий манипулировать кубитами при комнатной температуре. Профессор Техасского университета в Эль-Пасо Ахмед Эль-Генди демонстрирует магнетизм нового материала для квантовых компьютеров А японские физики добились квантовой стабильности при комнатной температуре в молекуле красителя, встроенной в металлоорганический каркас.

Квантовые технологии

Прорыв уровня Эйнштейна? Создана теория, которая может объяснить весь мир В частности, в квантовой физике постулируется, что квантовые законы реализуются на сверхмалых расстояниях и в мире сверхмалых частиц.
Прорыв уровня Эйнштейна? Создана теория, которая может объяснить весь мир 6 мая 2021 Новости. Еще один шаг к квантовому компьютеру: физики впервые показали конденсацию «жидкого света» в полупроводнике толщиной всего в один атом. Международная группа физиков, в которую вошел руководитель лаборатории оптики спина СПбГУ профессор.
Ключевую теорию квантовой физики наконец-то доказали. Главное Вероятно, в какой-то момент, когда критическая масса развитых квантовых технологий, нашего понимания физики и экспертизы перевалит некую черту, начнется эра полностью квантовых машин.
О связи Канта с современной квантовой физикой рассказали в БФУ - Российская газета Физики из МФТИ совместно с коллегами из Франции экспериментально показали, что атомы примесей в полупроводниках могут формировать долгоживущие устойчивые квантовые состояния.

Новости квантовой физики

Новости и мероприятия. Эти две физики – теория относительности и квантовая механика. Физики из Китая, например, создали квантовый компьютер, работающий на фотонах, и за 200 секунд он провел бозонную выборку — это мегасложное вычисление, на которое могло уйти полмиллиарда лет работы самого быстрого суперкомпьютера. Новости, анонсы, рекомендации. Бытовая техника.

Будущее квантовых компьютеров: перспективы и риски

К примеру, с этим постулатом спорил Альберт Эйнштейн, который считал, что науке пока просто неизвестны скрытые параметры, заставляющие частицы вести себя определённым образом. Неравенство, в которое требуется подставить результаты экспериментальных измерений, составлено так, что будет нарушаться, только если скрытые параметры не существуют. Джон Клаузер развил идеи Белла и провёл практические эксперименты. Это значит, что квантовая механика не может быть заменена теорией, использующей скрытые параметры», — говорится в релизе Нобелевского комитета. Также по теме «Эпоха бурного развития»: доктор наук — о квантовых компьютерах и второй технологической революции Как устроен квантовый компьютер, а также чем квантовый телефон отличается от обычного и насколько защищённым будет квантовый... Однако после опыта Джона Клаузера оставались ещё некоторые сомнения: нужно было устранить возможное влияние настроек измерения параметров частиц в момент покидания ими источника излучения. Ален Аспе доработал экспериментальную установку таким образом, что эта важная лазейка была закрыта.

Подробнее здесь. Разработан первый в мире квантовый аналог механического двигателя 28 сентября 2023 года японские исследователи из Окинавского института науки и технологий OIST сообщили о создании первого в мире квантового аналога механического двигателя. В работах приняли участие немецкие ученые из Технического университета Кайзерслаутерна-Ландау и Штутгартского университета. Предложенная концепция для получения энергии использует принципы квантовой механики вместо традиционного воспламенения топлива — как происходит, например, в двигателе внутреннего сгорания. Авторы проекта предложили задействовать охлажденные фермионы и бозоны в качестве основы для «квантовых двигателей», способных преобразовать энергию этих частиц в механическую работу.

Однако, в отличие от классических компьютеров, для КК очень важным параметром является достоверность полученных результатов, потому что его физические свойства подразумевают вероятностный характер вычислений: результат правильный с некоторой вероятностью. Если точность операций низкая, то прирост вычислительной мощности за счет увеличения числа кубитов будет незначительным. У каждого типа КК свои преимущества и недостатки. Например, КК на ионах обладает очень высокой точностью и когерентностью, но скорость операций и число кубитов пока невелики. КК на сверхпроводниках имеет самое большое число кубитов на сегодня, но из-за особенностей технологии их точность, как правило, невысокая. Соответственно, некорректно называть их самыми мощными. Для сравнения разных типов КК между собой был предложен квантовый объем. Если говорить упрощенно, он отражает реальную вычислительную «мощность» квантового компьютера. Где сейчас и как ускориться В России сейчас активно разрабатываются все основные типы квантовых компьютеров: на ионах, атомах, оптических интегральных схемах и на сверхпроводниках. Самый мощный КК в стране построен на ионах и насчитывает 16 кубитов. Заместитель руководителя группы «Прецизионные квантовые измерения» РКЦ Илья Семериков, который разрабатывает этот КК, рассказывает: «Нам еще только предстоит измерить экспериментально квантовый объем нашего ионного компьютера, но, судя по достоверностям двухкубитных операций и связности, я бы ожидал увидеть 25 или, может быть, 26. Увеличение квантового объема — наша основная задача на сегодня». Такие результаты соответствуют уровню лидеров квантовой гонки начала-середины 2020 г. Текущий рекорд по квантовому объему по состоянию на июль 2023 г. Он составляет 219, или 524 288. Это означает, что компьютер может выполнять сложные квантовые алгоритмы с высокой точностью. РКЦ в конце 2021 г. К недостаткам модели относилось меньшее время когерентности, но на сегодня эта проблема решена, сказал Семериков. Текущая точность квантового компьютера РКЦ находится на уровне ведущих компаний 2018-2019 гг. По словам Семерикова, сейчас команда активно работает над ее повышением. МФТИ создал рабочий квантовый чип, выполненный на сверхпроводниках, на 8 кубитах.

Трехмерный мир — это удобно. Мы так привыкли. На самом деле в мире бесконечное число измерений. Давайте потренируем мозг, и вы увидите, как все логично и просто. Нарисуйте линию. Существа, живущие в ней, двумерны, у них нет ширины, и они могут двигаться только взад и вперед. Но вы можете двигать всю линию. Это — «время» для двумерных существ. Идем в наш мир, и «время» двумерных существ становится нашей шириной, третьим измерением, которого у обитателей двумерного мира нет. Но у нас самих есть время, которое мы интерпретируем как «прошлое, настоящее и будущее» и которое для обитателей других миров, с четырьмя измерениями, просто «еще одна ширина», а никакое не «прошлое». Но у них есть свое «время», и так далее. В результате мы получаем матрешку иллюзий. Добавьте к этому парадокс наблюдателя, которого мы уже касались. Мир меняется, когда мы на него смотрим. Это — одна из основ квантовой механики, принцип неопределенности. Для физиков это не абстракция, а повседневная реальность: если ты наблюдаешь за объектом, «щупаешь» его фотонами, он уже не тот, который без тебя. Принцип неопределенности сформулировали в 1920-х, и он показался таким странным, что физики отказывались в него верить, даже когда он подтвердился тысячами опытов. Принцип говорит: природа существует, лишь пока мы на нее смотрим. Соратник Нильса Бора, физик Паскуаль Джордан, сказал так: «Мы не наблюдаем реальность, мы ее создаем». В 1970-х Джон Уилер провел эксперимент, который показал: природа не просто меняется от нашего взгляда, она заранее «знает», будем ли мы на нее смотреть. Упомянутый выше квантовый компьютер как бы соединит исконное «знание» Вселенной с нашим сознанием. Представим заброшенную деревню где-нибудь в глухой тайге. Принцип неопределенности на полном серьезе говорит, что, пока туда не забрела группа туристов, деревни нет. А если на деревню смотрит лиса, муравей? Они — наблюдатели? Даже камень: он разогревается днем, и остывает ночью. В целом мир - система бесконечных взаимодействий. Муравей наблюдает камень, камень - Землю, та - Солнце. Это поразительно, но вашей деревни не было бы без туманности Андромеды. Когда мы давим муравья, мы уничтожаем наблюдателя. Теоретически в этот момент где-то может погибнуть галактика. Честно, я об этом иногда думаю. Утешаю себя так: я не могу ходить, и не давить случайно муравьев, я так устроен. Значит, так надо. С квантовой точки зрения Бог — это закон, который соединяет бесконечное число взаимодействий, от муравья до планеты. Формула Бога, если она существует — это теория всего, которую безуспешно ищут физики, начиная с Альберта Эйнштейна. Знаете, на что это похоже? Вы сидите в комнате, в окна падает свет. Комнату еще пронизывают радиоволны, но вы их не видите. Включите приемник — и вот они. Но это еще не все. Комната наполнена космическими лучами, радиацией, которая летит к нам из космоса и от которой не укрыться нигде. Далее, у комнаты есть прошлое, оно оставило какой-то след. Есть и будущее, и квантовая механика говорит, что будущее тоже присутствует «здесь и сейчас». Тот, кто видит все это вместе, и есть Бог. Отсюда следует: чем больше ты видишь, чем шире твой кругозор, тем больше ты напоминаешь квантового Бога. Эйнштейн видел больше заурядного человека.

Похожие новости:

Оцените статью
Добавить комментарий