Новости мотор колесо для автомобиля

Первым автомобилем, имевшим мотор колеса, стал "продвинутый" Lohner-Porsche (1900) — первый в мире гибридный автомобиль, в конструкции которого были применены мотор-колёса. Также он отметил, что в перспективе созданное мотор-колесо подобной конструкции можно применять при изготовлении легкового и грузового электротранспорта как общепромышленного, так и специального назначения. «Созданное мотор-колесо подобной конструкции можно применять при изготовлении легкового и грузового электротранспорта как общепромышленного, так и специального назначения.

«Теслу» поставили на трёхметровые колёса. И перевернули

Uni Wheel — это не мотор-колесо, но идейно близкое к нему изобретение, направленное на экономию места внутри электромобиля и оптимизацию его конструкции. Суть идеи состоит в том, чтобы перенести работающий в связке с электромотором редуктор внутрь колеса. Тогда он использовал четыре мотор-колеса Дуюнова мощностью 18,1 кВт каждый (в сумме 72,4 кВт или 98 л.с.). Литий-ионных батарей емкостью 10 кВт*ч якобы хватало на 200 километров пробега на одной зарядке. Калужские новости. 27K просмотров. В России изобрели и изготовили мотор-колесо для электромобилей, которое меньше аналогов примерно на 25%, а также экономичнее на 20%, о чём рассказал профессор кафедры электропривода, мехатроники и электромеханики Политехнического института ЮУрГУ.

С электроприводом в колесах

Электрическое «мотор-колесо» под названием AERO, представленное компанией Goodyear: особенности разработки, перспектива её применения на практике. QS мотор 3000 Вт-16000 Вт 273 бесщеточный двигатель постоянного тока для электрического автомобиля, одновальный Мотор Ступицы Колеса для продажи. Концепция мотор-колеса получает новую жизнь. Принцип мотор-колеса запатентован в 1884 году. В 2018 компания Orbis представили свое видение технологии. Липецкий "Моторинвест" начал серийное производство электрического кроссовера Evolute i-SKY, передает корреспондент РИА Новости с места событий.

Мотор-колесо для электромобилей

Последние десятилетия пробились и в электротранспорт личного пользования — электробайки и электромобили. В автомобили на гибридной тяге: двигатель внутреннего сгорания, накопитель энергии аккумулятор и в дополнение — электродвигатель. Сегодня возможность повысить характеристики электродвигателей даже на единицы процентов — уже высочайшее конкурентное преимущество. Почти век учёные и инженеры безуспешно бились над тем, чтобы значительно повысить характеристики классических асинхронных электродвигателей. Совершить прорыв удалось лишь нашим людям — команда под руководством инженера-разработчика Дмитрия Дуюнова смогла создать технологию, значительно, а не на доли процентов способную улучшить «классику». И что принципиально важно — технология не осталась, как часто бывает, на бумаге, а уже активно и успешно внедряется в России и за рубежом.

А команда Дуюнова берёт новую вершину, дело идёт к завершению строительства проектно-конструкторского технологического бюро ПКТБ , что позволит начать разработку конкретных видов двигателей под нужды сотен и тысяч клиентов. Можно сказать, появлению на свет асинхронных двигателей мир обязан славянам. В 1888 г. Никола Тесла запатентовал двухфазный асинхронный двигатель. А в 1889 г.

Этот тип асинхронного двигателя и получил наибольшее распространение, устройство его более века не менялось в силу их очевидной «простоты»! А недостатки у классических асинхронников имеются — возможны перегрев, паразитные вибрации, высокие пусковые токи. У конструкторов разнообразной техники, в свою очередь, есть постоянная потребность в повышении мощности, экономичности, ресурса и уменьшении габаритов электродвигателей, снижении их себестоимости. Принцип действия асинхронного двигателя заключается в том, что ток в обмотках статора создаёт магнитное поле. Это поле наводит в роторе ток, который начинает взаимодействовать с магнитным полем таким образом, что ротор начинает вращаться в ту же сторону.

Такие двигатели имеют в своей конструкции обмотку, соединённую в классическом варианте либо в «звезду», либо в «треугольник». Около тридцати лет назад Дмитрий Дуюнов узнал, что преподаватель Московского государственного института электронной техники Николай Яловега долго экспериментировал и сумел совместить звезду с треугольником, создал работоспособный асинхронный двигатель-демонстратор. Но применять эту технологию в промышленных масштабах, на других электродвигателях было невозможно. Дуюнов взялся за решение этой задачи и разработал собственный способ совмещать обмотки, разработал методику расчёта обмотки для любого асинхронного двигателя. Первые электродвигатели, намотанные по методу Дуюнова, установили на северо-восточную насосную станцию города Стаханова, тогдашний мэр решился поверить изобретателю и пошёл на эксперимент.

Результат превзошёл все ожидания — работают до сих пор. Дуюнов начал сотрудничать с обмотчиками электродвигателей, многих обучил сам. Совмещённые обмотки получили название «Славянка».

Этот тип асинхронного двигателя и получил наибольшее распространение, устройство его более века не менялось в силу их очевидной «простоты»! А недостатки у классических асинхронников имеются — возможны перегрев, паразитные вибрации, высокие пусковые токи. У конструкторов разнообразной техники, в свою очередь, есть постоянная потребность в повышении мощности, экономичности, ресурса и уменьшении габаритов электродвигателей, снижении их себестоимости. Принцип действия асинхронного двигателя заключается в том, что ток в обмотках статора создаёт магнитное поле. Это поле наводит в роторе ток, который начинает взаимодействовать с магнитным полем таким образом, что ротор начинает вращаться в ту же сторону.

Такие двигатели имеют в своей конструкции обмотку, соединённую в классическом варианте либо в «звезду», либо в «треугольник». Около тридцати лет назад Дмитрий Дуюнов узнал, что преподаватель Московского государственного института электронной техники Николай Яловега долго экспериментировал и сумел совместить звезду с треугольником, создал работоспособный асинхронный двигатель-демонстратор. Но применять эту технологию в промышленных масштабах, на других электродвигателях было невозможно. Дуюнов взялся за решение этой задачи и разработал собственный способ совмещать обмотки, разработал методику расчёта обмотки для любого асинхронного двигателя. Первые электродвигатели, намотанные по методу Дуюнова, установили на северо-восточную насосную станцию города Стаханова, тогдашний мэр решился поверить изобретателю и пошёл на эксперимент. Результат превзошёл все ожидания — работают до сих пор. Дуюнов начал сотрудничать с обмотчиками электродвигателей, многих обучил сам. Совмещённые обмотки получили название «Славянка».

Двигатели с ними обладают уникальными характеристиками и превосходят все мировые аналоги, существующие на рынке. Переобматывали новые, работоспособные и вышедшие из строя двигатели. Наработалась статистика — «Славянка» реально продлевала сроки эксплуатации, повышала энергоэффективность. С 1995 по 2017 г. Стоит привести несколько примеров из транспортной сферы, где применили двигатели, модернизированные по технологии «Славянка»: — в 2013 году в Донецке на шахтный электровоз «Эра» установили двигатель 112-го габарита, модернизированный по технологии «Славянка». После этого электровоз вытянул 11 вагонеток с углём, тогда как предыдущий мотор тянул лишь 5. При транспортировке 100 тонн угля двигатель не перегревался, несмотря на двукратный рост нагрузки. Разработка Дуюнова повысила производительность труда донецких шахтёров в два раза при значительном снижении энергопотребления; — в 2015 году член команды Дуюнова Виктор Аристов перемотал по технологии «Славянка» двигатель электромобиля Renault Kangoo, электромотор которого сильно нагревался.

Модернизированный автомобиль принял участие в гонке «Дакар-2017». Гонщики и механики «КамАЗ-Мастер» остались довольны усовершенствованием, после чего были перемотаны генераторы всех остальных автомобилей к ралли «Дакар-2018». Из чего следует вывод — славяне, как и в конце XIX века, обогнали весь мир.

И нужно признать, что в плане маневренности компания достигла абсолютной свободы.

В каждом из них есть мотор, обод и шина, а также миниатюрная система подвески на двойных поперечных рычагах с амортизатором в рулевой сошке, которая вращает весь модуль на 360 градусов или пневматически поднимает и опускает шасси. Если установить по одному такому модулю в каждом углу шасси с аккумуляторами, то получится просторный автобус с электронным управлением, способный двигаться не только взад и вперед, но и вправо-влево, встраиваться в узкое парковочное место и разворачиваться на месте. Останавливаясь, чтобы выпустить пассажиров, он может опускаться до уровня тротуара, на радость пожилым и обладателям сумок на колесах. На представленных компанией схемах каждый модуль оснащен мотором на 80 кВт 107 л.

Демонстрацию их возможностей автор снял на видео второй по счету ролик в посте. Всенаправленные колеса — далеко не новая идея. Первый патент на omni-колесо omni-directional wheels, еще одно название всенаправленных колес был получен в 1919 году. В автомобильной промышленности такие колеса практически не используются. В основном, их применяют при создании движущихся шасси роботов, кресел-колясок для инвалидов, портативных мобильных систем.

Уильям Лиддард использовал разработанное им всенаправленное колесо на практике. Он оснастил своими колесами небольшой легковой автомобиль Toyota Echo. На видео выше «засветились» небольшие транспортные устройства с колесами. Патент на системы, показанные в клипе, получен в 2009 году компанией Honda. Эта компания впервые показала персональное транспортное средство с omni-колесом на автошоу в Токио в 2009 году.

Но широкого распространения эта система не получила. Чаще всего всенаправленные колеса работают в игрушках и роботах.

Мотор-колесо Дуюнова превосходит все электродвигатели для скутеров, автомобилей/Russian motor-wheel

Поэтому на эти электромагниты питание подается. И именно эти электромагниты создают крутящий момент. И именно на это тратится энергия из аккумулятора. Обратите внимание, что как правый, так и левый электромагниты сразу взаимодействует с магнитными полями трех соседних статорных магнитов. А это уже типичная магнитная дорожка, которая за счет градиентов в магнитных полях позволяет получить максимальную тягу. А это уже большой показатель. Теперь рассмотрим схему стандартного электродвигателя с подмагничиванием статорных обмоток, взято здесь рис. В правом верхнем углу показано сечение мотора с неправильным указанием направления токов в проводниках роторной обмотки.

Дело в том, что в каждый момент времени ток подается только в пару проводников, значит только в одном проводнике сверху ток течет от нас, а внизу только в одном проводнике ток течет к нам. Остальные секции ротора такого мотора работают как маховик, что не всегда хорошо. Поэтому при запуске за счет необходимости «сдвинуть ротор с места» такие моторы потребляют большой ток из сети или аккумулятора. Либо при выключении такие моторы превращаются в генераторы, так как остановка ротора, обладающего большой механической инерцией, требует длительного промежутка времени. К сожалению, такие моторы составляют большую часть моторов на постоянном токе в нашей промышленности. И замена электромагнитов статора на сильные постоянные магниты погоды не сделают. Теперь посмотрим на возможность использования двигателя Шкондина в бесколлекторном варианте.

Сам Шкондин получил несколько патентов, где как вариант он рассматривал возможность использования его двигателя без коллектора. Например, на следующем рисунке рис. Если в двигателе на рис. В двигателе Шкондина «бегущим» является отключение тока электромагнита ротора в тот момент, когда полюса электромагнита ротора устанавливаются напротив полюсов пары магнитов на статоре. При этом в момент отключения тока в таком электромагните в других электромагнитах направление тока меняется на противоположное. Это позволяет в нужный момент или нужном месте заменить «притяжение» полюсов электромагнитов к паре магнитов на статоре на «выталкивание» полюсов электромагнитов от пары полюсов магнитов статора. Поэтому Шкондин правильно делает своим оппонентам замечание, что подходить к его двигателю с общераспространёнными теориями бесполезно, что обмотки электромагнитов ротора нельзя соединять ни звездой, ни треугольником.

Оно и, правда, двигатель Шкондина — это совокупность магнитных дорожек, динамически меняющих свои параметры за счет переключение обмоток электромагнитов в нужное время и в нужном месте. Поэтому и выдает этот мотор результаты, которые обычным моторам и не снились. Мотор Шкондина — это не маховик, это устройство, которое с высоким КПД использует взаимодействие магнитных полей, параметры которых умело меняются как за счет правильного соотношения между парным числом магнитных полюсов на статоре и числом пар полюсов электромагнитов на роторе, число пар магнитов на статоре больше числа пар полюсов электромагнитов на роторе, правильно сконструированного коллектора или устройства синхронизации в бесколлекторном варианте. Мотор Шкондина обладает при той же массе и подаваемого на обмотки ротора тока гораздо большей мощностью, чем электромотор стандартной конструкции. Мотору Шкондина конструктивно можно придать любую форму, как в виде колеса блина , так и в виде цилиндра, наподобие той формы, которую придают существующим двигателям постоянного тока.

Соответственно с таким мотор-колесом легко можно сделать и ТС со всеми управляемыми колесами, а также не представляет сложности осуществление рекуперативного режима, а также применение всех современных систем активной безопансости от ABS до управления вектором тяги. Двигатель Elaphe L1500D отличается уникальной компактной кольцевой компоновкой вокруг стандартных поворотных кулаков и фрикционных тормозных систем. Высокопроизводительные мотор-колеса Elaphe предназначены для интеграции в транспортные средства, начиная от небольших гибридов и электромобилей и заканчивая внедорожниками и легкими коммерческими автомобилями, практически без переделки и модернизации их серийных колесных ступиц и прочей механики ходовой части. Наиболее примечательными особенностями мотор-колес Elaphe выступает сочетание их чрезвычайно высокого крутящего момента, малого веса и уникальной по своей компактности кольцевой компоновки вокруг стандартных поворотных кулаков и обычных тормозных систем. Мотор-колесо L1500 D-серии было оптимизировано для мелкосерийного производства, а его более ранние версии были испытаны на нескольких типах транспортных средств, включая легковые автомобили и внедорожники.

Этот, казалось бы, не самый впечатляющий на бумаге потенциал позволяет i-Space ускорятся очень бодро для машин с такими габаритами. Все дело в серьезном крутящем моменте 435 Нм, который достигается практически со старта. Отсюда - очень уверенный разгон 7,4 сек. В то же время при желании этот не маленький автомобиль может столь же бодро следовать в чисто электрическом режиме. По паспорту полной зарядки должно хватить на 87 км пробега. По факту, как мы выяснили, в зеленом режиме можно преодолеть порядка 50 км, после этого автоматически включится ДВС. С полностью же заправленным топливным баком на этом SUV можно преодолеть аж 1150 км - мечта путешественников.

Фото: Пресс-служба Evolute Самое интересное, что коробки передач в привычном смысле здесь нет. Момент "транспортируется" к передним колесам через сцепление и одноступенчатый редуктор, как на большинстве электрокаров. Еще одна особенность i-Space - низкий расход топлива. При этом мотору официально прописан доступный бензин АИ-92. Есть в i-Space также и система рекуперации, эффективность которой настраивается через меню мультимедийки. Однако производительная силовая установка - не единственный козырь i-Space. Эта машина также влюбляет в себя комфортной, но при этом не расхлябанной подвеской и грамотно настроенным рулевым управлением.

Усилие на ободе, к слову, можно менять через обширное меню мультимедиа, и мне больше всего понравились комфортные настройки, когда руль максимально расслаблен, но при этом достаточно остр и точен. Нюансы ценообразования На российский рынок вышел почти идеальный семейный автомобиль, который отечественная компания рассчитывает продавать по, можно сказать, агрессивно доступным ценам. На пресс-конференции по случаю ездовой презентации модели нам сообщили, что за машину в очень щедро оснащенной единственной комплектации попросят 3 млн рублей.

Использование таких мотор-колес избавляет небольшие электромобильные стартапы от необходимости разрабатывать каждый из компонентов самостоятельно: они просто подсоединят унифицированные блоки к раме своего транспортного средства. Команды разгона, маневрирования и торможения будут передаваться в модули не механически, а посредством электроники. Преимущество такой системы еще и в том, что она позволяет отказаться от рулевой колонки, а это делает просторнее салон пассажирского или грузового электромобиля.

Каждый «умный» колесный модуль весит 40 кг и оснащен системой Active Wheel, способной заменять функции подвески.

Аспирант ЮУрГУ создает мотор-колесо для электромобилей

Безредукторное мотор-колесо Шкондина В.В., изобретателя из наукограда Пущино, состоит всего из 5 основных узлов с предельно простой системой управления. Контроллеры для BLDC двигателей. Эфир Программа передач Новости Программы Фильмы Трансляции Лица канала. Подрессоренное мотор колесо с цифровым управлением повышенной проходимостью и управляемостью предназначено для использования в электромобилях и гибридных автомобилях с повышенной эффективностью. В частности, фирма Orbis предлагает мотор-колеса собственной конструкции под названием Ring-Wheel, которые можно установить на обычный серийный автомобиль с минимумом переделок. Еще со времен Фердинанда Порше идут поиски технологий создания электромоторов, встроенных в колеса (мотор-колес или «хабов»).

Моторы и колеса

В автомобилях Acura, Audi и BMW используется механическая система векторизации крутящего момента, которая прибавляет вес и увеличивает стоимость авто. В электрической модификации Mercedes-Benz SLS AMG применена фирменная система распределения тяги AMG Torque. Ученые Южно-Уральского государственного университета (ЮУрГУ, Челябинск) изобрели и изготовили мотор-колесо для электромобилей, которое меньше аналогов примерно на 25%, а также экономичнее на 20%. Таким образом, мотор-колесо пока не представляет собой идеальное решение для применения в электромобилях, и инженерам и конструкторам придется решить еще много технических задач, и тогда, возможно, рынок электрокаров заполонят модели с двигателями в колесах. Как передает издание стало известно, что американский автомобильный производитель Ford подал заявку на патент на неразрезные оси со встроенными мотор-колесами. Первое компактное мотор-колесо для электромобилей изобрели российские ученые. В автомобилях Acura, Audi и BMW используется механическая система векторизации крутящего момента, которая прибавляет вес и увеличивает стоимость авто. В электрической модификации Mercedes-Benz SLS AMG применена фирменная система распределения тяги AMG Torque.

Похожие новости:

Оцените статью
Добавить комментарий