"Используя наблюдения ALMA с высоким разрешением, мы изучили молекулярный газ в этой паре галактик и обнаружили молекулы воды и монооксида углерода в большей из них", – рассказал ведущий автор исследования Шривани Яругула (Sreevani Jarugula).
Физики записали, как молекулы воды движутся вокруг ионов соли
Физики доказали способность света испарять молекулы воды | Исследователи из NASA и Немецкого космического агентства DLR впервые обнаружили молекулы воды на поверхности астероидов. |
Продолжается изучение структуры воды • Игорь Иванов • Новости науки на «Элементах» • Физика | В большинстве моделей воды с четырьмя участками используется расстояние ОН и угол НОН, совпадающие с таковыми для свободной молекулы воды. |
Модель воды
Каждая молекула воды является миниатюрным диполем с высоким дипольным моментом. В расчетах использовались две наиболее распространенные в настоящее время модели воды: трехцентровая SPC/E и четырехцентровая TIP4P. Исследователи из NASA и Немецкого космического агентства DLR впервые обнаружили молекулы воды на поверхности астероидов.
Модель молекулы воды
В молекуле воды кроме направлений ОН (две наи^ более вытянутые орбиты) выделяют направления орбит двух неподеленных пар электронов атома кислорода (менее вытянутые орбиты), которые расположены в плоскости, перпендикулярной плоскости протонов и. С учетом этого структура молекулы воды может отличаться количеством электронов в ней, и возникает необходимость дать названия этим структурам. Исследователи из NASA и Немецкого космического агентства DLR впервые обнаружили молекулы воды на поверхности астероидов. Ищите и загружайте самые популярные фото Модель молекулы воды на Freepik Бесплатное коммерческое использование Качественная графика Более 62 миллионов стоковых фото.
Вода | Строение молекулы и структура воды в жидком, твердом и газообразном виде.
В этой связи и в связи с теорией, развиваемой А. Феликсоном, возникает вопрос об обобщении понятия разбиения Кокстера. И мы приходим к следующему определению. Определение 4. Обобщенным многоугольником Кокстера называется многоугольник, у которого углы равны рациональным частям вида p и q - натуральные числа. Действительно, вопрос: а есть ли еще другие обобщенные треугольники Кокстера? Теперь естественно обобщить определение разбиения Кокстера плоскости и многоугольника. Оно настолько просто, что мы его здесь даже не приводим. В определении 3 вместо слов "многоугольник Кокстера" следует писать "обобщенный многоугольник Кокстера". Из приведенных выше рисунков ромбов Пенроуза сразу вытекает, что они допускают разбиение на обобщенные треугольники Кокстера - золотые треугольники.
А так как всю плоскость можно разбить на ромбы Пенроуза двух типов, существует разбиение плоскости на золотые обобщенные треугольники двух типов, показанные на рис. В заключение посмотрим, как молекулы воды могут образовать квазикристалл. Как уже отмечал Кеплер, снежинки не могут иметь правильную пятиугольную форму, так как правильными пятиугольниками нельзя осуществить разбиение плоскости. В духе работы [4] пятиугольник на рис. Но ромбы Пенроуза появляются! Чтобы их получить, присоединим к золотым треугольникам, на которые разбивается наш пятиугольник , симметрично такие же треугольники, как показано на рис. Интересно, что Кеплер рассматривал и звездчатые многогранники! Самый знаменитый из них в переводе с латинского назывался "утренняя звезда". Мы видим из этого примера, что при рассмотрении разбиений не обязательно рассматривать, как это обычно делается, выпуклые многогранники.
Подсчитаем, глядя на рис. Она равна 4. Следовательно, оставшийся угол при вершине В равен. Так мы получаем алгоритм разбиения плоскости на золотые треугольники двух типов, ромбы Пенроуза двух типов. Поэтому можно высказать предположение, что двухмерные жидкие квазикристаллы, как и снежинки, образуются по этому алгоритму самой природы. Это предположение еще более подтверждается, если ввести в рассмотрение внутреннюю симметрию, которой обладают кристаллы и квазикристаллы. Используя разбиения Кокстера и другой аппарат современной математики, удастся изучить симметрию двухмерных плоских кристаллов и квазикристаллов, а при выходе в трехмерное пространство - симметрию фуллеренов и фулллеритов. Литература 1.
Кластер состоит из центральной молекулы, ее окружения из 12 молекул и 42 молекул, соприкасающихся с окружением. В начальном состоянии молекулы были ориентированы случайным образом. Специальная программа градиентного спуска в 165-мерном пространстве приводила кластер к минимуму электростатической энергии. Работа программы заключалась в повороте каждой молекулы вокруг всех трех осей. Поворотом вокруг первой оси достигался минимум и происходил переход ко второй оси, а затем к третьей. Потом операция проводилась со второй молекулой и так далее. Весь цикл с 55 молекулами повторялся до тех пор, пока энергия не переставала уменьшаться. В результате становилась известной суммарная энергия кластера и энергия связи центральной молекулы. Каждая реализация случайного кластера давала различающиеся значения энергии. Было проведено 200 реализаций, результаты которых подвергнуты усреднению. Энергия связи центральной молекулы позволяла определить давление насыщения при двух температурах и усреднялось именно давление насыщения. Поскольку моделирование можно считать вполне успешным, далее эта модель использовалась для изучения энергии связи молекул в водяной капле, находящейся под воздействием иона. Было установлено, что отрицательные ионы создают более сильную связь, особенно на малых расстояниях. Причина этой зарядовой асимметрии заключена в ненулевом квадрупольном электрическом моменте молекулы воды и смещении зарядов относительно центра молекулы. Обнаруженная зарядовая асимметрия может быть описана простой моделью диполя, сдвинутого от центра молекулы. Взаимодействие с соседними молекулами заменено воздействием упругой среды, в которую погружена молекула, с модулем упругости g. Определим энергию его взаимодействия с ионом, находящимся на расстоянии г от молекулы. Мы видим, что энергия связи асимметрична по отношению к знаку заряда иона. Теперь подгоночные значения параметров g и b можно найти, сравнивая формулу для энергии взаимодействия с данными микромоделирования.
Ученые рассказали, что высокоточная электронная камера поспособствовала им в фиксации ионизации молекул воды. Им удалось заснять сверхбыструю реакцию, которую ранее при использовании различных методов отследить так и не удавалось. Возникновение ионизации происходит в процессе попадания высокоэнергетического излучения в молекулы воды.
Астероиды — это своего рода космические архивы, которые хранят в себе информацию о том, как выглядела солнечная система в самом начале. Они образовались из солнечной туманности — гигантского облака газа и пыли, которое вращалось вокруг молодого солнца. В зависимости от расстояния до солнца, температура и давление в туманности были разными, и поэтому разные материалы сгущались и склеивались в астероиды. Ближе к солнцу было жарко, и там появлялись сухие астероиды, состоящие из силикатов — минералов, из которых состоит земная кора. Дальше от солнца было холодно, и там формировались астероиды с большим количеством льда, углерода и других органических веществ. Изучая состав астероидов, мы можем узнать, как вода и другие элементы распределялись по солнечной системе во время ее зарождения. Это важно, потому что вода — это не только источник жизни, но и фактор ее развития. Вода может менять климат, эрозию, тектонику и другие процессы на планетах, делая их более или менее пригодными для жизни. Кроме того, вода может быть переносчиком органических молекул, которые являются строительными блоками жизни.
Ученые впервые обнаружили молекулы воды на астероидах
Во всех моделях молекулы воды (рис. 6-9) шестой электрон атома кислорода остается свободным, формируя зону отрицательного потенциала на ее поверхности. Модель молекулы воды имеет форму треугольника. Однако ученые опровергли общепризнанную модель поведения воды, описанную в учебниках, выяснив, что на самом верху находится слой чистой воды, под которым находится обогащенный ионами слой, а затем идет объемный раствор соли.
Ученые впервые нашли молекулы воды на астероидах
Молекула воды Для объяснения свойств воды необходима картина распределения заряда в ее молекуле. Были предложены разнообразные модели, например, ST2, TIP3P и др., но до сих пор еще не существует единой модели, которая была бы способной удовлетворительно учесть. О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. Nature Chemistry: опровергнута описанная в учебниках организация молекул водыУченые Кембриджского университета и Института исследования полимеров Общества имени Макса Планка в Германии обнаружили, что молекулы воды на поверхности солевого раствора. В результате молекулы воды отталкивают молекулы биологического вещества. В рамках изучения специалисты создали слои воды толщиной 100 нм и заставили молекулы вибрировать благодаря инфракрасному лазеру, а потом разрушали их короткими импульсами высокоэнергетических электронов от SLAC MeV-UED.
Исследование подтверждает, что вода может принимать две различные жидкие формы
Группируясь, тетраэдры молекул H2O образуют разнообразные пространственные и плоскостные структуры. И из всего многообразия структур в природе базовой, судя по всему пока лишь не точно доказанное предположение является всего одна — гексагональная шестигранная , когда шесть молекул воды тетраэдров объединяются в кольцо. Такой тип структуры характерен для льда, снега, талой воды, клеточной воды всех живых существ. Кристаллическая структура льда Каждая молекула воды в кристаллической структуре льда участвует в 4 водородных связях, направленных к вершинам тетраэдра. В центре этого тетраэдра находится атом кислорода, в двух вершинах — по атому водорода, электроны которых задействованы в образовании ковалентной связи с кислородом.
Две оставшиеся вершины занимают пары валентных электронов кислорода, которые не участвуют в образовании внутримолекулярных связей. При взаимодействии протона одной молекулы с парой неподеленных электронов кислорода другой молекулы возникает водородная связь, менее сильная, чем связь внутримолекулярная, но достаточно могущественная, чтобы удерживать рядом соседние молекулы воды. Когда лёд плавится, его тетрагональная структура разрушается и образуется смесь полимеров, состоящая из три-, тетра-, пента-, и гексамеров воды и свободных молекул воды. Схематически этот процесс показан ниже.
В воде кластеры периодически разрушаются и образуются снова. Время перескока составляет 10-12 секунд. Изучить строение этих образующихся полимеров воды оказалось довольно сложно, поскольку вода — смесь различных полимеров, которые находятся в равновесии между собой. Сталкиваясь друг с другом, полимеры переходят один в другой, разлагаются и вновь образуются.
Разделить эту смесь на отдельные компоненты тоже практически невозможно. Лишь в 1993 году группа исследователей из Калифорнийского университета г. Беркли, США под руководством доктора Р. Сайкалли расшифровала строение триммера воды, в 1996 г.
К этому времени уже было установлено, что жидкая вода состоит из полимерных ассоциатов кластеров , содержащих от трех до шести молекул воды. На рисунке ниже показано строение три-, тетра-, пента-, и гексамера воды. Все они цикличны, т. Более сложным оказалось строение гексамера.
Самая простая структура — шесть молекул воды в вершинах шестиугольника, — как выяснилось, не столь прочна, как структура клетки. Более того, структуры призмы, раскрытой книги или лодки тоже оказались менее устойчивыми. В шестиугольнике может быть только шесть водородных связей, а экспериментальные данные говорят о наличии восьми.
В результате молекулы выстраиваются в плоскости по четыре штуки, образуя структуру, напоминающую двумерный лед. Однако при диаметре около 8 ангстрем силы Ван-дер-Ваальса со стороны стенок заставляют молекулы воды собираться в определенные квадратные структуры». Подобный «нанотрубный лед» может пригодиться при создании молекулярных машин или в качестве крошечных капилляров, а также для обеспечения доставки строго определенного количества молекул и растворенных в них веществ для медицинских целей, то есть в виде наномасштабного шприца. Понравился материал? Добавьте Indicator.
Об этом сообщает пресс-служба Нью-Йоркского университета. Ионы — это атомы или группа атомов, имеющих электрический заряд. Они играют огромную роль в химии и особенно в живых организмах. Также из них состоят все соли, в том числе поваренная. Ионы в водном растворе обычно окружены четырьмя-шестью молекулами воды, но ученым неясно, движутся ли они как единое целое.
Когда в 20-е годы определили структуру льда, оказалось, что молекулы воды в кристаллическом состоянии образуют трёхмерную непрерывную сетку, в которой каждая молекула имеет четырёх ближайших соседей, расположенных в вершинах правильного тетраэдра. В 1933 году Дж. Бернал и П. Фаулер предположили, что подобная сетка существует и в жидкой воде. Поскольку вода плотнее льда, они считали, что молекулы в ней расположены не так, как во льду, то есть подобно атомам кремния в минерале тридимите, а так, как атомы кремния в более плотной модификации кремнезёма — кварце. Таким образом, модель Бернала — Фаулера сохранила элемент двухструктурности, но главное их достижение — идея непрерывной тетраэдрической сетки. Тогда появился знаменитый афоризм И. Открыть мини-сайт на портале Pandia для ведения проекта. PR, контент-маркетинг, блог компании, образовательный, персональный мини-сайт. Регистрация бесплатна Только в 1951 году Дж. Попл создал модель непрерывной сетки, которая была не так конкретна, как модель Бернала — Фаулера. Попл представлял воду как случайную тетраэдрическую сетку, связи между молекулами в которой искривлены и имеют различную длину. Модель Попла объясняет уплотнение воды при плавлении искривлением связей. Когда в 60—70-е годы появились первые определения структуры льдов II и IX, стало ясно, как искривление связей может приводить к уплотнению структуры. Модель Попла не могла объяснить немонотонность зависимости свойств воды от температуры и давления так хорошо, как модели двух состояний. Поэтому идею двух состояний ещё долго разделяли многие учёные. В первой группе вода представала в виде кластеров из молекул, связанных водородными связями, которые плавали в море молекул, в таких связях не участвующих. Модели второй группы рассматривали воду как непрерывную сетку водородных связей - каркас, которая содержит пустоты; в них размещаются молекулы, не образующие связей с молекулами каркаса. Среди кластерных моделей наиболее яркой оказалась модель Г. Немети и Х. Шераги, предложенные ими картинки, изображающие кластеры связанных молекул, которые плавают в море несвязанных молекул, вошли во множество монографий. Другая модель воды, предложенная в 1957 г. Фрэком и Уэном — модель мерцающих кластеров. Эта модель очень близка современным представлениям о структуре воды. Их время жизни оценивают в диапазоне от 10-10 до 10-11 с. Такое представление правдоподобно объясняет высокую степень подвижности жидкой воды и ее низкую вязкость. Считается, что благодаря именно таким свойствам вода служит одним из самых универсальных растворителей. Модель мерцающих кластеров воды. На рисунке представлены как отдельные кластерно-ассоциативные структуры молекул воды, так и отдельные молекулы воды, не связанные водородными связями. Итак, вода — это громадный полимер множества молекул воды, связанных друг с другом водородными связями.
Ученые из Великобритании получили необычные молекулы воды
Ионы в водном растворе обычно окружены четырьмя-шестью молекулами воды, но ученым неясно, движутся ли они как единое целое. Чтобы выяснить это, Алексей Ершоу и его коллеги использовали спектроскопию ядерного магнитного резонанса, которая позволяет определить и визуализировать молекулярные структуры. Помимо этого, авторы воспользовались компьютерным моделированием динамики движения молекул вокруг ионов солей в атомном масштабе. Исследуя соленую воду в широком диапазоне концентраций и температур и объединяя экспериментальные данные и компьютерное моделирование, исследователи обнаружили, что молекулы воды колеблются вокруг ионов NaCl с чрезвычайно высокой скоростью — более триллиона раз в секунду. Кроме того, ранее предполагалось, что ионы движутся вместе с окружающими их молекулами растворителя как единое целое, но эксперимент показал, что это не так: молекулы воды колеблются намного быстрее, чем комплекс ион-вода.
Внутри нанотрубок с диаметром 1,4 нанометра средняя энергия протонов оказалась на 30 процентов ниже, чем у воды, не помещенной в ограниченное пространство. Также исследователи проверили, как будут распределяться по энергиям протоны в воде, помещенной в особый мембранный материал Nafion, который используется для производства топливных элементов. Ученые показали, что средняя энергия была на 30 процентов выше, чем у воды в "обычном" состоянии.
Авторы новой работы полагают, что, когда молекулы воды находятся на очень близком расстоянии друг от друга и "сдавлены" из-за маленького объема доступного пространства, протоны в них переходят в пока не описанное физиками квантовое состояние. Ученые отмечают, что квантово-механические свойства воды могут определять ее "поведение" в живых клетках, так как там расстояние между молекулами примерно соответствует тому расстоянию, на котором они находились в эксперименте.
Только тогда мы сможем понять, как устроен мир вокруг нас. Что же еще расскажет нам вода? Продолжаем исследования! Другие новости.
Ранее ученые заглянули внутрь «Звезды Смерти». Так называют мини-луну Сатурна, причина — необычный внешний вид. Этот спутник удивил астрономов неожиданным составом. Подробнее об этом написано здесь.
Учеными лаборатории SLAC впервые зафиксирована ионизация молекул H2O
В последнем случае, как отмечает Кеплер, будут возникать щели, сквозь которые, например, к пчелам в улей сквозь соты будет проникать холод. Для этого разбивают правильный шестиугольник на три ромба, как показано на рис. Кеплер рассматривал именно такие ромбы, поэтому мы назовем их ромбами Кеплера поскольку есть еще ромбы Браве и Пенроуза. Гениальный Кеплер предвидел важную роль, которую будут играть ромбовидные тела в пространстве. Он писал: "Все пространство можно заполнить правильными ромбическими телами так, что одна и та же точка будет служить вершинами четырех пространственных углов с тремя ребрами, а также шести пространственных углов с четырьмя ребрами". Вернемся к плоским ромбам Кеплера. Ромб, изображенный на рис. Отсюда следует, что правильный шестиугольник можно разбить на шесть правильных треугольников Кокстера рис. В работе А.
Феликсона [4] многогранники, которые допускают кокстеровское разбиение, называются квазикокстеровскими. От всех подобных разбиений конечных фигур мы можем перейти к разбиениям всей плоскости. Вершины многоугольников разбиения образуют решетку. Если представить, что в вершинах такой решетки находятся атомы, то мы получим модель кристалла. Еще в 1848 году бывший бравый моряк О. Браве перечислил все типы решеток на плоскости и в пространстве, которые обладают неправильными симметриями. Так, на плоскости есть решетки пяти типов: общая, прямоугольная, ромбическая, квадратная и шестиугольная. Многоугольники, которые разбивают всю плоскость, показаны на рис.
На таких разбиениях основана вся современная кристаллография. У читателя может возникнуть вопрос: "А почему нельзя рассматривать разбиения плоскости и пространства на многоугольники многогранники разных типов? Пенроуз был одним из первых, кто рассматривал подобные разбиения. В этой связи и в связи с теорией, развиваемой А. Феликсоном, возникает вопрос об обобщении понятия разбиения Кокстера. И мы приходим к следующему определению. Определение 4. Обобщенным многоугольником Кокстера называется многоугольник, у которого углы равны рациональным частям вида p и q - натуральные числа.
Действительно, вопрос: а есть ли еще другие обобщенные треугольники Кокстера? Теперь естественно обобщить определение разбиения Кокстера плоскости и многоугольника.
Но оказалось, что при испарении важна не только температура, но и сам свет фотоны , который способен испарять воду и даже эффективнее, чем нагрев. И это оказалось важным. Учёные провели 14 опытов, доказывающих и проясняющих ряд моментов воздействия света на воду, в ходе которого молекулы воды отрывались от её поверхности и превращались в пар. Например, ещё в прошлом году было замечено, что наиболее сильное воздействие на эти процессы — на отрыв кластеров молекул воды от её жидкой поверхности — оказывал зелёный свет. В новых опытах учёные изменяли наклон освещения и поляризацию света.
Вы можете перейти в корзину для оплаты или продолжить выбор покупок. Перейти в корзину… удалить из корзины Размеры в сантиметрах указаны для справки, и соответствуют печати с разрешением 300 dpi. Купленные файлы предоставляются в формате JPEG.
В среднем в 1 л океанской воды растворено 34... Общее количество их настолько велико, что, выделенные из воды, они покрыли бы поверхность земного шара слоем стометровой толщины. Солевой состав речных и морских вод различен не только количественно, но и качественно. В пресных водах набор минеральных примесей выглядит иначе. Из газов в пресных и морских водах наиболее широко представлены кислород, азот, углекислый газ, сероводород. Этот ядовитый газ присутствует и в нижних слоях некоторых озер. В пресных и морских водах в небольших количествах имеются и разнообразные органические компоненты — растворимые соединения типа белков, сахаров, спиртов, углеводородов и т. Это продукты жизнедеятельности и распада животных и растительных организмов, населяющих водоемы и их берега, а также отходы промышленности и сельского хозяйства. Формирование кластеров воды Полярность молекул воды, наличие в них частично нескомпенсированных электрических зарядов порождает склонность к группировке молекул в укрупненные «сообщества» — ассоциаты. Оказывается, полностью соответствует формуле Н2O лишь вода, находящаяся в парообразном состоянии. Это показали результаты определения молекулярной массы водяного пара. Все остальные молекулы воды объединены в ассоциаты различной степени сложности, и их состав описывается общей формулой H2O x Непосредственной причиной образования ассоциатов являются водородные связи. Они возникают между ядрами водорода одних молекул и электронными «сгущениями» у ядер кислорода других молекул воды. Правда, эти связи в десятки раз слабее, чем «стандартные» внутримолекулярные химические связи, и достаточно обычных движений молекул, чтобы разрушить их.
Молекула воды: удивительное строение простого вещества
Модель молекулы воды advertisement Модель молекулы воды Вода образует водородные связи Благодаря водородным связям вода, являясь жидкостью, обладает аномальными свойствами При нагревании вода сжимается, при замерзании же расширяется, в то время как другие жидкости сжимаются. Так, при замерзании вода взрывает бутылку. Вода с большим содержанием таких солей называется жёсткой, с малым содержанием — мягкой.
Таким образом, исследование свидетельствует о динамической природе расщепления резонанса и опровергает структурный механизм, тем самым демонстрируя, что структура воды однородна.
Второй не менее важный результат этой работы — получение детальной структурной информации о том, как влияют водородные связи на силу OH-связи. Колебательная инфракрасная ИК спектроскопия — общепринятый инструмент для исследования водородных связей в жидкостях. Но в них ИК-спектроскопия показывает лишь наиболее интенсивный переход в состояние с минимальной энергией колебаний, которое «слабо чувствует» межмолекулярное взаимодействие.
Спектроскопия резонансного неупругого рассеяния воды качественно отличается от ИК-спектроскопии тем, что, получив энергию от рентгеновского фотона, электрон кислорода переходит с самой глубокой орбитали на первую незанятую. В результате молекула воды быстро диссоциирует. В процессе возбуждённый электрон переходит обратно на самый глубокий уровень, испуская рентгеновский фотон.
Частота колебаний испущенного фотона отличается от возбуждающего фотона, так как при этом переходе электрон попадает на уровни с большей энергией. Таким образом, в отличие от ИК-спектра, спектр резонансного неупругого рассеяния состоит из протяжённого набора колебательных пиков. Чем выше колебательное состояние, тем дальше атомы водорода удаляются от кислорода в процессе колебаний связи между О и Н и тем сильнее это колебание чувствует взаимодействие с ближайшей молекулой воды, а именно водородную связь.
Самая простая структура — шесть молекул воды в вершинах шестиугольника, — как выяснилось, не столь прочна, как структура клетки. Более того, структуры призмы, раскрытой книги или лодки тоже оказались менее устойчивыми. В шестиугольнике может быть только шесть водородных связей, а экспериментальные данные говорят о наличии восьми. Это значит, что четыре молекулы воды связаны перекрёстными водородными связями.
Структуры кластеров воды были найдены и теоретически, сегодняшняя вычислительная техника позволяет это сделать. В 1999 г. Станислав Зенин провёл совместно с Б. Применив современные методы анализа - рефрактометрию, протонный резонанс и жидкостную хроматографию им удалось обнаружить ассоциаты молекул воды - кластеры.
Возможные кластеры воды Объединяясь друг с другом, кластеры могут образовывать более сложные структуры: Рис. Более сложные ассоциаты кластеров воды Кластеры, содержащие в своём составе 20 молекулу оказались более стабильными. Формирование кластера из 20 молекулы воды. Анализируя полученные данные предложил, что вода представляет собой иерархию правильных объемных структур "ассоциатов" clathrates , в основе которых лежит кристаллоподобный "квант воды", состоящий из 57 ее молекул, которые взаимодействуют друг с другом за счет свободных водородных связей.
При этом 57 молекул воды квантов , образуют структуру, напоминающую тетраэдр. Тетраэдр в свою очередь состоит из 4 додекаэдров правильных 12-гранников. Таким образом, структура воды связана с так называемыми платоновыми телами тетраэдр, додекаэдр , форма которых связана с золотой пропорцией. Ядро кислорода также имеет форму платонова тела тетраэдра.
Элементарной ячейкой воды являются тетраэдры, содержащие связанные между собой водородными связями четыре простой тетраэдр или пять молекул Н2О объемно-центрированный тетраэдр. Тетраэдр При этом у каждой из молекул воды в простых тетраэдрах сохраняется способность образовывать водородные связи. За счет их простые тетраэдры могут объединяться между собой вершинами, ребрами или гранями, образуя различные кластеры со сложной структурой, например, в форме додекаэдра. Поиск по базе Рис.
Додекаэдр Таким образом, в воде возникают многочисленные кластеры, которые несут в себе очень большую энергию и информацию крайне высокой плотности. Порядковое число таких структур воды так же высоко, как и порядковое число кристаллов структура с максимально высоким упорядочением, которую мы только знаем , потому их также называют «жидкими кристаллами» или «кристаллической водой». При этом возможно образование уже двух типов структур второго порядка. Их взаимодействие друг с другом приводит к появлению структур высшего порядка.
Последние состоят из 912 молекул воды, которые по модели Зенина практически не способны к взаимодействию за счет образования водородных связей. Этим и объясняется, например, высокая текучесть жидкости, состоящей из громадных полимеров. Таким образом, водная среда представляет собой как бы иерархически организованный жидкий кристалл. Формирование отдельного кластера воды компъютерное моделирование Изменение положения одного структурного элемента в этом кристалле под действием любого внешнего фактора или изменение ориентации окружающих элементов под влиянием добавляемых веществ обеспечивает, согласно гипотезе Зенина, высокую чувствительность информационной системы воды.
Если степень возмущения структурных элементов недостаточна для перестройки всей структуры воды в данном объеме, то после снятия возмущения система через 30-40 мин возвращается в исходное состояние. Если же перекодирование, т.
В рамках исследования ученые получали сверхтонкий слой льда на металлической поверхности.
Для этого специально подготовленная медная поверхность при температуре минус 172 градуса по Цельсию обрабатывалась водным паром. В результате подобной обработки на поверхности образовывались одномерные ледяные структуры толщиной всего в один атом и шириной около нанометра. При помощи сканирующего туннельного микроскопа и инфракрасной спектрометрии исследователям удалось установить, что цепочки состоят из пятиугольников, в вершинах которых находятся молекулы воды.
Молекула воды
Используя данные Стратосферной обсерватории инфракрасной астрономии НАСА (SOFIA), ученые Юго-Западного научно-исследовательского института впервые обнаружили молекулы воды на поверхности астероида. В большинстве моделей воды с четырьмя участками используется расстояние ОН и угол НОН, совпадающие с таковыми для свободной молекулы воды. Краткое содержание Рассмотрена модель молекулы воды на основе представлений об орбитальном движении частиц под действием сил тяготения, подчиняющихся обратно квадратичному закону с константой тяготения равной 1,847.1028 см3/ гс2. Учебные модели придется перерисовать после того, как группа исследователей обнаружила, что молекулы воды на поверхности соленой воды организованы иначе, чем считалось ранее. До сих пор эксперименты с использованием реальных молекул воды для проверки второй критической точки «суперохлаждения» воды не могли дать однозначных доказательств его существования. «Важно отметить, что, в отличие от изолированной молекулы воды с одной энергией взаимодействия О и Н, в жидкости имеется набор (распределение) таких энергий в силу многообразия ближайшего окружения молекулы воды.