сказал Садовский. Специалисты «Центрального научно-исследовательского института машиностроения» (ЦНИИмаш) предложили отправить спутник в точку Лагранжа L1 системы Земля — Луна. Разместив в точке Лагранжа мощный магнитный щит, человечество может заметно сэкономить на потерях от сильных солнечных бурь.
Индийский космический корабль достиг точки Лагранжа
Разместив в точке Лагранжа мощный магнитный щит, человечество может заметно сэкономить на потерях от сильных солнечных бурь. Телескоп «Джеймс Уэбб» завершил выполнение последнего манёвра и добрался до места назначения — точки Лагранжа L2 системы Солнце-Земля. Какие преимущества дает размещение космических аппаратов в точках Лагранжа?
Комментарии
- Сообщить об ошибке в тексте
- Правила комментирования
- Индия успешно запустила станцию по изучению Солнца Aditya-L1
- Как связаны активность Солнца, космическая станция и точка Лагранжа L1 - Российская газета
Как связаны активность Солнца, космическая станция и точка Лагранжа L1
ИКИ РАН. Вокруг точки Лагранжа за 177 дней - Новости - Госкорпорация «Роскосмос» | Сам путь от одной точки Лагранжа к другой является наиболее эффективным с точки зрения расходования энергии, необходимой для движения. |
Космическая станция Aditya-L1 передала первые снимки Земли | Новости Беларуси|БелТА | Адитья-L1 выполнила четыре орбитальных маневра около Земли, прежде чем выйти на переходную орбиту к точке Лагранжа, путь до нее составил 126 дней. |
Космические аппараты в точках Лагранжа системы Земля-Луна
И лучше всего осуществлять такой мониторинг с помощью космического аппарата, выведенного в точку Лагранжа L1 между Солнцем и Землей. Напомним: первый этап развертывания РОС намечен на 2027-2030 годы, а завершить строительство планируется в 2032 году. Что будет принципиально отличать новую станцию от МКС, так это ее "наклон". То есть насколько орбита удалена от экватора. У МКС угол наклонения меньше 52 градусов, из-за чего космонавты могут видеть не более двадцати процентов территории России. У РОС наклонение - 96,8 градуса. То есть она будет находиться на уникальной солнечно-синхронной орбите, где солнечные батареи всегда освещены.
Тонкая настройка Светлана Моргунова работает начальником группы в отделе 242. Раз в квартал пишем отчет по каждому из аппаратов. Конкретно я занимаюсь счислением ориентации КА в пространстве и функциональным контролем некоторых приборов, входящих в состав КА». В 1995 году Светлана окончила мехмат МГУ по специальности «прикладная механика». Так выбор и пал на МГУ, в академическом хоре которого я пою по сей день,— говорит она. Несмотря на то что мы изучали в университете навигацию космических аппаратов, оценивание и управление их движением, это была теория. Так что я довольно долго нарабатывала опыт: одно дело — написать уравнение и что-то теоретически промоделировать, другое — учесть реальную взаимосвязь между подсистемами. В то время у меня был отличный начальник Андрей Шипов, благодаря которому я и научилась применять полученные в МГУ теоретические знания на практике. Через мои руки прошли все аппараты, начиная с «Монитора-Э». Работа над каждым спутником в «Марсе» проходит так, рассказывает Светлана Моргунова: сначала автономно создают математические модели всех приборов, входящих в состав аппарата, разрабатывают алгоритмы по всем подсистемам, входящим в бортовой комплекс управления, затем прорабатывают взаимодействие этих подсистем между собой, в том числе логику функциональной диагностики. Тестирование проводится на ряде стендов, в том числе комплексном математическом, где отрабатывается функционирование бортовых программ. Есть также полунатурный автоматизированный цифровой стенд, где уже полностью моделируют работу ПО с бортовым вычислителем в полетных режимах. Каждый аппарат требует тонкой настройки, отмечает Светлана Моргунова: «К примеру, в июле 2019 года мы запустили «Спектр-РГ». Все прошло хорошо. Но спустя неделю был зафиксирован отказ одного из каналов гироскопического измерителя вектора угловой скорости ГИВУС. Это произошло потому, что «Спектр-РГ» удерживался в постоянной инерциальной ориентации, то есть был неподвижен относительно инерциального пространства. Но нужно учитывать, что в выходных сигналах каждого прибора присутствует не только полезный сигнал, но и шум. И шум этого конкретного ГИВУСа оказался настолько мал, что алгоритмы функциональной диагностики трактовали показания одного из каналов прибора как ошибку — «неизменность показаний измерительного канала ГИВУСа». Эту особенность прибора учли при дальнейшей эксплуатации». Пассажир спутника Сергей Телешов, главный специалист отдела 512, работает в «Марсе» с 2011 года.
Таким образом, реальный масштаб ущерба может быть заметно выше, чем в их оценке. Они отмечают, что для этого его нужно вынести в точку Лагранжа L1, которая лежит в полутора миллионах километров от Земли. Для удержания искусственных объектов там практически не нужно тратить топливо, поскольку гравитация Солнца и Земли в этой точке уравновешивают друг друга и все попадающие в неё тела могут быть практически неподвижны очень долгое время. Чтобы создать магнитный щит нужной силы, надо развернуть в L1 кольцо из медного проводника, по которому в случае вспышки распространялся бы ток силой до 22 000 ампер. Минимальный диаметр такого проводника — один сантиметр иначе он будет перегреваться — и медь расплавится , общая масса — около 100 000 тонн. При вспышке на Солнце в проводнике тёк бы ток, а вокруг проводника — магнитное поле. Авторы оценивают стоимость вывода проводника на орбиту в 100 миллиардов долларов цена МКС , однако берут при этом цену вывода 1000 долларов за килограмм. Это ниже, чем даже у самых дешёвых существующих ракет-носителей, например Falcon 9 или Falcon Heavy. Такие оптимистичные цифры, видимо, принимаются ими с опорой на ожидаемый прогресс в области многоразовых ракет.
Во-первых, она уравнивает стоимость вывода медного проводника на низкую околоземную орбиту со стоимостью его доставки к точке Лагранжа и сборки там в единую конструкцию. Это некорректно потому, что затраты энергии для этих действий различаются почти вдвое на единицу доставляемого груза. Наконец, сборка в полутора миллионах километров от Земли потребует организации туда пилотируемых экспедиций. Всё это делает стоимость создания магнитного суперщита равной не сотням миллиардов, а триллионам долларов что, впрочем, всё равно дешевле, чем последствия солнечной супервспышки без такого щита. Во-вторых, работа делает вывод, что такой щит может быть у внеземных цивилизаций. Между тем, не зная уровня их технологического развития, утверждать этого нельзя. Не исключено, что они владеют методами организации магнитных защитных полей, которые не требуют развёртывания крупных проводящих колец в космосе. Третьим — и крупнейшим — недостатком работы является неучёт того факта, что массы и тем более возглавляющие их политики ничего не знают о высокой опасности солнечных супервспышек или о том, что они случаются на Земле раз в несколько веков. Поэтому практически невозможно себе представить утверждение финансирования такого проекта в будущем — разумеется, до момента, когда супервспышка произойдёт в действительности и нанесёт земной экономике ущерб в размере до 100 процентов от её современного ВВП.
НАСА показало гало-орбиту для новой орбитальной станции
Aditya-L1 предназначена для размещения на околоземной орбите вокруг точки Лагранжа 1 между Землёй и Солнцем — гравитационно устойчивой области, из которой аппарат будет иметь беспрерывный обзор Солнца. На Aditya-L1 размещено семь научных приборов для пятилетней миссии изучения Солнца. Это второй запущенный космический аппарат Индии за пределами сферы влияния Земли, первым был марсоход, запущенный в октябре 2013 года и прибывший на орбиту вокруг Марса в 2014 году.
То есть насколько орбита удалена от экватора.
У МКС угол наклонения меньше 52 градусов, из-за чего космонавты могут видеть не более двадцати процентов территории России. У РОС наклонение - 96,8 градуса. То есть она будет находиться на уникальной солнечно-синхронной орбите, где солнечные батареи всегда освещены.
Где полный обзор оптическими, инфракрасными, ультрафиолетовыми и другими детекторами, радиолокационными средствами. Причем каждые полтора часа. Где мы будем видеть все свои территории, включая Арктическую зону.
Эти таблицы были необходимейшим справочником не только для астрономов, но и для мореплавателей-навигаторов. И вот Ньютон открыл гравитацию, силу взаимодействия двух масс, находящихся на любом расстоянии друг от друга. А согласно второму из трёх законов механики , сформулированных тем же Ньютоном, если сила, действующая на объект известна, можно без труда определить траекторию движения этого объекта. Так возникла небесная механика, которая позволила вычислять положение звёзд и планет, предвосхищая результаты наблюдений. Астрономия стала наукой предсказательной! Наблюдатель мог в нужное время направить свой телескоп в нужное место небосвода и — voila!
Именно так Уильям Гершель открыл неизвестную до той поры планету, которую после длительных споров астрономы назвали Ураном. Скажем больше, без законов, открытых Ньютоном, не было бы современной космонавтики. Всего за сто пятьдесят лет, прошедших после Ньютона, астрономы получили возможность рассчитать положение любых небесных объектов, в том числе, искусственных. Великие корифеи, создавшие математический аппарат небесной механики, Гаусс , Лаплас, Эйлер , Лагранж , даже не предполагали, что с помощью этого аппарата их потомки станут рассчитывать полёты космических кораблей к ближним и дальним планетам. А вот то, что физика и математика изгнали из астрономии Творца Вселенной, чья воля, согласно словам Данте «движет солнце и светила», им всем стало ясно. Чьи они?
Имя выдающегося французского математика Жозефа-Луи Лагранжа Joseph Louis Lagrange; 1736 — 1813 знакомо не понаслышке всем, кому довелось учить высшую математику. Ещё бы, этим именем названы множество теорем и формул в самых разнообразных математических отраслях. Красивое слово лагранжиан, название общей функции, описывающей состояние и развитие во времени механической системы, встречается уже на первых страницах «Курса теоретической физики» Л. Ландау и Е. Лифшица, священной книги физиков-теоретиков. А доведенная до полного совершенства лагранжева классическая механика позволяет рассчитывать движение любого тела под воздействием любой силы.
Было бы время, да подходящий счётный прибор! Точки Лагранжа в системе Солнце — Земля Лагранж, что называется, на кончике пера открыл особенные точки межпланетного пространства, которые назвали его именем. Конечно же великий учёный не представлял, что точки эти станут предметом практической космонавтики и в этом качестве принесут огромную пользу как космической навигации, так и практической астрономии.
Точки Лагранжа — это положения в орбитальной конфигурации двух больших тел.
В этом месте небольшой объект, на который действует только сила тяжести, может сохранять устойчивое положение по отношению к обоим крупным объектам. Другими словами, это точки, где объединенное гравитационное притяжение обеих масс обеспечивает центростремительную силу, необходимую для того, чтобы они вращались вместе с ними с одинаковой скоростью. Всего существует 5 таких точек. Им присвоены наименования от L1 до L5.
И все они находятся в одной орбитальной плоскости. Первые три образуют прямую линию, соединяющую оба тела , а L3, L4 и L5 образуют равносторонний треугольник. В системе Земля-Солнце самыми интересными из них являются точки L4 и L5. Потому в одной из них обнаружен пока единственный так называемый троянский астероид Земли — 2010 TK7.
А вот возле Юпитера , например, таких объектов обнаружено несколько тысяч!
Индия успешно запустила станцию по изучению Солнца Aditya-L1
В Калуге вновь приземлился инопланетный корабль 17:00, 25 Декабря 2021 В Калуге вновь приземлился инопланетный корабль Второй год подряд колыбель космонавтики становится местом остановки космических кораблей. Накануне, 24 декабря, в пятницу, в Калуге приземлилась летающая тарелка маршрута «Калуга — Точка Лагранжа 1 — орбита Луны — Море Спокойствия». Создателями нового НЛО вновь выступила компания охранных систем Pandora.
Миссия по возвращению образцов с Луны «Чанъэ-5» и предстоящая миссия «Чанъэ-6» к южному полюсу Луны — два примера их больших шагов вперед. Тяньгун, китайская космическая станция, запущена и работает. Обе страны также разрабатывают технологии для исследования дальнего космоса, а точки Лагранжа системы Земля-Луна служат трамплином для будущих миссий на Марс и за его пределы. Помимо конкуренции между США и Китаем в освоении космоса, существует также сотрудничество между многими странами по таким проектам, как Международная космическая станция, которые продолжают расширять наше понимание Вселенной. Международное сообщество заинтересовано в Также есть точки Лагранжа: такие организации, как Европейское космическое агентство, разрабатывают свои собственные миссии в эти стратегические места. Сосредоточение новой космической гонки на точках Лагранжа, возможно, столь же тревожно, сколь и увлекательно, хотя, по крайней мере, будет интересно.
Гало-орбита аппарата вокруг точки Лагранжа L1 позволит ему вести непрерывное наблюдение за нашим светилом. Научные цели включают изучение нагрева короны, ускорения солнечного ветра, корональных выбросов массы, динамики солнечной атмосферы и температурной анизотропии.
Номинальный срок службы космического корабля составляет пять лет, однако, по данным Индийской организации космических исследований ISRO , он может быть продлен.
Главное зеркало обсерватории - уникальная оптическая система, которая в 6 раз больше, чем у «Хаббла» и при этом почти на треть легче. It will orbit the Sun, in line with Earth, as it orbits L2. Это почти в четыре раза дальше Луны.
Точки Лагранжа
Специалисты «Центрального научно-исследовательского института машиностроения» (ЦНИИмаш) предложили отправить спутник в точку Лагранжа L1 системы Земля — Луна. Это так называемые точки Лагранжа L1 и L2, где космический аппарат может неподвижно висеть, не расходуя топлива. Точки Лагранжа могут стать ареной новой космической гонки США и Китая С развитием космической индустрии и стремительным развитием технологий, кос. Сам путь от одной точки Лагранжа к другой является наиболее эффективным с точки зрения расходования энергии, необходимой для движения.
Шум ГИВУСа, точка Лагранжа: истории разработчиков систем управления для спутников
Каждая точка Лагранжа имеет свои особенности и научный потенциал. Расскажем о них подробнее. Точка L1 расположена на прямой линии между телами, например Солнцем и Землей. Это идеальное место для наблюдений за звездой: Солнце здесь никогда не перекрывается ни Землей, ни Луной. Изучение активности и вспышек Солнца, предсказание климата — основные направления задачи, которые он поможет решить. Точка вызывает большой интерес и в других областях, например у астрофизиков, которые занимаются изучением двойных звезд: через L1 масса одной звезды перетекает в другую. Благодаря тому, что наша планета заслоняет солнечный свет и Солнце не создает радиопомех, это самая удобная точка для наблюдения за космосом. В L2 размещен и запущенный в конце прошлого года телескоп «Джеймс Уэбб», с помощью которого планируют проводить перспективные исследования космоса — изучать в инфракрасной области спектра очень далекие галактики и зарождение звезд, а также искать экзопланеты. Точка L3 расположена на противоположной стороне орбиты и постоянно скрыта от нас Солнцем. Фантасты предполагали, что с обратной стороны от звезды может находиться Антиземля.
В 2007 году НАСА запустило сюда два спутника для поиска двойника Земли, однако обнаружить его не удалось. Точки L4 и L5 — самые стабильные точки Лагранжа: любой объект, попавший в них, там и останется. Из-за способности захватывать космические тела эти точки называют «троянскими».
Одна из них расположена между Землей и ее спутником, другая — за обратной стороной Луны. Таким образом, потребность в запуске двигателей аппаратов для коррекции орбиты станет меньше, что продлит срок их работы, отмечают исследователи. Комплекс автоматически рассчитывает параметры перемещения космических аппаратов, учитывая множество данных — массу спутника, траекторию движения, вид текущей и будущей орбиты, гравитационное влияние Луны и Земли Типы орбит, которые можно выбрать и рассчитать с помощью программы, самые разные — начиная от простой эллиптической и заканчивая похожей на движения крыльев бабочки.
Какое-то время наш спутник, оказавшийся в этих точках, будет находиться внутри областей, но потом гравитация все-таки изменится и наше космическое тело полетит дальше. Это можно сравнить с кусочком мрамора, который мы аккуратно положили на вершину перевернутой чаши. Он там будет лежать, но один удар по столу — и мрамор скатится вниз. L4 и L5 являются стабильными. Даже если ваш спутник не идеально добрался до этих точек, гравитация в любом случае как бы подтолкнет его в такое положение, чтобы он оставался там навсегда. На этот раз наш мраморный кусочек уже находится на дне чаши, быстро движущейся вправо, поэтому, даже если он не идеально отцентрирован, то переместится в правильное положение. Как можно использовать точки Лагранжа? Исследователи в области космонавтики еще в 1970-х годах обратили внимание на точки Лагранжа. Например, в точке L1 системы «Земля — Солнце» можно было бы поместить космическую солнечную обсерваторию. Она никогда не будет попадать в тень Земли, соответственно, наблюдения можно вести без перерыва. Точка L2 системы «Земля — Солнце» может быть практически идеальной для установки в ней космического телескопа. В ней Земля почти всегда заслоняет солнечный свет и не отражает его в это место, что позволило бы ученым постоянно изучать другие звезды. В точке L1 системы «Земля — Луна» можно поместить ретрансляционную станцию в период освоения спутника Земли. Станция будет постоянно находиться в зоне прямой видимости для большей части полушария Луны, обращенного к Земле. Поэтому для связи с ней будущим колонистам Луны понадобятся передатчики в десятки раз менее мощные, чем для связи с Землей. Существует множество проектов, в рамках которых астрофизики планируют тем или иным образом использовать точки Лагранжа в своих исследованиях.
На станции находятся семь систем для изучения параметров Солнца. Ими будет исследоваться поток частиц, идущих от звезды, магнитное поле, солнечная фотосфера, а также колебания солнечного излучения и другие параметры. Сведения будут отправляться на Землю, поток данных ожидается значительным. Аппарат будет отправлять около 1440 изображений в сутки на наземную станцию для анализа.
Индийская солнечная станция начала перелет к первой точке Лагранжа
Сам путь от одной точки Лагранжа к другой является наиболее эффективным с точки зрения расходования энергии, необходимой для движения. Хотя точки Лагранжа — это не более чем некоторые точки во вращающейся вместе с двумя массивными телами системе отсчёта, вокруг них может осуществляться орбитальное движение. Этот проект не был реализован, и первым отечественным аппаратом, достигшим точки Лагранжа L2, а теперь и совершившим её облёт, стал «Спектр-РГ». Большой выбор товаров из каталога Точка Лагранжа в интернет-магазине На изображении – Российская рентгеновская обсерватория «Спектр-РГ» в точке Лагранжа L2 в представлении художника. Разработанная учеными из Самары программа позволяет управлять спутниками Луны и их движением вокруг точек Лагранжа — где объекты находятся в гравитационной «невесомости».
Газета «Суть времени»
- Завтра жители Земли увидят «кровавую Луну»
- Сообщить об ошибке в тексте
- Как долго лететь до Солнца?
- Шум ГИВУСа, точка Лагранжа: истории разработчиков систем управления для спутников
- Что такое точки Лагранжа и почему в них не действует гравитация
- James Webb достиг точки Лагранжа
Телескоп «Джеймс Уэбб» прибыл в точку Лагранжа
Сам путь от одной точки Лагранжа к другой является наиболее эффективным с точки зрения расходования энергии, необходимой для движения. Оттуда она будет вести наблюдения, рассказывает РИА Новости со ссылкой на главу организации космических исследований Индии. Точка Лагранжа – уникальная область. О наличии точек Лагранжа в космосе известно всем, кто хоть однажды интересовался научными достижениями в области астрономии. Точка Лагранжа – уникальная область, где гравитационные силы между Землей и Солнцем достигают равновесия. Ожидается, что аппарат выведут на гало-орбиту в район точки Лагранжа (точка L1) системы Солнце – Земля на расстоянии примерно в 1,5 миллиона километров от Земли. Он находится очень далеко, в районе точки Лагранжа L2, в 1,5 млн км от Земли, и летает не вокруг Земли, а вместе с ней вокруг Солнца.
Где припарковаться в космосе или что такое точки Лагранжа?
- Космическая станция Aditya-L1 передала первые снимки Земли | Новости Беларуси|БелТА
- В Калуге вновь приземлился инопланетный корабль
- Комментарии
- Астрофизики предложили защитить Землю огромным магнитным щитом
- Подписка на дайджест
Точки Лагранжа – астроном Владимир Сурдин | Лекции по астрономии и астрофизике | Научпоп | НаукаPRO
Однако это идеальный случай, в реальности же космические аппараты находятся не точно в L2, а движутся вокруг неё по различным траекториям. В частности, «Спектр-РГ» облетает L2 по эллиптической незамкнутой орбите с размерами полуосей более 750 тысяч километров и около 250 тысяч километров. Точка L2 удобна для проведения обзоров: вращаясь вокруг оси, которая примерно соответствует направлению на Солнце, аппарат «Спектр-РГ» сможет провести полный обзор небесной сферы за полгода, при этом в поле зрения его телескопов не попадает Солнце. Однако такая рабочая орбита неустойчива, поэтому приходится периодически проводить манёвры коррекции, чтобы аппарат оставался на ней.
Данная орбита была рассчитана в Институте космических исследований и Институте прикладной математики им. Келдыша Российской академии наук несколько десятилетий назад для космического эксперимента «Реликт-2».
После того, как аппарат будет успешно установлен в точке L1, он будет находиться там в течение следующих пяти лет, собирая все данные, которые важны не только для Индии, но и для всего мира, пояснил глава ISRO. Aditya-L1 была выведена на орбиту Земли 2 сентября.
Спустя почти три недели аппарат был переведен на траекторию пути к точке Лагранжа L1, которая расположена в 1,5 млн км от Земли.
Сейчас ISEE-3 несколько десятилетий просто находится в космосе в выключенном состоянии. В точке L2 системы «Земля — Солнце» долго находился спутник WMAP для изучения реликтового излучения, которое возникло во время Большого взрыва сейчас, после завершения миссии, отправлен на орбиту захоронения , космическая обсерватория Herschel, космическая обсерватория Планк, космический телескоп Gaia. В будущем сюда запустят один из самых важных проектов по изучению космоса — телескоп имени Джеймса Уэбби в 2024 году, который придет на смену культовому «Хабблу». При этом все эти объекты, конечно же, находятся не в одной точке — а на гало-орбитах вокруг областей Лагранжа. Их достаточно много — несмотря на то, что зонды должны иметь стабилизирующее оборудование, позволяющее долго удерживаться на них. Почему тогда на этих точках не собираются строить колонии? Есть несколько проектов по созданию колоний в точках Лагранжа, и есть даже общественные объединения, которые популяризируют эту идею — L5 Society, Republic of Lagrangia и National Space Society.
Остров III Однако у этих теорий есть несколько серьезных технических сложностей: негативное влияние солнечного ветра и других космических лучей на организм человека. Кроме того, все точки Лагранжа подвергаются пока слабо изученному воздействию плазмы в экваториальной плоскости магнитосферы Земли. В связи с этим все поселения, которые будут расположены в этих точках, должны быть защищены от космической радиации. Кроме того, в связи с отсутствием гравитации постоянные космические поселения в точках Лагранжа должны быть оборудованы технологиями для создания ее искусственного аналога. При этом на сегодняшний день подобных технологий не существует. Ну и самое главное. Пока все теории по созданию колоний на других планетах — гипотетические, для их появления человечеству необходимо сделать еще огромное количество открытий. Историю гонки создания баз на Луне и Марсе вы можете почитать здесь , здесь и здесь.
Но я видел, что точки Лагранжа также могут быть использованы и для наблюдения инопланетянами за Землей! В научной фантастике очень развита теория, что инопланетяне строят свои космические станции в точках, где нет гравитации, и наблюдают из них за Землей.
Есть также полунатурный автоматизированный цифровой стенд, где уже полностью моделируют работу ПО с бортовым вычислителем в полетных режимах. Каждый аппарат требует тонкой настройки, отмечает Светлана Моргунова: «К примеру, в июле 2019 года мы запустили «Спектр-РГ». Все прошло хорошо. Но спустя неделю был зафиксирован отказ одного из каналов гироскопического измерителя вектора угловой скорости ГИВУС. Это произошло потому, что «Спектр-РГ» удерживался в постоянной инерциальной ориентации, то есть был неподвижен относительно инерциального пространства. Но нужно учитывать, что в выходных сигналах каждого прибора присутствует не только полезный сигнал, но и шум.
И шум этого конкретного ГИВУСа оказался настолько мал, что алгоритмы функциональной диагностики трактовали показания одного из каналов прибора как ошибку — «неизменность показаний измерительного канала ГИВУСа». Эту особенность прибора учли при дальнейшей эксплуатации». Пассажир спутника Сергей Телешов, главный специалист отдела 512, работает в «Марсе» с 2011 года. В детстве я скорее видел себя поваром, а не инженером»,— признается он. Но так сложилось, что после девятого класса он поступил в Московский техникум информатики и вычислительной техники. Высшее образование Сергей Телешов получил в МГТУ «Станкин» по специальности «автоматизированные системы обработки информации и управления». Комплексное подразделение бюро, в котором работает Сергей, участвует во всех стадиях создания БКУ, начиная от подготовки исходных данных для договорного отдела перед заключением контракта и заканчивая поставкой готового продукта заказчику. По словам Сергея Телешова, большая часть времени уходит на решение вопросов, в том числе с внешними организациями, возникающих в процессе разработки и производства, которые надо оперативно решать с учетом загрузки всех подразделений и сроков выполнения работ.
В число задач Сергея Телешова входило планирование работ подразделений «Марса» с учетом сроков, занятости сотрудников и возможностей оборудования. Но, освоив режим многозадачности, не только «вынырнул», но и стал осваивать смежные направления. Например, сейчас могу консультировать коллег по экономическим вопросам и закупочным процедурам». Первый БКУ нового типа поставили на космический аппарат в 2016 году. В 2021 году первая «Арктика-М» прошла летные испытания и введена в эксплуатацию, пуск состоялся 28 февраля. Лавочкина, для проведения наземных испытаний в составе КА.
Лунный микроспутник может быть потерян, «Цюэцяо» продолжает путь к точке Лагранжа
Какое-то время она будет вращаться вокруг Земли, после чего отправится в четырехмесячное путешествие к точке Лагранжа», — заявил глава ISRO Шридхара Паникер Соманатх на. Он доберется до конечной точки маршрута примерно через четыре месяца. Телескоп «Джеймс Уэбб» завершил один из ключевых этапов своего путешествия — прибыл на орбиту точки Лагранжа L2 системы «Солнце-Земля», находящейся на расстоянии в 1,5 млн.