Новости профессии связанные с нейросетями

— Конечно, нейронные сети помогают в большом количестве профессий делать работу быстрее. Искусственный интеллект и профессии: какие специальности, связанные с ИИ и нейросетями, ждет бурное развитие и высокий спрос. Здесь вы узнаете про профессию специалиста по нейросетям, как пройти курсы, и сколько они зарабатывают!

ИИ вам в помощь: почему самозанятым нужно учиться работать с нейросетями

Профессии будущего. Как нейросети открывают новые направления в edtech У нейросети спросили, какими будут профессии будущего.
Нейросети наступают: специалистов каких профессий уже готов заменить искусственный интеллект И нейросеть помогает сэкономить не только деньги, но и время, говорит основатель компании Екатерина Козырева.

Неожиданные профессии, где используют нейросети

где учиться работе с нейросетями. Представляем 5 уникальных профессий будущего, связанных с обработкой данных и искусственным интеллектом. При этом сейчас появляется всё больше профессий, связанных с созданием и обслуживанием нейросетей. Нейронная сеть может найти решение проблемы, но ей необходимо изучить структурированный набор данных. Нейросеть ChatGPT рассказала, какие профессии заменит искусственный интеллект. «Cпециалист по нейросетям: профессия промт-инженер» – это большая программа повышения квалификации.

Нейросети на работе: какие задачи они могут взять на себя уже сейчас

Также, существуют профессии, которые трудно или невозможно заменить искусственным интеллектом, например, профессии, связанные с творчеством, социальным взаимодействием и эмоциональной поддержкой», — приводит текст чат-бота ChatGPT Pro на русском языке. Это приводит к появлению все большего числа вакансий для инженеров нейросетей, и перспективы роста этой профессии в ближайшие годы кажутся очень многообещающими. Современные профессии, которые они могут привести в этот мир, это: молекулярный биолог, нейробиолог, врач-невролог и нейрохирург, инженер (разрабатывающий искусственные нейронные сети), специалист по BigData, лингвист. Специальность оператора нейросетей представляет собой перспективное направление развития, особенно в контексте быстро меняющегося мира IT. Нейросеть сделала это за 5 минут с хорошей ла локальные компании от глобальных, рассказала про количество производственных площадок.

«Моя мама учит нейросети говорить»: история многодетной челябинки, которая завязала с журналистикой

То есть если у вас была пекарня с плохим логотипом, а потом появляется некоторый бренд с хорошим логотипом, то едва ли это напрямую окажет влияние на ваши продажи. Косвенно, возможно, при правильном стечении обстоятельств, правильно посеве, да. Но, скорее всего, это не является критерием хорошего логотипа. Второй момент заключается в том, что, если мы посмотрим на логотип пекарен и других каких-то бизнесов, связанных с хлебобулочными изделиями, там не всегда фигурируют колоски, не всегда фигурируют круассаны. А иногда это некий образ, визуальна интерпретация образа бизнеса, которая этим дизайнером и сделана. Соответственно, когда вы приходите в брендинговое агентство, где сидят живые люди, и они получают этот бриф, что еще происходит? Они его творчески интерпретируют.

Они смотрят, как выглядят булочные в этом городе, в округе, пытаются придумать что-то контрастное, что-то отличное от тех ребят, которые на той же улице торгуют круассанами. И, соответственно, они приходят с некоторыми дизайн-гипотезами, что кто-то решил, что это будет какой-то крестик красивый, в котором угадывается что-то такое. Кто-то решил пойти через концепцию семейности, семейного кафе, и вообще нарисовал сердечко, потому что вот «Приходите к нам. Мы вас любим». И все такое. А кто-то прошел напролом и начал рисовать конкретно круассан, фотореалистично и так далее.

И эти все подходы имеют право на жизнь, и в равнозначной степени вы можете получить такие варианты от живых людей. В случае с Ироновым человек, без участия людей, он заполняет бриф, описывает свою компанию. Дальше у нас отдельная система, нейросеть, она интерпретирует бриф, то есть она из текста брифа достает некоторые образы, которые могут подходить под визуальное представление этой компании, как она может быть представлена в виде какого-то емкого символа либо знака. И дальше это по такой цепочке передается, появляются эти визуализации этих образов, они обогащаются разными шрифтовыми комбинациями, дальше подключаются отдельные алгоритмы, которые подбирают цветовые сочетания комплиментарные. В общем, там сложная-сложная штука. Но по факту это точно то же самое, что происходит при работе с живым человеком.

То есть интерпретируется некоторый текстовый ввод, так же как к вам приходит человек и что-то говорит, и вы как-то это трансформируете. Мы все эти шаги условно творческих мытарств алгоритмизировали, перевели в какие-то отдельные процессы? И клиент на выходе получает опыт, очень сопоставимый с опытом общения с живым дизайнером. Только наш дизайнер не капризничает, не болеет. Коротнева: Не уходит в отпуск. Кулинкович Да, да, да.

Гребенников: Скажите, а стоимость разработки логотипа… Логотип, предположим, я пришел за логотипом, искусственным интеллектом и обычным дизайнером в студии Артемия Лебедева отличается? Есть какой-то прайс на искусственный интеллект и обычного дизайнера? Кулинкович: Да, конечно, отличается. Когда вы приходите лично в брендинговое агентство или дизайн-студию, помимо непосредственного конечного дизайнера, который сидит и визуализирует ваш логотип, в это вовлечено очень много людей на самом деле. Это юристы, которые помогают составлять договор; менеджеры, которые позволяют клиенту и дизайнеру услышать друг друга, перевести с одного языка на другой, и много-много всего. Соответственно, когда вы работаете с живыми людьми, чаще всего дизайн — это операционный процесс, где клиент хочет, чтобы его услышали и некоторое врем поиграли с ним вот в эту игру «Согласование видения», да?

Это все умножается на стоимость часов специалиста. И разные компании, конечно, по-разному, диапазон очень большой, но он может доходить до очень больших сумм. То есть если вы просто придете в большую дизайн-компанию, то разработка логотипа с нуля, где вас будут слышать, слушать долго и до победного, она может быть супердорогой, неподъемно дорогой для малого и среднего бизнеса. Поэтому Иронов и другие генеративные технологии — это не просто про скорость, это про такую демократизацию дизайна, что если у вас не слишком много денег для того, чтобы играть во все эти чаепития и подписания договоров дорогостоящее, то вы можете пойти и получить из коробки сопоставимый по качеству результат. Просто процесс будет происходить несколько иначе. Вам нужно будет принять, что ваши какие-то правки и пожелания интерпретируются не прямым методом, а косвенным, в результате работы некоторых алгоритмов.

Там могут быть шероховатости, а могут быть, наоборот, источники классных открытий в результате этого. Гребенников: Вот вы говорите про открытия. А бывало так, что пришли две разные компании, диапазон полгода-год, и искусственный интеллект выдал одинаковый логотип на совершенно разные задачи, которые перед вами ставили? Такое происходит и с живыми людьми, то есть можно увидеть очень много примеров того, как дизайнеры думают похоже, скажем так. Гребенников: Назовем это так, хорошо. Кулинкович: Ну да.

Просто на самом деле очень часто, когда у вас большой объем работы, вы сделали 1 000 логотипов, наивно полагать, что в мире все ваши логотипы абсолютно аутентичны, потому что каждый день в мире сотни и тысячи дизайнеров генерят новые логотипы, а набор примитивов, из которых логотипная графика состоит, он довольно ограничен, потому что есть базовые формы: треугольник, прямоугольник, квадрат и так далее, которые так или иначе комбинируются. Если мы говорим условно, что даже у стран, которых ограниченное количество, есть очень похожие флаги, которые можно часто путать друг с другом, что уж говорить про логотипы, которых сотни тысяч генерируется каждый год. Соответственно, мы видим, что действительно могут появляться одинаковые работы, как у живых людей, так и нейросеть может генерировать одинаковые работы, и мы в этом не видим проблемы, потому что это было долгое время ранее. Если где-то в Сингапуре еще существует похожая птицефабрика с таким же крестиком, таким же цветом и с таким же соотношением сторон исполнен, то едва ли эти бизнесы будут друг друга локтями толкать. Поэтому мы на это смотрим совершенно нормально компенсируем это объемом, то есть проблема плагиата существенна, когда у вас стоимость каждой итерации очень большая, а дизайнер уходит на следующую итерацию, неделю молчит, пыхтит и так далее. Но когда вы можете еще одним щелчком сгенерировать еще 100 альтернатив, то, в целом, это перестает быть проблемой.

Но я предлагаю переходить от проекта Николай Иронов к другим генеративным технологиям, потому что летом прошлого года буквально весь интернет взорвала сеть Midjourney, которая создавала крутые классные визуальные картинки, и все были в полном восторге. Но вместе с этим восторгом действительно возник вопрос о том, что «Зачем мне условно в штате держать дизайнера, если я могу загрузить свой достаточно вариант брифа, и нейросеть выдаст мне несколько классных вариантов: совершенно удивительных и визуально привлекательных. Сергей, давайте поговорим немножко про это. Во-первых, как вы думаете, какие перспективы развития у этих нейросетей? Насколько действительно хорошо они генерируют визуальные изображения, и какие риски это несет для творческих профессий? Кулинкович: Спасибо за вопрос.

Поскольку возможна какая-то профдеформация, и мы довольно давно находимся от в этой области генеративного дизайна. Просто сейчас из-за того, что искусственный интеллект как понятие тиражируется и как-то ассоциируется с нейросетевыми технологиями, и это сейчас на всех полосах газет и всяких изданий, на это все прожекторы устремлены, на самом деле генеративный дизайн существовал ранее просто в других жанрах. И он как тогда, так и сейчас создавая новые возможности, новые рабочие места, то есть сейчас есть отдельные ребята, которые используют эту технологию для того, чтобы решать подобные задачи за деньги. Midjourney и другие ребята, они создают под себя, как Иронов, который создал новый рынок, который мы сделали, так и другие ребята. Они берут и просто используют это как инструмент. Раньше инструментом была кисть, к которой просто нужно было применить к ней механическое какое-то воздействие, и сколько-то лет опыта.

Но, в целом, она выдавала такие же результаты. Сейчас вместо этой кисти что-то другое. Завтра будет еще что-то другое. Но, в целом, какого-то такого слома я не наблюдаю. Просто появилась новая возможность делать то, что раньше требовало большого количества часов, быстро. Но фактически это просто расширяет, как сказать, перераспределяет усилия людей.

То есть сейчас мы видим, что появляются новые профессии. Они такие, околодизайнерские: наполовину дизайнерские, наполовину технические. Люди, которые занимаются промт-инжинирингом, которые учатся взаимодействовать с этим инструментом, задавать ему правильные вопросы и получают правильные ответы. Но по факту это тот же дизайн, просто инструментом дизайнера является уже не кисть, уже не какие-то программы редактирования графики. А просто нейросеть. Поэтому ничего не меняется на самом деле, просто трансформируются инструменты производства.

И это было и 100 лет назад, когда происходили какие-то переходы от ручного труда к фабричному, так и сейчас. Так я себе это представляю. Гребенников: Правильно, если простым языком сказать, когда нам говорили, что появилось телевидение, то театр умрет. Точно так же, как не умер театр, не умерло телевидение после появления интернета, точно так же и с появлением искусственного интеллекта, мне кажется, у дизайнера просто появилось больше инструментов для того, чтобы творить. Кулинкович: Да. Совершенно верно.

Более того, интересный эффект, что тот крафт, ручная такая работа, которая… Вот этот рынок объединял в себе большое количество профессионалов и сейчас кажется, что пришли нейросети и этот рынок разрушили. И, конечно, вода из этого моря утекла в моменте. Но при этом останутся мастера, как в случае с театрами, есть гениальные постановки, которые собирают огромные залы и оказываются суперактуальными и, возможно, даже более редкими и более неожиданными, чем они были ранее. Потому что ранее это был такой массовый продукт, то сейчас это штучный. Поэтому, когда все говорят, что нейросети убивают работу дизайнера, здесь, наоборот, я это вижу, как создание каких-то интересных локальных ниш, которые, наоборот, создают возможности. Они как бы преумножают варианты применения каких-то творческих усилий.

Коротнева: Сергей, вопрос о том, появится ли новая профессия на стыке дизайна и около какой-то научной истории Data Science. Вы уже сказали про профессию промт-инжиниринг. Кулинкович: Разные люди это называют по-разному. Мы в студии называем это «нейровод» — человек, который выбирает финальный вариант, потому что вариантов очень много, выбрать из них конечный — это и есть одна из самых сложных задач. У нас есть специальные нейроводы. Которые делают дизайн мозгами Николая, но принимают ответственность за принятие финального решения.

Гребенников: Сергей, такой вопрос. Николай — это все-таки когда-то был реальный человек или полностью вымышленный персонаж? Кулинкович: Это полностью вымышленный персонаж. С этим есть очень интересная история, потому что, когда мы начали получать работы, которые сопоставимы по качеству с живыми людьми, мы решили, это не просто прикол. Мы решили проверить, насколько… либо это наш глюк, либо это действительно похоже на то, что делает живой человек. Поэтому мы придумали Николая Иронова и начали под его именем отдавать эти работы нашим клиентам, которые не знали о том, что это генеративный дизайн, для того чтобы обойти вот этот блок предрассудков по поводу того, что если дизайн был синтезирован, значит, он какой-то не такой, какой-то недостаточно человеческий, недостаточно качественный.

Например, изображение пингвина в сомбреро и с бокалом мартини в руках. Пользователь может нарисовать простой эскиз пейзажа, а GauGAN сделает из него реалистичное изображение с деревьями, водой и облаками. Ещё один интересный пример — AlphaStar от DeepMind. Эта нейросеть может играть в видеоигру StarCraft II на профессиональном уровне — она уже одолела игроков, которые считаются одними из лучших в мире, и продемонстрировала, что умеет стратегически мыслить и грамотно принимать решения. Кого заменят нейросети? Это, например, адаптация контента для разных соцсетей: статью для блога напишет живой копирайтер, а вот посты по ней сгенерит нейросеть. Другой пример — ресайз картинок в разных размерах для рекламных кампаний. Эту задачу вместо дизайнера может сделать ИИ. Нейросети не умеют строить гипотезы о том, как скорректировать бюджет в рекламе или какой канал отключить из-за высокой стоимости конверсий. Для этого ИИ нужно много обучать, предоставлять ему большие объемы данных и логических цепочек», — говорит руководитель направления контент-маркетинга и соцсетей в «ЮMoney».

Из очевидных плюсов ИИ — он может быстро находить в большом массиве информации ответы на поставленные вопросы. Намного быстрее, чем реальный сотрудник. К тому же нейросети не грозит выгорание и прокрастинация. Но как делать выводы из аналитики или давать этически корректные ответы на вопросы, нейросети по-прежнему обучает человек. Так же, как не генерировать откровенно фейковые изображения — достаточно вспомнить пример с Папой Римским и рекламой Balenciaga. Но привлечь нейросеть к оптимизации финансовых отчетов — например, сделать выводы из «скормленных» ей данных о затратах компании за отчетный период, — это практичнее и экономнее, чем поручать такую задачу человеку, считает Майя Новикова.

Как создать логотип с помощью ИИ 4. Junior-разработчики Что умеет джун? Писать код и работать над простыми задачами под контролем более опытных коллег. То же самое умеет ChatGPT — причем на разных языках программирования. Ему проще ставить задачи и контролировать их выполнение. А еще он не ошибается пользователи Хабра проверили это — нейросеть пишет код, компилируя и перемешивая то, что видела. Сотрудники call-центров Голосовые роботы отлично справляются с большинством задач по обзвону — они могут проинформировать клиента, подтвердить запись, сообщить об акции и пр. А еще они могут принимать звонки, консультировать, записывать на прием и многое другое. И все это одновременно для сотен абонентов. Пример — голосовой помощник от Сбера. Он мгновенно отвечает на звонок не нужно ждать, пока оператор на линии освободится , сразу «узнает» клиента и дает нужную информацию по запросу. Единственная проблема — его очень трудно заставить переключить на живого оператора. Водители и курьеры Технологии автопилотирования появились давно и активно применяются в некоторых областях например, гражданской авиации. Их совершенствование и внедрение ИИ привело к появлению автопилотов в Tesla. Системы анализируют информацию вокруг автомобиля и реагируют на любые изменения в разы быстрее, чем человек, грамотно прокладываю маршрут с учетом пробок на дороге. Идеальное решение для грузовых и пассажирских перевозок такси. В эту же категорию можно отнести роботов-курьеров. Например, жителям Иннополиса в Татарстане доставку развозит ровер от Яндекса: Это наиболее уязвимые профессии. Теоретически, сюда еще можно добавить банковских служащих и бухгалтеров, турагентов, диспетчеров, спортивных судей и много кого еще. Так это или нет — покажет время. Очевидно, что рынок труда ждут серьезные изменения. Каких специалистов ИИ не сможет заменить 1.

Единственный минус — ChatGPT пока работает с информацией вплоть до 2021 г. Наконец, нейросеть можно использовать в SEO оптимизации. Можно дать задачу ChatGPT подготовить список ключевых запросов по определенной тематике и ранжировать их, например, отделить коммерческие от обычных. В целом использование нейросети существенно ускоряет работу маркетологов в ИТ и позволяет направить ресурсы на решение других, более сложных и творческих задач. Импортонезависимость Руководитель практики машинное обучение и искусственный интеллект Axenix бывшая Accenture Алексей Сергеев в беседе с CNews отметил, что ИИ даст возможность специалистам во многих сферах направить когнитивные усилия на решение более сложных и творческих задач. При этом бояться, что машины заменят людей, не стоит, уверен эксперт. Технологии, в частности разработки в области ИИ, скорее трансформируют рынок труда, занимая рутинизированные области деятельности, ИИ «поднимает» базовую линию навыков выше. Появление GPT и будущие улучшения языковых моделей гарантировано окажут сильное влияние на все сферы деятельности человека, на все профессии — от специализаций в области коммуникаций обслуживание, продажи, маркетинг , до вполне интровертских — исследовательских, инженерных и творческих — ролей». Это чат-бот с искусственным интеллектом , в основе которого лежит языковая модель GPT-3. Чат-бот дает ответы на большую часть вопросов, умеет писать текст и программные коды. Интерес к технологии появился сразу у нескольких крупнейших корпораций: стало известно, что Microsoft собирается внедрить эту технологию в свой поисковик Bing. Заинтересовался чатботом и китайский поисковик Baidu , а в начале февраля 2023 г. Обучение нейросети скоро стартует, первые интеграции ожидаются до конца 2023 г.

Что делают разработчики нейронных сетей: суть работы, обучение

Изучите дата-аналитику на Хекслете Пройдите нашу профессию «Аналитик данных» — это станет вашим первым шажком в работе с нейросетями. где учиться работе с нейросетями. Узнали у нейросети, каких профессионалов искусственный интеллект настроен видеть в числе будущих коллег. Насколько реальны и востребованы в будущем предложенные нейросетью профессии, оценил руководитель направлений "Инноваций" компании Никита Бугров. Около трети респондентов считают, что нейросеть сможет заменить бухгалтеров и менеджеров по продажам, меньшее число опрошенных рассказали, что рискуют быть замененными финансисты, HR-специалисты, социологи. Эта специальность ИИ занимается созданием изображений, используя технологии искусственного интеллекта и нейросетей.

Нейросети вместо человека: каким специалистам впору задуматься о смене профессии

Профессия требует не только применять нейросети, но также строить и обучать модели для новых задач. Изучите дата-аналитику на Хекслете Пройдите нашу профессию «Аналитик данных» — это станет вашим первым шажком в работе с нейросетями. Нейронные сети стремительно внедряются почти во все области жизни, и работа человека становится будто бы «ненужной».

Специалист по нейросетям

Проще простого — Русский музей запустил собственную нейросеть, которая генерирует портреты в стиле работ Брюллова, Серова, Врубеля и других гениев живописи. Художники творили свои произведения месяцами, нейросеть справится за несколько часов. А вот ещё одно преображение и на фасаде дома в стиле фильмов Алексея Балабанова. Вместо рождественского Нью-Йорка мрачные улицы и панельные дома, Кевин МакКаллистер выживает в суровой России и 90- х. После долгих съемок в России звезда боевиков Джейсон Стэйтем нашёл-таки своё счастье и к 60-ти годам остался жить в глубинке нашей необъятной родины, приворожённый борщом местной поварихи. Сценарий сериала, которому позавидует даже Тарантино, удалось воплотить в жизнь, благодаря технологии deepfake — нейросетевой программе, меняющей лица видеороликов.

Как отмечает руководитель направления контент-маркетинга и соцсетей в «ЮMoney» Майя Новикова, ИИ можно использовать для создания полноформатных видео, брендирования цифровых креативов для рекламных кампаний, с их помощью можно выявлять мошенников, готовить предиктивную аналитику и т.

Нейросети используются в самых разных отраслях, включая здравоохранение, финансы, розничную торговлю и производство. А буквально на днях «Сбер» первым из российских техногигантов выпустил собственную версию мультимодальной нейросети GigaChat, которая на первом этапе будет доступна в режиме тестирования по приглашениям. Она умеет отвечать на вопросы пользователей, поддерживать диалог, писать программный код, создавать тексты и картинки на основе описаний в рамках единого контекста. В отличие от ChatGPT, сервис GigaChat изначально поддерживает мультимодальное взаимодействие и более грамотно общается на русском языке. А компании, у которых больше ресурсов на тестирование, обучение ИИ и аналитику, используют AI-сервисы с более разнообразным набором опций, отмечает Иван Скоков. Это могут быть нейросети для производства лекарств, ведения переговоров и создания оригинальных изображений.

Например, система искусственного интеллекта AlphaFold, разработанная компанией DeepMind, способна предсказывать 3D-структуру белков с невероятной точностью. Это может произвести революцию в открытии лекарств и способствовать появлению новых методов лечения заболеваний. А виртуальный помощник на базе ИИ под названием Google Duplex может совершать телефонные звонки и назначать встречи от имени пользователей, вести переговоры и даже обрабатывать сложные сценарии, такие как бронирование столиков в ресторане. Например, изображение пингвина в сомбреро и с бокалом мартини в руках. Пользователь может нарисовать простой эскиз пейзажа, а GauGAN сделает из него реалистичное изображение с деревьями, водой и облаками. Ещё один интересный пример — AlphaStar от DeepMind.

Эта нейросеть может играть в видеоигру StarCraft II на профессиональном уровне — она уже одолела игроков, которые считаются одними из лучших в мире, и продемонстрировала, что умеет стратегически мыслить и грамотно принимать решения. Кого заменят нейросети? Это, например, адаптация контента для разных соцсетей: статью для блога напишет живой копирайтер, а вот посты по ней сгенерит нейросеть.

Ввод данных — это рутинная и трудоемкая задача, которую можно автоматизировать с помощью систем ИИ. Такой тип работы предполагает ввод больших объемов данных в компьютерную систему. Эта работа может быть выполнена намного быстрее и точнее с помощью ИИ. Специалисты по телемаркетингу.

Телемаркетинг включает в себя повторные звонки потенциальным клиентам и является еще одной задачей, которую можно автоматизировать с помощью ИИ. Системы искусственного интеллекта можно запрограммировать на совершение звонков и общение с потенциальными клиентами, что устраняет необходимость в привлечении людей. Служба поддержки клиентов. Системы искусственного интеллекта можно запрограммировать для обработки простых запросов в службу поддержки клиентов, таких как ответы на вопросы о продуктах и услугах. Этот тип работы часто включает однотипные задачи и может быть автоматизирован с помощью ИИ, что снижает потребность в представителях службы поддержки клиентов. Что касается копирайтеров и программистов, то эти профессии с меньшей вероятностью будут непосредственно затронуты искусственным интеллектом в краткосрочной перспективе. Хотя системы ИИ можно использовать для создания простого текста, такого как описание продуктов, ИИ по-прежнему сложно сравниться с творческими нюансами текстов, написанных людьми.

Копирайтинг часто требует глубокого понимания человеческого поведения и эмоций, что в настоящее время трудно воспроизвести системам ИИ. С другой стороны, программирование включает узкоспециализированные задачи, требующие передовых технических навыков.

Кстати, несмотря на предположение Фрея и Осборна, что с развитием ИИ работники call-центров первыми окажутся под угрозой, в США с 2014 по 2022 год наблюдается неизменный рост занятости в этой сфере. Выходит, что новые технологии в силу своей искусственности пока не могут полноценно конкурировать с человеком. Но они уже выставляют новые требования к тому, как организовать труд и какие навыки развивать, чтобы оставаться адекватным изменениям в индустрии. Как использовать новые технологии Чтобы не поддаваться популистским уверениям, что роботы и нейросети отберут хлеб у трудящихся, и адаптироваться к новым технологиям, полезно в рамках своей профессии определить: какие задачи по-прежнему в силах решать только человек; какую часть работы передать ИИ; где продуктивно сотрудничество человека и машины. На удаленке у креативных специалистов не всегда есть возможность «разогнать» свои идеи с коллегами. А нейросеть помогает быстро проверить гипотезы, описать механику работы какого-то процесса, сравнить сложные данные. Виталий Микрюков, директор по маркетингу глобальной команды ИКРЫ уже несколько месяцев использует инструменты ИИ для решения задач, связанных с маркетингом, стратегией и продажами. Он уверен, что настоящее и особенно будущее полно ИИ-контента, который будет становиться только лучше.

Контента будет много, но потреблять его продолжим мы с вами.

5 профессий, которые появились в 2023 году благодаря искусственному интеллекту

Специалист службы поддержки клиентов Наверняка вам уже приходилось звонить или переписываться со службой обслуживания клиентов, где собеседником был робот. ChatGPT и похожие технологии могут продолжить эту тенденцию. Рассмотрим, какие обязанности менеджеров техподдержки может взять на себя искусственный интеллект. Ведь эта сфера имеет много возможностей для автоматизации. Сроки доставки, задолженность, статус заказа — что угодно, полученное из внутренних систем. Вместо этого команда может работать только с запросами, требующими человеческого интеллекта и эмпатии.

Помощь менеджеру при первом контакте с покупателем. ИИ в связке с аналитическими инструментами может мгновенно получать данные о конкретном клиенте. Например, местонахождение, поисковый запрос. Это поможет специалисту решать проблемы при первом взаимодействии. Инструменты ИИ уже могут распознавать, когда клиент разгневан или расстроен во время диалога.

Руководитель видит сообщения о таких случаях и может дать совет менеджеру, как улучшить общение с клиентом. Также ИИ может заметить признаки недовольства клиента быстрее человека и помочь погасить конфликт еще до его начала. Похожая функция, например, стала впервые доступна в платформе Ringostat. ИИ считывает общее настроение разговора и каждого собеседника. И добавляет в отчет вместе с данными о телефонном звонке.

Так можно вовремя заметить, если коммуникация требует внимания руководителя. По моему мнению, со временем появится тренд на платное обслуживание клиента «живым» менеджером. Это будет услуга «премиум-связь с человеком вместо бота». Такая практика, кстати, уже есть , например у Amazon. Если тенденция будет развиваться и ИИ сможет полностью закрыть потребность в первичном обслуживании клиентов, нынешние менеджеры службы поддержки могут перейти на другие должности.

Например, стать менеджерами из отдела заботы о клиентах Customer Success , специалистами по работе с партнерами и т. Или стать теми лучшими из лучших, которые будут предоставлять услуги техподдержки VIP-клиентам. Пока речь не идет о полной замене человеческого ресурса искусственным интеллектом. Скорее всего, в ближайшем будущем ИИ будет работать в партнерстве с менеджерами, дополняя, ускоряя процессы и увеличивая производительность. Какие задачи может выполнять ИИ в сфере продаж?

Помощники, созданные на основе ИИ, могут отвечать на запросы и взаимодействовать с клиентами.

Качественный перевод статей, постов 4. Описание карточек товаров на маркетплейсах 5. Создание контент-плана для соц. Анализ целевой аудитории для онлайн-бизнеса 7.

Специалист считает, что данная разработка может найти широкое применение сразу в нескольких сферах. Одна из них - программирование. Чат-бот ChatGPT и его аналоги научились писать код быстро и качественно, поэтому вероятно, что скоро работодатели предпочтут использовать нейросеть для решения рутинных задач, отметил Губанов.

Также чат-бот сейчас обучают вести школьные занятия.

Это быстрый и зачастую бюджетный вариант сделать дизайн чего-то. Но это не значит, что графические дизайнеры больше не нужны: просто теперь им важно совершенствовать свои скиллы и изучать нейросети. Такие услуги нужны многим компаниям, поэтому чем лучше иллюстратор разбирается в алгоритмах и запросах в этой сфере, тем востребованнее его услуги на рынке. Нейрокопирайтер Как появилась.

Если можно генерировать изображения, получать ответы на вопросы, почему не попробовать писать тексты? Параллельно с развитием других профессий в сфере ИИ появились и нейрокопирайтеры. Они начали тестировать новый инструмент: придумывать с его помощью идеи для контента, заголовки, структуры для объёмных статей или сразу готовые посты и письма. Мы спросили у нейросети YandexGPT, кто такой нейрокопирайтер, и получили следующий ответ: «Нейрокопирайтеры — это специалисты в области создания и редактирования текстов, которые используют технологии нейросетей и искусственного интеллекта для улучшения качества и эффективности контента. Они анализируют данные, проводят исследования и применяют алгоритмы машинного обучения для оптимизации текстов, чтобы повысить их привлекательность для целевой аудитории и достичь поставленных бизнес-целей».

А на вопрос, какие задачи решает нейрокопирайтер с помощью нейросетей, YandexGPT выдала целый список: Анализ данных. Нейросети могут анализировать большие объёмы данных, таких как поведение пользователей на сайте, поисковые запросы, социальные медиа и т. Создание контента. Нейросети также могут использоваться для генерации идей и создания контента для рекламных кампаний, email-рассылок или веб-сайта. Редактирование и оптимизация текстов.

Нейросети могут быть использованы для автоматического редактирования текстов, чтобы улучшить их привлекательность. Оценка эффективности контента. Нейросети могут использоваться для оценки эффективности контента, например для определения того, какие статьи получают больше кликов или просмотров. Улучшение SEO. Нейросети можно использовать для улучшения SEO-оптимизации текстов, что может помочь улучшить позиции сайта в результатах поиска.

Нейросети используют информацию из интернета, но она не всегда достоверная. Поэтому нейрокопирайтерам важно вычитывать тексты и проверять факты. А чтобы оценить, насколько нужно править сгенерированный ответ по стилю и структуре, специалисту всё так же нужны базовые навыки работы с текстом. Нейросеть пока не пишет хорошие длинные статьи и не может шутить или придавать тексту естественную эмоциональную окраску. Но она неплохо придумывает идеи и предлагает варианты текстов.

Нейрокопирайтер обычно работает быстрее, чем простой автор. С помощью ИИ он может разобраться в сложной теме и собрать фактуру для статьи за 10—15 минут.

Нейросеть составила список самых востребованных профессий будущего

Сценарий сериала, которому позавидует даже Тарантино, удалось воплотить в жизнь, благодаря технологии deepfake — нейросетевой программе, меняющей лица видеороликов. Сначала нейросети пришли за художниками, дизайнерами, композиторами, теперь добрались и до нас — работников телевидения. Знакомьтесь, новое ведущее прогноза погоды на Ставропольском телеканале. Образ, речь, студия — всё создано творческим тандемом нескольких нейросетей. Снежана не болеет, не нуждается в отпуске, но при этом помнит о людских слабостях.. Человеки если промокают, то могут простудиться.

Исследование компании McKinsey и вовсе показывает: только незначительное количество профессий будут полностью автоматизированы с помощью современных технологий. В остальных роботы или ИИ станут выполнять только отдельные задачи.

Дело в том, что, хотя ChatGPT или Midjourney нейросеть, которая генерирует изображения способны быстрее человека обрабатывать огромные объемы информации и предлагать большое количество разных решений, запрос, корректировка и оценка работы остаются за людьми. Ведущая роль — роль креатора — по-прежнему принадлежит дизайнерам, копирайтерам, преподавателям или программистам. Но теперь их задача — правильно задать вопрос, чтобы быстрее получить результат, с которым можно работать. В этом смысле технологии остаются тем, чем и были ранее — инструментом в руках Homo sapiens. Хотя нейросети и учатся распознавать эмоции, они пока слабо приближаются к тому, чтобы обладать уникальным характером, харизмой, опытом и эмпатией, которую ценят в коммуникации. Робот все еще действует механистически и этим вызывает отторжение. Так, например, недавнее исследование показало, что больше половины опрошенных россиян вешают трубку, услышав, что им звонит робот.

Для каких задач применяют ML и нейросети Есть много прикладных задач, которые решаются с помощью эксперта, простых правил и специально подобранных алгоритмов. Когда данных становится много, у нас появляется возможность извлекать из них полезные знания, обходя ограниченность простых подходов. С помощью ML можно рассчитывать риски — например, предсказать, выплатит ли человек кредит, или рассчитать будущие цены на квартиры. Есть отдельная группа задач, для которых нейросети особенно хороши: находить похожие картинки, звуки и посты, генерировать изображения и тексты. Конечно, искать похожие аудио можно и без нейросетей — приложение Shazam прекрасно работало даже в первых версиях. Но обучение алгоритмов с помощью нейросетей дает дополнительные возможности. Творчество нейросети Midjourney Как разрабатываются нейросети В этой части статьи будет немного хардовой информации, связанной с математикой и ML. Если вы ничего не поймете или захотите понять больше, советуем пройти наш курс по математической логике для программистов Нейросеть — это формула, которая из одного массива чисел делает другой массив. Формула большая и длинная, может быть с миллионами параметров, но собирается из довольно простых операций — арифметики, элементарных функций синусы, косинусы, экспоненты и даже более простые, вроде взятия степени и суперпозиции. Выше пример одной из решаемых задачек: классификация изображений на условные тысячу классов.

Входной массив здесь — просто массив пикселей картинки, выходной — вектор с вероятностями, что изображено на картинке. Выходной массив может быть и картинкой например, как в задачах pix2pix на улучшение картинок или дорисовывание. Входной массив может быть не картинкой, а последовательностью слов — так, например, происходит в генерации картинок по тексту. С отдельными элементами входного массива обычно не работают: действия собирают в слои и применяют операцию ко всему массиву сразу. Котика на картинке распознают независимо от того, в какой части картинки он находится. Саму формулу пишут не как аналитическую формулу, а вычислительным графом — это рецепт для калькулятора, в каком порядке и что делать с входным и промежуточным массивами. Очень популярная, старая и довольно простая моделька. Она может показаться сложной, но операции — простые, а концепция вычислительного графа позволяет работать со сложными формулами. В этих слоях скрываются числа, они же — веса — коэффициенты в большой формуле. Сначала параметры инициализируют небольшими случайными числами, а затем улучшают с помощью градиентного спуска.

Так система самообучается. Обвязку к этому движку обычно делают на Python. Но на них сейчас нейросети почти не пишут, кроме низкоуровневых сетей для устройств. Знания Python достаточно, чтобы писать крутые вещи. Есть библиотеки, позволяющие упростить процесс разработки. Крутые обертки и сборники моделей — одна из причин, почему сейчас стало популярно разрабатывать нейросети. Например, проект Hugging Face — это платформа для разработки и использования моделей и приложений на основе искусственного интеллекта, особенно в области обработки естественного языка Natural Language Processing. Интерфейсы моделей отвязаны от математики, это простые и конкретные инструкции, что именно сделать, чтоб получить результат. А вот при использовании фреймворков PyTorch, Jax и TensorFlow для работы с данными и машинного обучения придется плотнее взаимодействовать с математикой. Как попасть в индустрию Нейросетями можно заниматься как прикладной технологией в коммерческой разработке, так и использовать их в качестве инструмента для исследований в научных лабораториях.

В 2016 году, чтобы попасть в лабораторию, занимающуюся нейросетями, ничего особенного знать и уметь не требовалось. Сейчас порог входа в исследовательские лаборатории, где применяют эту технологию, увеличился. Нужно соответствовать высоким требованиям: знать математику, хорошо кодить, иметь научные публикации. Такой уровень экспертизы есть у небольшой части людей. Вакансий публикуется больше не в области исследований, а в прикладных проектах. Прикладными проектами может заниматься обычный разработчик. Для этого нужно уметь кодить, решать задачи и использовать системный подход. Нужно учиться делать базовые вещи максимально аккуратно. А все остальное получится в свое время.

Здесь нейросеть пока справляется хуже человека: ИИ допускает ошибки, хоть со временем их и становится все меньше. Нейронные сети еще в 2022 году научились составлять новостные сводки", - сказал Роман Губанов. Однако, по мнению специалиста, ИИ еще несовершенен и будет развиваться многие годы. Подписывайтесь одним нажатием!

Специалист по нейросетям

Более того, с ростом спроса на этих специалистов можно ожидать, что заработная плата будет продолжать расти в ближайшие годы. Одной из причин высокой заработной платы инженера нейросетей является сложность работы. Нейросети - это сложные системы, которые требуют высокой квалификации и опыта, чтобы разрабатывать и оптимизировать их. Инженеры нейросетей должны быть знакомы со многими различными алгоритмами машинного обучения и глубокого обучения, а также иметь опыт работы с большими объемами данных. Кроме того, нейросети становятся все более распространенными во многих отраслях, и компании, которые желают сохранить свою конкурентоспособность, стремятся привлечь талантливых инженеров нейросетей. В ситуации, когда нейросети используются для решения критически важных задач, таких как медицинская диагностика, финансовый анализ или управление транспортом, спрос на высококвалифицированных специалистов в этой области может быть особенно высоким.

В ответ на этот запрос появилась отдельная профессия — нейроиллюстраторы. С помощью Midjourney, DALL-E или других подобных нейросетей иллюстратор может создать одно изображение или серию картинок в едином стиле.

Например, Шедеврум от Яндекса выдаёт четыре варианта картинки, чтобы пользователь выбрал самую подходящую. Но для точного результата художнику нужно грамотно составить запрос, — на это иногда могут уходить часы. Нейроиллюстраторам не обязательно уметь рисовать на бумаге, но им нужны знания фотошопа и других графических редакторов, а также насмотренность и чувство стиля. Картинку от ИИ придётся дорабатывать: корректировать цвет, стирать или детальнее прорисовать предметы. Нейросети помогают создавать логотипы, арты, баннеры, картины, фотосессии и прочее. Это быстрый и зачастую бюджетный вариант сделать дизайн чего-то. Но это не значит, что графические дизайнеры больше не нужны: просто теперь им важно совершенствовать свои скиллы и изучать нейросети.

Такие услуги нужны многим компаниям, поэтому чем лучше иллюстратор разбирается в алгоритмах и запросах в этой сфере, тем востребованнее его услуги на рынке. Нейрокопирайтер Как появилась. Если можно генерировать изображения, получать ответы на вопросы, почему не попробовать писать тексты? Параллельно с развитием других профессий в сфере ИИ появились и нейрокопирайтеры. Они начали тестировать новый инструмент: придумывать с его помощью идеи для контента, заголовки, структуры для объёмных статей или сразу готовые посты и письма. Мы спросили у нейросети YandexGPT, кто такой нейрокопирайтер, и получили следующий ответ: «Нейрокопирайтеры — это специалисты в области создания и редактирования текстов, которые используют технологии нейросетей и искусственного интеллекта для улучшения качества и эффективности контента. Они анализируют данные, проводят исследования и применяют алгоритмы машинного обучения для оптимизации текстов, чтобы повысить их привлекательность для целевой аудитории и достичь поставленных бизнес-целей».

А на вопрос, какие задачи решает нейрокопирайтер с помощью нейросетей, YandexGPT выдала целый список: Анализ данных. Нейросети могут анализировать большие объёмы данных, таких как поведение пользователей на сайте, поисковые запросы, социальные медиа и т. Создание контента. Нейросети также могут использоваться для генерации идей и создания контента для рекламных кампаний, email-рассылок или веб-сайта. Редактирование и оптимизация текстов. Нейросети могут быть использованы для автоматического редактирования текстов, чтобы улучшить их привлекательность. Оценка эффективности контента.

Нейросети могут использоваться для оценки эффективности контента, например для определения того, какие статьи получают больше кликов или просмотров. Улучшение SEO. Нейросети можно использовать для улучшения SEO-оптимизации текстов, что может помочь улучшить позиции сайта в результатах поиска.

Здесь нейросеть пока справляется хуже человека: ИИ допускает ошибки, хоть со временем их и становится все меньше. Нейронные сети еще в 2022 году научились составлять новостные сводки", - сказал Роман Губанов. Однако, по мнению специалиста, ИИ еще несовершенен и будет развиваться многие годы. Подписывайтесь одним нажатием!

Задания у всех соискателей разные. В итоге я прошла эти круги испытаний. Следующий шаг — собеседование в онлайне. Из всех слов, которые я там увидела, были понятны только предлоги» Работать можно из любой точки страны. Кто где. В расписании Саши — много летучек с командами. Есть собеседования, поскольку команда еще набирается. Все события отражаются в календаре. Даже сегодняшняя встреча с вами.

Есть пул тестовых заданий, которые я должна проверить, и некий объем текстов от редакторов моей команды. Есть задачи с жесткими дедлайнами. Работа AI-тренера заключается в том, чтобы давать языковой модели правильные, полезные и правдивые ответы. Мы составляем тексты на самые разные темы — аналитические материалы и анекдоты, воспитываем у нейросети чувство юмора. Если ты начал пораньше и сдал пораньше — можешь закончить рабочий день и идти отдыхать. Работа AI-тренера заключается в том, чтобы давать языковой модели правильные, полезные, емкие и правдивые ответы Источник: Дарья Пона «Работа с Алисой — как игра в слова. Сажусь утром и до самого вечера не могу оторваться» Правда, пришлось привыкать к новой терминологии, посидеть над инструкциями, разобраться с настройками и скачать приложения. Как ни крути, даже если это работа мечты, первые месяцы — всегда стресс. Но приятный.

На собеседовании меня спрашивали, а как же ты с опытом офисной работы уйдешь на удаленку. Я ответила, что сама не знаю. Думала, сниму, наверное, коворкинг. Боялась, что буду отвлекаться. А теперь понимаю, что не надо никакого коворкинга. Работа с Алисой — как игра в слова. Сажусь утром и до самого вечера не могу оторваться. Надо оттаскивать себя от компьютера. Сказать стоп, пора заканчивать.

Руководители всегда говорят, что надо работать не более 8 часов и соблюдать work-life-balance. Сажусь утром и до самого вечера не могу оторваться» Как шеф Саша организует работу редакции, проверяет тестовые, проводит собеседования, отвечает за онбординг своих ребят.

Как стать специалистом по нейросетям?

При этом сейчас появляется всё больше профессий, связанных с созданием и обслуживанием нейросетей. Команда VK Cloud перевела статью, в которой дата-сайентист рассказывает о новых специальностях, появление которых в грядущие годы связано с развитием искусственного интеллекта. Узнали у нейросети, каких профессионалов искусственный интеллект настроен видеть в числе будущих коллег. Искусственный интеллект и профессии: какие специальности, связанные с ИИ и нейросетями, ждет бурное развитие и высокий спрос.

Похожие новости:

Оцените статью
Добавить комментарий