Коэффициент или индекс Джини позволяют оценить экономическое неравенство в конкретной стране или между государствами. 28 фев в 21:49. Пожаловаться. В 2023 году в России коэффициент Джини, отражающий дифференциацию по доходам, составил 0,403 против 0,395 годом ранее, отчитался Росстат. Ниже приведены коэффициенты Джини дохода для каждой страны, данные по которой представлены Всемирным Банком. Показатели коэффициента Джини в России за все время измерения (1991—2018).
Коэффициент Джини. Формула. Что показывает
Распределение доходов может сильно отличаться от распределения богатства в стране см. Список стран по распределению богатства. Доход от экономической деятельности на черном рынке не включен и является предметом текущих экономических исследований.
Корреляция между коэффициентами Джини и ВВП на душу населения за три периода времени. Источник: Моатсос и Батен. Недостатки Хотя коэффициент Джини полезен для анализа экономического неравенства, он имеет некоторые недостатки.
Точность показателя зависит от достоверных данных о ВВП и доходах. Теневая экономика и неформальная экономическая деятельность присутствуют в каждой стране. Неформальная экономическая деятельность, как правило, составляет большую часть истинного экономического производства в развивающихся странах и находится на нижнем уровне распределения доходов внутри стран. В обоих случаях это означает, что индекс измеренных доходов Джини будет завышать истинное неравенство доходов. Получить точные данные о богатстве еще труднее из-за популярности налоговых убежищ.
Другой недостаток заключается в том, что очень разные распределения доходов могут привести к одинаковым коэффициентам Джини. Поскольку коэффициент Джини пытается сократить двумерную область разрыв между кривой Лоренца и линией равенства до одного числа, он скрывает информацию о «форме» неравенства. В повседневных терминах это было бы похоже на описание содержимого фотографии исключительно по длине вдоль одного края или простому среднему значению яркости пикселей. Хотя использование кривой Лоренца в качестве дополнения может предоставить больше информации в этом отношении, она также не показывает демографические различия между подгруппами внутри распределения, например распределение доходов по возрасту, расе или социальным группам. В этом ключе понимание демографических данных может быть важным для понимания того, что представляет данный коэффициент Джини.
Но в первом офисе 90 человек получают по 20 тысяч рублей в месяц, а 10 человек — по 200 тысяч, а во втором офисе 10 человек получают по 20 тысяч, другие 10 — по 30 тысяч, ещё 70 человек — от 40 до 100 тысяч, и 10 человек по 200 тысяч. Конечно, ситуация с неравенством в этих компаниях будет разной, хотя децильный коэффициент одинаков. Децильный коэффициент подходит для грубой оценки неравенства в обществе, а для более точных значений, всё же, лучше использовать Коэффициент Джини. Почему растёт социальное неравенство Современный мир устроен таким образом, что богатые имеют тенденцию к тому, чтобы становиться ещё богаче, а бедные — к тому, чтобы становиться ещё беднее. Это не хорошо и не плохо.
Это просто факт. Но если ты чётко его осознаешь — это будет очень хорошо. Всё очень просто. Богатые используют деньги в качестве инструмента обогащения. У бедных же денег нет, и большинство из них тонут в болоте кредитов, из-за чего они становятся ещё беднее.
Тут, конечно, нужен пример. Смотри, допустим есть 5 человек: Вася Пупкин капитал 20 рублей Иван Иванов капитал 2 000 рублей Средняк Средняков капитал 20 000 рублей Игорь Альфаинвестор капитал 2 000 000 рублей Вагит Алекперов капитал 200 000 000 000 рублей Прошёл год. Вася и Иван, не имея средств к существованию, перебивались мелкими подработками, мелкими кражами и потребительскими кредитами. В итоге, Вася должен банку 100 000 рублей, а Иван — 20 000 рублей. Средняк Средняков как работал, так и работает.
Зарплату ему увеличили на сумму инфляции и теперь в конце месяца его капитал составляет 22 000 рублей. Учитывая инфляцию, он остался на том же уровне благосостояния, в отличие от Васька и Ванька, влезших в кредиты. Игорь и Вагит инвестировали свои капиталы в акции и ETF. Оба получили хорошую доходность.
В итоге, Вася должен банку 100 000 рублей, а Иван — 20 000 рублей. Средняк Средняков как работал, так и работает. Зарплату ему увеличили на сумму инфляции и теперь в конце месяца его капитал составляет 22 000 рублей. Учитывая инфляцию, он остался на том же уровне благосостояния, в отличие от Васька и Ванька, влезших в кредиты. Игорь и Вагит инвестировали свои капиталы в акции и ETF. Оба получили хорошую доходность. Игорь получил больше в процентах на капитал. Из этого примера видно, насколько тяжело бедным не стать беднее, и насколько просто богатому стать богаче. Даже ничего не делая, получая мизерный процент на многомиллиардный капитал, ты всё равно за отрезок времени разбогатеешь на большую сумму, чем человек с миллионом, организовавший суперприбыльный бизнес, и работающий как белка в колесе. В данном примере есть ещё один показательный персонаж — Средняк Средняков. Он олицетворяет собой человека, живущего от зарплаты до зарплаты. Он не становится беднее, но и богаче тоже не становится. Хотя он находится в той позиции, когда ему намного легче, чем Васе или Ивану начать инвестировать, двигаясь в сторону жизни, когда «деньги делают деньги, которые делают деньги, которые делают деньги, которые… и т. С другой стороны, ему легче, чем Игорю или, тем более, Вагиту попасть в ситуацию, в которой находятся Вася и Иван. Что бы ни делал человек, он довольно крепко «увязает» в своём финансовом положении. А в случае с середняками, живущими от зарплаты до зарплаты, ключевую роль играют их намерения. Как и зачем бороться с неравенством Бытует мнение, что высокое неравенство затрудняет движение «социальных лифтов», тормозит экономическое развитие и угрожает социальной стабильности хотя всё это и не доказано. Но очевидно, что экономическое неравенство порождает недовольство беднейших слоёв общества. Правительствам стран, конечно, приходится идти навстречу этим слоям и предпринимать меры по борьбе с неравенством.
Уровень жизни. Динамические ряды
Что такое коэффициент Джини и зачем он нужен | Вокруг Света | Коэффициент Джини стран мира ежегодно с 1967 по 2020 годы в виде рейтинга и визуализации. |
Коэффициент Джини (распределение дохода) - Европейский портал информации здравоохранения | Это список стран или зависимостей по показатели неравенства доходов, включая Коэффициенты Джини. |
Уровень жизни. Динамические ряды | Если же говорить о Китае, то в их стране коэффициент Джини в 2012 году составил 0,474, за прошедшие 10 лет коэффициент достиг локального максимума в 2008 году, когда составлял 0,49. |
Штаты США по коэффициенту Джини - 2024 | World Development Indicators (WDI) is the primary World Bank collection of development indicators, compiled from officially recognized international sources. It presents the most current and accurate global development data available, and includes national, regional and global estimates. [Note: Even. |
Коэффициент Джини, значение по странам мира и в России | Albania Algeria Angola Argentina Armenia Australia Austria Azerbaijan Bangladesh Belarus Belgium Belize Benin Bhutan Bolivia Bosnia and Herzegovina Botswana Brazil Bulgaria Burkina Faso Burundi Côte d'Ivoire Cabo Verde Cameroon Canada Central African Republic Chad Chile China Colombia. |
Коэффициент Джини. Формула. Что показывает
(Для педантов – между «индексом» и «коэффициентом» есть небольшое отличие, индекс Джини считается в процентах, а коэффициент Джини – в дробных числах от нуля до единицы. На этой карте представлено распределение Коэффициента Джини по странам (данные Всемирного Банка от 2018 года). Как и коэффициент Джини, он позволяет сравнивать различные страны между собой и состояния одной страны в разные периоды времени. World Development Indicators (WDI) is the primary World Bank collection of development indicators, compiled from officially recognized international sources. It presents the most current and accurate global development data available, and includes national, regional and global estimates. [Note: Even.
Коэффициент джини в России
Ниже приведены коэффициенты Джини по доходам для каждой страны, для которой CIA World Factbook предоставляет данные. Индекс Джини: коэффициент Джини выраженный в процентах (то есть коэффициент Джини умноженный на 100%). About In the News Newsletter API. Ниже приведены коэффициенты Джини дохода для каждой страны, по которой в CIA World Factbook представлены данные. Индекс Джини не применяется для анализа государств, где действует плановая экономика, поскольку уровень дохода в таких странах априори не имеет большого разрыва между трудящимися, так как регулируется государством. Однако коэффициент Джини позволяет выяснить уровень неравенства также и по накопленному богатству.
Индекс Джини: новые горизонты применения
Тип домохозяйства с самым низким средним годовым эквивалентным располагаемым доходом был расширенным семейным домохозяйством с 25 тыс.
Распределение доходов может сильно отличаться от распределения богатства в стране см. Список стран по распределению богатства. Доход от черный рынок экономическая деятельность не включается и является предметом текущих экономических исследований.
Преимущества применения Коэффициента Джини[6]: Основным преимуществом коэффициента Джини является то, что он является показателем неравенства, рассчитанного посредством анализа коэффициентов, а не переменной.
Его можно использовать для сравнения распределения доходов по разным секторам населения, а также по странам, однако следует учитывать, что значение коэффициента Джини для городских районов отличается от значения коэффициента Джини для сельских районов во многих странах. Коэффициент Джини обладает достаточной простотой, чтобы его можно было сравнивать между странами и легко интерпретировать. Статистика ВВП часто подвергается критике, поскольку она не отражает изменений для всего населения, коэффициент Джини же показывает, как изменился доход бедных и богатых слоев населения. Если наблюдается одновременный рост коэффициента Джини и ВВП, уровень бедности может не изменяться в положительную сторону для большинства населения. Коэффициент Джини может использоваться для отображения того, как распределение дохода изменилось в стране за определенный период времени, таким образом, можно увидеть, увеличивается или уменьшается неравенство.
Не смотря на наличие преимуществ применения коэффициента Джини, он также обладает и рядом недостатков[5]: Коэффициент Джини, измеренный для большой экономически разнородной страны, обычно приводит к гораздо более высокому коэффициенту, чем каждый из ее регионов в отдельности. Сравнение распределения доходов между странами может быть затруднено, поскольку системы пособий могут различаться. Например, некоторые страны предоставляют пособия в виде денег, в то время как другие в форме талонов на питание, которые могут не учитываться в качестве дохода на кривой Лоренца и, следовательно, не учитываться в коэффициенте Джини. В связи с расчетным характером коэффициента Джини, в данных могут присутствовать как систематические, так и случайные ошибки. Со временем значение коэффициента Джини уменьшается, поскольку данные становятся менее точными.
Кроме того, страны могут собирать данные по-разному, что затрудняет сравнение статистических данных между странами. Экономики с одинаковыми доходами и одинаковыми значениями коэффициентов Джини могут иметь различное распределение доходов. В качестве примера, экономика, в которой половина домохозяйств не имеет дохода, а другая половина имеет равный доход, имеет значение коэффициента Джини, равное 0,5, а экономика с полным равенством доходов, за исключением одного состоятельного домохозяйства, которое имеет половину общего дохода, также имеет значение коэффициента Джини, равное 0,5. В целом коэффициент Джини является более универсальным показателем неравенства в доходах, чем фондовый и децильный коэффициенты.
Использование понятия относительной бедности связано с тем, что, начиная с определённого уровня развития экономики, помимо материальных лишений питание, одежда, условия жилья и т. В исследованиях и мониторингах также часто используется субъективная бедность, под которой понимается мнение самих респондентов о границах бедности и собственном благосостоянии. Понятие «прожиточный минимум» определяется в Федеральном законе «О прожиточном минимуме в Российской Федерации» от 24. В первую очередь это чисто техническая величина, с помощью которой государство оценивает, с одной стороны, величину своих социальных обязательств, с другой — уровень жизни в стране и состояние экономики. Определяется она так: стоимостная оценка потребительской корзины, то есть «необходимые для сохранения здоровья человека и обеспечения его жизнедеятельности минимальный набор продуктов питания, а также непродовольственные товары и услуги…» , а также обязательные платежи и сборы, к которым относятся коммунальные платежи. Конечно, имеется в виду количество рублей в месяц. В первом случае государству нужно подсчитать, сколько требуется заложить в бюджет на социальные выплаты например, пособия малоимущим и субсидии на оплату ЖКХ и пенсии.
Quality of Life Index by Country 2024
Коэффициент Джини позволяет выявить высокие уровни неравенства доходов, которые могут стать причиной нежелательных политических и экономических последствий. Коэффициент Джини позволяет выявить высокие уровни неравенства доходов, которые могут стать причиной нежелательных политических и экономических последствий. Для измерения фактического распределения доходов используют «кривую Лоренца» и «коэффициент Джини», показывающие, какая доля совокупного дохода приходится на каждую группу населения, что позволяет судить об уровне экономического неравенства в данной стране.
Россия – чемпион мира по расслоению богатства населения
Нормализованный коэффициент Джини является метрикой качества, которую необходимо максимизировать. Алгебраическое представление. Как рассчитать эту метрику? Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Я честно пытался найти вывод этой формулы в интернете, но не нашел ничего.
Даже в зарубежных книгах и научных статьях. Зато на некоторых сомнительных сайтах любителей статистики встречалась фраза: «Это настолько очевидно, что даже нечего обсуждать. Чуть позже, когда сам вывел формулу связи этих двух метрик, понял что эта фраза — отличный индикатор. Если вы её слышите или читаете, то очевидно только то, что автор фразы не имеет никакого понимания коэффициента Джини.
У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем. Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate. Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов.
На ней в России меньшее неравенство, чем в южноафриканских странах и Латинской Америке. Кому верить? Может показаться, что самый низкий коэффициент Джини существует только в Нарнии, но и на нашей карте все же есть страна, в которой удалось добиться равномерного распределения благ, — Словакия. Автор текста:Павел Шляпников.
Использование индекса Джини в мире Коэффициент Джини в ЕС в целом ниже, чем в других государствах мира, и по состоянию на 2020 год варьируется от 29 до 35 в зависимости от страны. Для сравнения индекс Соединенных Штатов Америки в том же году составлял 39,7. Показатель Джини позволяет определить наиболее достоверные данные, выделяя конкретные сегменты экономики, поэтому европейские государства решили начать использовать его и в торговом секторе. С учетом меняющейся экономической картины мира применение статистического показателя для измерения структуры торговли страны приводит экспертов к новому, более подробному показателю участия фирм в торговле — торговому индексу Джини GTI. Торговый индекс Джини измеряет асимметрию в торговле на основе количества экспортеров и их доли в стоимости экспорта. Основными источниками данных для корректного измерения GTI являются торговая статистики на уровне фирмы и база данных Евростата о торговле с разбивкой по характеристикам предприятий TEC. База данных TEC показывает количество микро менее 10 сотрудников , малых менее 50 сотрудников , средних менее 250 сотрудников и крупных фирм более 250 сотрудников , занятых в торговле, и категории товаров, экспортируемые каждым классом фирм.
Торговый индекс Джини может быть рассчитан для всех этих четырех размерных классов экспортеров, начиная от микрофирм и заканчивая «суперэкспортерами» крупными предприятиями. Несмотря на то, что главы государств обычно не подкрепляют свои заявления торговой статистикой на уровне компаний, они стараются проводить целенаправленную торговую политику для поддержки участия своих МСП в глобальных цепочках поставок. Так, в ноябре 2023 года президент Франции Эммануэль Макрон, ссылаясь на статистические данные, которые указывают на неиспользованный экспортный потенциал, заявил, что доля французских МСП в общем объеме французского экспорта невелика и ниже, чем у немецких и итальянских коллег. Он также выступил в поддержку нескольких инициатив, направленных на увеличение числа французских фирм-экспортеров. А новый министр Южной Кореи по делам малых предприятий и стартапов объявил об обязательстве поддержать все существующие 90 000 корейских фирм-экспортеров в расширении их экспортной деятельности.
Все они используются для оценки качества модели и, так или иначе, связаны друг с другом. Предлагаю вспомнить, как они рассчитываются. Допустим, необходимо спрогнозировать кредитную благонадежность заемщика. Благонадежный заемщик будет относиться к классу 1, неблагонадежный — к классу 0. Тогда существует четыре вида исхода прогнозирования: 1 True Positives - благонадежный заемщик спрогнозирован верно; 2 False Positives - благонадежный заемщик спрогнозирован неверно; 3 True Negatives — неблагонадежный заемщик спрогнозирован верно; 4 False Negatives — неблагонадежный заемщик спрогнозирован неверно. При этом, чем лучше один показатель, тем хуже другой. Поэтому вводится порог срабатывания, выше которого прогнозные значения будут относиться к классу 1, ниже — к классу 0 соответственно. Но для бизнеса мало посчитать показатели. Необходимо принимать решения, математически и статистически обоснованные. То есть, строится график отсортированных прогнозных target-значений рис. Затем рассчитывается площадь под кривой — площадь фигуры под линией прогнозных значений. Так мы узнаем качество работы нашего алгоритма.