Динамика венчурного инвестирования в искусственный интеллект для медицины, по данным CB Insights. Глава Минздрава отметил: искусственный интеллект будут использовать для получения снимков с различных видов цифровых приборов. Рассказываем, как искусственный интеллект уже применяется в медицине и на какие вызовы и задачи отечественного здравоохранения он отвечает.
«Рутинные задачи с минимальным риском». Nature опубликовал доклад о развитии ИИ в медицине
Одним из важных направлений применения искусственного интеллекта в медицине является его использование в диагностике различных заболеваний. Таким образом, применение искусственного интеллекта в медицине стало ведущим трендом здравоохранения. Возможность делать прогнозы с помощью искусственного интеллекта в медицине применяют и иначе. В столице провели комплексный анализ качества работы сервисов искусственного интеллекта (ИИ) в медицине. В данной статье рассмотрены перспективные направления искусственного интеллекта в медицине, реализованные на базе нейронных сетей.
Что хотите найти?
В последнее время появляется все больше новостей о применении искусственного интеллекта (ИИ) в медицине и здравоохранении. Вот лишь некоторые возможности применения технологий искусственного интеллекта (ИИ) в здравоохранении. Применение методов искусственного интеллекта в медицине и сфере здравоохранения Для использования врачами и медицинскими специалистами Плюсы и минусы Заменит ли ИИ врачей? Примеры | Онлайн-университет доказательной медицины Кроме того, искусственный интеллект помогает врачам-терапевтам поликлиник в постановке диагноза и формировании перечня необходимых исследований.
Эксперт объяснил провал искусственного интеллекта в медицине
Существуют похожие сервисы, способные указать на заболевания, и даже на сахарный диабет. Для людей, которые выписались из больницы разработано специальное приложение Sense. Набирает популярность генетический анализ с помощью сервиса Sophia Genetics. Так, анализ ДНК даёт возможность выявить предрасположенность человека к некоторым заболеваниям: диабету, язве желудка и другим.
Проект MedClueRx позволяет определить, какие лекарственные препараты могут помочь при депрессии, эпилепсии, заболеваниях нервной системы. Сервис ИИ MedWhat способен заменить личного врача — это приложение для мобильного телефона со встроенной функцией распознавания речи. Приложение способно интересоваться самочувствием человека и отвечать на разные вопросы, например: «Как избавиться от головной боли?
В ближайшем будущем планируется дать доступ сервису MedWhat к историям болезней пациентов и к генетической информации. Обработка огромных объёмов информации ИИ способен обрабатывать несколько тысяч страниц в секунду при поиске необходимой информации. Примерно каждые двадцать минут в мире появляется новая статья по медицине.
В помощь медикам недавно была создана система поддержки по принятию решений — CDSS на основе ИИ, которая объединила информацию и данные о показателях здоровья пациентов и их истории болезни. Автоматизация и улучшение Бывает, что пациент отменяет визит к врачу, и это несёт клинике убытки: в США подсчитали, что система здравоохранения страны ежегодно теряет около 150 миллиардов долларов. Чтобы снизить эти показатели нужен новый подход к организации и управлению.
Но вместе с тем, так как мы относим эти программные продукты к высокому классу риска, до февраля 2022 года все производители должны предоставить подробные отчеты об их применении в медицинской практике, чтобы мы могли аккумулировать данные и понять, как развивается эта технология». Здравоохранение — лидер по применению искусственного интеллекта Эксперт по искусственному интеллекту «Центрального научно-исследовательского института организации и информатизации здравоохранения» Минздрава России Александр Гусев отмечает: «Сейчас сфера искусственного интеллекта является мировым рекордсменом в мире по размеру инвестиций, вливаемых в программные продукты с использованием технологий ИИ, и по количеству сделок. Здравоохранение — это та отрасль, где инвесторы имеют максимальные надежды на то, что эти продукты будут востребованы и популярны». По словам А. Это абсолютный рекорд по сравнению с другими отраслями. А по размеру привлеченных средств у здравоохранения второе место — 2,766 млрд.
Впереди только транспорт и логистика. Но, несмотря на эти рекорды, с прошлого года все острее становится дискуссия о доверии и ответственном отношении всех участников сферы ИИ. Слишком много спекуляций. Большая часть ни к чему плохому не привела, однако 18 процентов причинили вред разной степени тяжести, в том числе были зафиксированы 4 смертельных случая. Будет доказанная безопасность, будет и доверие. Стандарты — залог доверия По мнению Дмитрия Павлюкова, которое он высказал на форуме, в условиях формирования доверия ключевую роль играет стандартизация в области применения ИИ.
Как отмечает его председатель Сергей Гарбук, в области здравоохранения стандартизация ИИ наиболее актуальна. С одной стороны, высок уровень технологической зрелости, с другой — не менее высок уровень ответственности, связанной с рисками для граждан в результате некорректной работы системы. Поэтому стандарты — это инструмент нахождения компромисса между безопасностью системы новой технологии для людей и простотой продвижения новых технологий на практике. В прошлом году была разработана перспективная программа стандартизации по приоритетному направлению «Искусственный интеллект» на 2021-2024. В ней есть раздел, посвященный стандартам ИИ в области здравоохранения.
Например, с помощью телемедицины и программы mHealth. Кроме того, искусственный интеллект учат распознавать симптомы возникновения злокачественных новообразований, диагностировать нарушения зрения, туберкулез, нарушение работы головного мозга. Примером работы программы выступает сервис Ada. Это мобильное приложение, которое задаёт человеку вопросы, а тот — описывает симптомы, после чего Ada ищет информацию о проблеме и даёт рекомендации. Существуют похожие сервисы, способные указать на заболевания, и даже на сахарный диабет. Для людей, которые выписались из больницы разработано специальное приложение Sense. Набирает популярность генетический анализ с помощью сервиса Sophia Genetics. Так, анализ ДНК даёт возможность выявить предрасположенность человека к некоторым заболеваниям: диабету, язве желудка и другим. Проект MedClueRx позволяет определить, какие лекарственные препараты могут помочь при депрессии, эпилепсии, заболеваниях нервной системы. Сервис ИИ MedWhat способен заменить личного врача — это приложение для мобильного телефона со встроенной функцией распознавания речи. Приложение способно интересоваться самочувствием человека и отвечать на разные вопросы, например: «Как избавиться от головной боли? В ближайшем будущем планируется дать доступ сервису MedWhat к историям болезней пациентов и к генетической информации. Обработка огромных объёмов информации ИИ способен обрабатывать несколько тысяч страниц в секунду при поиске необходимой информации.
Анализируя снимки компьютерной и магнитно-резонансной томографии, маммографии или рентгеновские снимки, нейросети распознают 37 различных заболеваний. В их числе рак легких, пневмония, остеопороз, ишемическая болезнь сердца, инсульт и другие. Точность такой диагностики превышает 95 процентов. Часто искусственный интеллект выявляет патологию на самой ранней стадии, когда врач еще ее не обнаружил. Цифровизация позволяет московским врачам больше времени уделять пациентам — Мэр Эра технологий. Врачи рассказали о новых стандартах в столичном здравоохранении Кроме того, искусственный интеллект помогает врачам-терапевтам поликлиник в постановке диагноза и формировании перечня необходимых исследований.
Врачам и пациентам: как искусственный интеллект помогает в медицине
Искусственный интеллект создал новое лекарство всего за 21 день | Начались клинические испытания первого лекарства, целиком разработанного искусственным интеллектом (ИИ), сообщает CNBC. |
Искусственный интеллект создал новое лекарство всего за 21 день - | Актуальные направления по применению искусственного интеллекта в медицине реализует компания СберМедИИ. |
Искусственный интеллект идет в медицину: успешные бизнес-решения в отрасли | В последнее время появляется все больше новостей о применении искусственного интеллекта (ИИ) в медицине и здравоохранении. |
Применение искусственного интеллекта в медицине
Крупная международная биотехнологическая компания Insilico Medicine объявила о том, что лекарство, которое открыл искусственный интеллект, впервые в мире успешно прошло первую фазу клинических испытаний. Непропорциональное использование искусственного интеллекта у «имущих», в отличие от «неимущих», может увеличить существующий разрыв в состоянии здоровья. Искусственный интеллект (ИИ) в медицине в значительной степени уже сейчас заменяет человека в разработке новых лекарств, диагностике болезней, а также улучшает медицинские услуги в целом.
Роман Душкин: «Медицина — это область доверия»
Кроме того, планируется внедрить проактивный подход, в рамках которого искусственный интеллект будет анализировать медкарты пациентов и выявлять риски возникновения заболеваний. Задача врача в этом случае — инициативная работа с пациентом: позвонить, пригласить на прием, порекомендовать различные формы профилактики заболеваний. Обычной практикой станет телемедицина. Значительную часть несложных проблем со здоровьем можно будет решить онлайн, без личного визита к врачу. Работы много, но все поставленные нами цели абсолютно конкретны и достижимы», — заключил Сергей Собянин.
Тогда как в американском обществе вопрос применения ИИ в медицине стоит более остро: здесь есть противоборство мнений, доли оптимистов и скептиков близки. Врачебные ошибки и безопасность данных Внедрение ИИ в систему здравоохранения сопряжено с рядом этических, технологических сложностей, рисков врачебных ошибок и конфиденциальности. Опрос показал, что по одним аспектам применения ИИ в здравоохранении россияне и американцы совпадают, по другим — расходятся во мнениях. Врачи и пациенты Россияне и американцы по-разному оценивают влияние ИИ на взаимоотношения между пациентом и врачом.
Такие расхождения могут объясняться целым комплексом причин, различиями в культуре и системе здравоохранения стран. В России здравоохранение — это общественная система, основанная на коллективизме и вере в авторитетность врача. А американские пациенты часто ожидают более тесного взаимодействия с врачом и более персонализированного подхода к лечению. Еще одним фактором оптимизма россиян может быть восприятие технологий в целом, их применение часто рассматривается как символ прогресса и успеха, поэтому отношение к ИИ и его влиянию может быть более положительным. В США же система здравоохранения более коммерциализирована, и пациенты могут опасаться, что внедрение ИИ приведет к уменьшению внимания и заботы со стороны врачей.
Этот инструмент помогает на основе жалоб пациента подобрать наиболее вероятные диагнозы, а врач уже решает, соглашаться ли с ними. Третий — чат-бот, собирающий жалобы пациентов на самочувствие перед посещением врача. Он опрашивает пациента и передает данные врачу. Таким образом, врач тратит меньше времени на сбор жалоб и анамнеза. Сервис был запущен в 2021 г. И четвертый — анализ электрокардиограмм. Все взрослые поликлиники в Москве оснастили цифровыми электрокардиографами с ИИ. Как сообщала Ракова, с помощью умного помощника терапевты и врачи общей практики уже поставили более 10 млн предварительных диагнозов, из них с начала этого года — более миллиона. Сегодня умные алгоритмы доступны рентгенологам более чем 150 медицинских организаций, в том числе детских. К концу 2023 г.
Недоверие и интерес бизнеса Несмотря на столь массовое внедрение ИИ в столичное здравоохранение, эксперты отмечают несколько принципиальных проблем. Первая, как это ни странно, недоверие не только пациентов, но самих врачей к нейросетям. Об этом, в частности, говорится в докладе АНО «Цифровая экономика» — «Эффективные решения на базе ИИ в здравоохранении», который есть в распоряжении редакции. Специалисты признают и дефицит кадров, способных эффективно работать со сложными нейросетями. В свою очередь, врач-эксперт Тимур Пестерев считает, что большинство нейросетей имеют достаточно простой в использовании интерфейс. Вы вводите определенные показатели — и нейросеть выдает какие-то вероятности относительно того или иного диагноза. Нейросеть может указывать на определенные ошибки, подсвечивать места, провисающие в диагностике, по принципу «вы сделали все, но не сделали вот это».
В некоторой степени он лишен моральных критериев. Они задаются человеком. Для этого необходимо участие экспертов в наполнении базы, нужны подготовленные с их помощью размеченные выборки данных для обучения нейросетей, оцифрованные порядки и стандарты оказания медпомощи, клинические рекомендации. Сейчас сложно анализировать данные, которые есть в медицинских информационных системах. Как врач на приеме вводит данные в систему? В условиях ограниченного времени на прием нередко встречаются некорректное построение предложений, необщепринятые сокращения, аббревиатуры, использование нестандартных символов, отсутствие разделения слов. Врач понимает, что он написал, и другой врач поймет или догадается, потому что это их предметная область, которую они научились понимать, но, к сожалению, это большие сложности для систем анализа медицинских данных, негативно влияющие на те результаты, которые формирует нам ИИ. Еще одна сложность — большое количество данных, необходимых для обучения. В идеале все данные из истории заболеваний должны быть оцифрованы, информация структурирована. Необходимо учитывать, что методология лечения, сбора отчетных данных, перечень отображаемых в медицинской документации сведений продолжает динамично изменяться, а для разработчиков ИИ это означает, что системы нужно будет время от времени переучивать. И здесь возникает вызов — как научиться делать это быстро. Итак, для корректной работы ИИ нужны «чистые» машиночитаемые данные, подготовленные и размеченные высококвалифицированными специалистами выборки данных для обучения нейросетей, оцифрованные порядки оказания медицинской помощи, клинические рекомендации и стандарты оказания медицинской помощи. При смене методологии медицинские информационные системы тоже начинают наполняться новыми данными только с появлением утвержденных изменений в методологии диагностики, лечения, наблюдения пациента и т. Симбиоз или противостояние? Если мы смотрим на искусственный интеллект глазами разработчика, то видим набор алгоритмов и математических методов, которые могут обучаться на данных, анализировать изображения, искать неочевидные связи и сходства в огромных массивах данных, обнаруживать различия там, где естественный интеллект может просто их не заметить. Но для врача работа искусственного интеллекта — это черный ящик. Врачу непонятно «мышление» системы и то, как ИИ получил итоговый результат. Формировать доверие медицинских работников к ИИ возможно, объясняя базовые алгоритмы его работы и то, на каких данных обучаются системы.