В первые мгновения своего существования материя во Вселенной была максимально однородной и равномерно распределялась по небольшому пространству. Все это означает, что то, что находится за пределами Вселенной, остается загадкой. Первые же снимки космического телескопа "Джеймс Уэбб" произвели сенсацию и заставили усомниться в правильности общепринятой теории образования Вселенной. И пока научный мир бьется над этой неразрешимой задачей, мы разберем самые интересные и удивительные теории о том, где находится край Вселенной. Вся вселенная находится на горизонте событий, ничто за 13.7 миллиардов лет не может пройти расстояние больше чем 13.7 миллиардов световых лет.
Послание Вселенной для землян: астрологи запечатлели удивительный космический объект
На этих высотах вид из иллюминатора почти как в околоземном космосе, но спутники здесь не летают, небо тёмно-фиолетовое и чёрно-лиловое, хотя и выглядит чёрным по контрасту с яркими Солнцем и поверхностью. Яркость неба днём в 20—40 раз меньше яркости на уровне моря [30] , как в центре полосы полного солнечного затмения и как в сумерки , когда Солнце ниже горизонта на 2—3 градуса и могут быть видны планеты. Тогда не знали о стратосфере и обратном подъёме температуры. Высота однородной атмосферы над этим уровнем 95—100 м [36] [34]. Тем не менее этот разреженный воздух способен ветрами поднять пыль, окрашивающую спокойное марсианское небо в жёлто-розовый цвет с яркостью в сто раз больше расчётной при отсутствии пыли [39]. На Земле подобного эффекта нет и небо остаётся темным, поскольку пыль на такую высоту не поднимается.
Она плоская из-за того, что параллельные линии на ней не пересекаются, однако, цилиндр конечен. Так и Вселенная может иметь ограниченный объем и быть замкнутой в саму себя. Так как в ближайшее время мы не поймем точно, где у Вселенной границы, и что есть за ними, то существуют всего лишь попытки объяснить это с помощью теорий. Одна из них предполагает, что где-то далеко находится Супервселенная — такое бесконечное пространство, где наша Вселенная будет расширяться вечно. А еще у нее есть соседи, такие же вселенные, как и она. Почему мы их не видим? Потому что они очень далеко, и свет от них не достигает нас. По другой теории за пределами нашей Вселенной есть другая вселенная, пространственно-временная. В ней много измерений, а внутри нее расширяется наша Вселенная. Мы не можем ее выявить или увидеть, поскольку она имеет «высшее» измерение. Существует еще много подобных теорий, и все они объясняют только наличие пространства и времени, а не их отсутствие. Ведь пространство-время появилось с возникновением нашей Вселенной. То есть, за пределами Вселенной нет ни скорости света, ни массы, ни одного из законов физики, в том числе и квантовой, ни самого времени и пространства. Четырехмерное измерение Однако если представить, что наша Вселенная является замкнутой, то мы даже достичь его края не сможем, а не то чтобы постичь.
Но возможно ли подобное на самом деле? Неужели теория, предполагающая одновременное существование множества планет и вселенных, практически неотличимых друг от друга, реальна? Разобрались, что об этом говорит наука. Спойлер: противников у теории больше, чем последователей. Мультивселенной больше 2 тыс. Так, некоторые источники приписывают первоначальную идею о существовании «бесконечных миров» еще древнегреческому философу Анаксимандру, родившемуся в 610 году до нашей эры. Анаксимандр Далее о «бесконечности миров» задумывалось еще несколько древнегреческих мыслителей: сохранились работы Левкиппа и его последователя, Демокрита, в которых, кроме прочего, обсуждается концепция «бесчисленных миров». Оба философа жили в V веке до нашей эры, их мысли не были забыты философами и два столетия спустя. В общем, концепции мультивселенной хотя в те времена такое название точно не использовалось порядка 2,5 тыс. Относительно широко — в буддизме концепция множественных миров упоминается в Типитаке — собрании священных текстов и индуизме в Пуранах, текстах древнеиндийской литературы на санскрите. В более современном и, что важнее, не столько философском, сколько научном понимании о мультивселенной вспомнили к концу XIX века — термин появился в 1895 году благодаря психологу Уильяму Джеймсу, хотя он использовал его в немного ином контексте. Эрвин Шредингер В 1952 году на конференции в Дублине о принципе суперпозиции квантовая механика заговорил физик-теоретик Эрвин Шредингер. Да, тот самый, известный благодаря мысленному эксперименту о суперпозиции живого и мертвого кота, что выглядит довольно абсурдно с точки зрения здравого смысла речь про знаменитого кота Шредингера. Инфляционная модель, или Что происходило в секунду после Большого взрыва Что вообще понимается под мультивселенной? В сети дается такое определение: «Мультивселенная, или метавселенная, — гипотетическое множество всех возможных реально существующих параллельных вселенных включая ту, в которой мы находимся. Представления о структуре мультивселенной, природе каждой вселенной, входящей в ее состав, и отношениях между этими вселенными зависят от выбранной гипотезы». Если отбросить упомянутые «гражданские» представления которые на протяжении веков давали философы, религиозные деятели, фантасты и другие и сосредоточиться на реальных областях физики, больше всего с мультивселенной связана инфляционная модель вселенной. Алан Гут Впервые ее предложили в 1960-х годах, а активнее всего продвигали и дорабатывали в 1980-х силами сразу нескольких исследователей: Алана Гута, Андрея Линде, Пола Стейнхардта, Энди Альбрехта.
Руководствуясь этим фактом и положениями теории относительности ученые пришли к принятому сегодня значению возраста Вселенной. Известно, что наше пространство постоянно расширяется и самый дальний его край соответствует времени начала Большого взрыва. На сегодня самая далекая область, что ученые могут видеть — это поверхность последнего рассеяния. Именно оттуда приходят фотоны реликтового излучения, которое возникло почти сразу после Большого взрыва. Поверхность последнего рассеяния отражает момент, когда Вселенная стала прозрачной для излучения.
Что находится за пределами Вселенной. Тайны космоса что находится за пределами вселенной
А значит, за ее границами тоже что-то существует. Согласно теории Большого взрыва, наша Вселенная за долю секунды расширились до огромных масштабов. И продолжила расширяться до сих пор. В первые мгновения жизни Вселенной зародились все основные физические константы масса и заряд частиц и т п , которые и определяют устройство нашего мира. Но где была та самая точка, из которой пошел Большой взрыв, и что находится за границами нашей Вселенной - эта теория не объясняет. Так появилась так называемая теория Мультивселенной. Я ее называю смелой и любопытной попыткой объяснить существование нашего мира, не привлекая идеи о Боге. Причем тут Бог? Ответ на этот вопрос я попытаюсь дать в конце статьи.
Это умозрительная теория, доказать которую сейчас нет никакой возможности. Да и в ближайшие миллионы лет вряд ли получится - слишком глобальный вопрос. Для этого надо иметь возможность взглянуть на нашу Вселенную со стороны. Поэтому теория Мультивселенной - это больше философия, чем физика, хотя в ее фундаменте и лежат данные современной астрофизики. Эту теорию разделял Стивен Хокинг, ей и была посвящена последняя статья этого великого ученого.
Читайте последние новости высоких технологий, науки и техники. Перепечатка материалов без согласования допустима при наличии активной ссылки на страницу-источник. Направляя нам электронное письмо или заполняя любую регистрационную форму на сайте, Вы подтверждаете факт ознакомления и безоговорочного согласия с принятой у нас Политикой конфиденциальности.
Согласно теории Большого взрыва, наша Вселенная за долю секунды расширились до огромных масштабов. И продолжила расширяться до сих пор. В первые мгновения жизни Вселенной зародились все основные физические константы масса и заряд частиц и т п , которые и определяют устройство нашего мира. Но где была та самая точка, из которой пошел Большой взрыв, и что находится за границами нашей Вселенной - эта теория не объясняет. Так появилась так называемая теория Мультивселенной. Я ее называю смелой и любопытной попыткой объяснить существование нашего мира, не привлекая идеи о Боге.
Причем тут Бог? Ответ на этот вопрос я попытаюсь дать в конце статьи. Это умозрительная теория, доказать которую сейчас нет никакой возможности. Да и в ближайшие миллионы лет вряд ли получится - слишком глобальный вопрос. Для этого надо иметь возможность взглянуть на нашу Вселенную со стороны. Поэтому теория Мультивселенной - это больше философия, чем физика, хотя в ее фундаменте и лежат данные современной астрофизики.
Эту теорию разделял Стивен Хокинг, ей и была посвящена последняя статья этого великого ученого. Умозрительные теории тоже имеют право на жизнь.
По вечерам северное сияниеможно было увидеть даже на юге Колумбии. Как правило, эти огни видны только в более высоких широтах, в северной Канаде, Скандинавии и Сибири.
Что находится за пределами нашей Вселенной: 5 теорий
Вокруг этой звезды вращается экзопланета, очень напоминающая нашу Землю — Проксима Центавра b Proxima b , и находится она в так называемой зоне обитаемости. Это значит, что на этой экзопланете, возможно, есть все условия для зарождения там жизни. Открытие Проксимы Центавра b стало настоящей сенсацией для астрофизиков. Увы, скорее всего Проксима b была почти полностью выжжена. В марте 2017 года исследователям довелось пронаблюдать за новым феноменом. Всего за 10 секунд красный карлик стал ярче в 1000 раз, что указывает либо на катастрофическую вспышку, либо на какие-то внеземные испытания мощнейшего оружия уфологии не дремлют. Масса у Проксимы Центавра небольшая, но вспышка была в 10 раз мощнее, чем самые сильные известные нам всплески солнечной активности … Экзопланете Проксима b теоретически около 4,85 миллиарда лет, так что она, скорее всего, пережила уже бесчисленное множество таких ударов. Если это верно, то атмосфера и вода на этой экзопланете уже давно были уничтожены сильнейшим воздействием звездной радиации. Выходит, что ученым вряд ли удастся обнаружить там признаки жизни, а ведь у них на это были такие большие надежды… 8. Оказывается, звезд-гигантов в мире невероятно много Фото: npr. Вдобавок ученым пришлось пересмотреть свое понимание самого термина звезда-гигант.
Ранее было принято считать, что самые крупные звезды имеют массу до 200 солнечных, но теперь этот лимит пришлось поднять до целых 300. Это звучит угрожающе и невероятно завораживает… 7. Открытие абсолютно нового вида планет Фото: ucdavis. По крайней мере так мы считали раньше. Но новое открытие пополнило этот ряд третьим видом — синестетическим, или небесным телом, окруженным огромным облаком из испаряющихся частиц породы, которое по форме напоминает гигантский эритроцит. Эти причудливые монстры появились вследствие катастрофических столкновений двух быстро вращающихся космических объектов, размеры которых сопоставимы с обычной планетой. После удара кинетический момент этих тел не только сохраняется, но и провоцирует объединение их обломков в одно общее скопление расплавившегося дебриса обломочный материал , не отличающегося ни твердой, ни жидкой поверхностью. Невероятно, но во Вселенной теоретически существует очень распространенный и совершенно новый для нас вид планетных тел, которые мы раньше никогда не замечали. Вероятно, мы до сих пор пребывали в полном неведении только потому, что цикл жизни этих синестетических планет длится не так долго — до 100 лет, а ведь это ничтожно мало в масштабах бесконечного и безвременного космоса.
Во-вторых, телескоп получит возможность быстро менять ориентацию, чтобы получать изображения переходных процессов: взрывов сверхновых, слияния звёзд, джеты чёрных дыр и нейтронных звёзд и других энергетических явлений. Это станет ценнейшим дополнением к гравитационно-волновым наблюдениям неба, когда крайне сложно выявить источник гравитационной волны. При обзоре неба в ультрафиолете мы сможем увидеть самые горячие объекты в ней. Прежде всего, это молодые и старые звёзды, когда процессы в ядрах находятся на критических стадиях активности. Также данные в ультрафиолетовом диапазоне позволят увидеть галактики с низким содержанием металлов и ряд других объектов. Телескоп будет рассчитан на два года научной работы. Главные детали миссии уже проработаны, как и есть технико-экономическое обоснование проекта. Через год-два должно стартовать производство аппарата и его научных приборов. Что появилось раньше? Мы видим, как массивные звёзды превращаются в чёрные дыры — это доказанный факт. Одновременно с этим мы замечаем в ранней Вселенной присутствие сверхмассивных чёрных дыр, которые просто не успели бы вырасти до регистрируемых масс. Источник изображения: The Astrophysical Journal Letters На днях в журнале The Astrophysical Journal Letters была опубликована работа , в которой группа учёных из Университета Джона Хопкинса в США и Университета Сорбонны во Франции собрала данные «Уэбба» по обнаруженным в ранней Вселенной чёрным дырам и представила больше доказательств в пользу гипотезы об одновременном рождении звёзд и чёрных дыр. Эти данные будут набираться и дополняться новыми наблюдениями, что позволит со временем создать стройную теорию эволюции объектов во Вселенной и её самой. Учёные обратили внимание, что «Уэбб» обнаружил одну сверхмассивную чёрную дыру через 470 млн лет после Большого взрыва, а другую — через 400 млн лет. Масса последней была определена на уровне 1,6 млн солнечных. Она находилась в центре галактики, которая была легче, чем дыра в её сердцевине. Чёрная дыра подобной массы не могла вырасти до фиксируемого значения. Из того, что мы наблюдали, чёрные дыры возникали после коллапса умирающих звёзд массой свыше 50 солнечных. Ничего подобного в ранней Вселенной не могло произойти, чтобы проявился наблюдаемый там эффект — крошечная галактика, собранная вокруг СЧД. Исследователи делают вывод, что первичные чёрные дыры образовались одновременно с первыми звёздами или чуть раньше из облаков первичной материи. Центры облаков коллапсировали и возникшая в каждом из них чёрная дыра начинала испускать ветер, запускающий и ускоряющий процесс звездообразования. Фактически первичные чёрные дыры стали тем инструментом, который собрал и превратил галактики в те структуры, которые мы наблюдаем. Как показало моделирование, иногда это может быть не так и планета на ранних стадиях зарождения вполне может оказаться достаточно плоской формы. Источник изображения: ИИ-генерация Кандинский 3. В целом преобладает мнение, что от начала до конца зародыш планеты растёт равномерно и имеет шарообразную форму. Менее поддержана гипотеза так называемого нестабильного диска: на ранних стадиях эволюции центральная область зарождающейся планеты имеет скорее плоскую форму, чем сферическую. Когда-нибудь наши телескопы станут достаточно чувствительными, чтобы напрямую изучать планеты на всех этапах их эволюции. В принципе, на примере планет-гигантов это можно делать уже сейчас, достаточно найти подходящих кандидатов. Кстати, космический телескоп им. Джеймса Уэбба занимается, в том числе, и такой задачей. Но пока достаточных для наблюдения данных нет, приходится проводить моделирование на компьютере. Моделирование протопланеты, формирующейся методом нестабильного диска. Вид сверху и сбоку Источник изображения: UCLan Моделирование показало, что когда планеты формируются с помощью процесса нестабильности диска, они не демонстрируют равномерный сферический рост. Наоборот, на полюсах в таких случаях собирается больше вещества, чем в экваториальной зоне, что превращает их в «сплюснутый сфероид» или, говоря проще, на этом этапе формирования молодая планета похожа на сильно приплюснутое яйцо. В итоге она всё равно становится сферической формы, но определённый этап с некоторой натяжкой может считаться периодом плоской земли. Статья опубликована в одном из самых престижных астрономических журналов — Astronomy and Astrophysics Letters. Сверхмассивная чёрная дыра СЧД в центре галактики Markarian 817 около года испускала сверхбыстрый ветер из частиц, оставаясь при этом в стадии средней активности. Раньше подобное наблюдалось только для сверхактивных СЧД и случалось крайне редко. Художественное представление чёрной дыры, испускающей ветер из заряжённых частиц. Это прекращает звездообразование и, по сути, определяет облик и судьбу галактики-хозяина. Для астрономов важно наблюдать подобные явления, что позволяет выяснить механизм взаимодействия СЧД и приютившей её галактики и, в конечном итоге, больше узнать об эволюции этих объектов и Вселенной. Галактика Markarian 817 на удалении 430 млн световых лет от нас с СЧД массой 81 млн солнечных явно выделилась на фоне всех остальных событий такого рода. Об активности чёрной дыры в её центре отчётливо должно было сигнализировать рентгеновское излучение, испускаемое перегретым веществом в аккреционном диске. Как позже оказалось, ветер от чёрной дыры блокировал рентгеновское излучение, и по факту оно было достаточно сильным. Анализ данных показал, что активность наблюдалась по обширному пространству аккреционного диска, что привело к образованию, как минимум трёх отдельных потоков ветра из заряжённых частиц, каждый из которых развил скорость до нескольких процентов от скорости света в вакууме. Это продолжалось около года и особым образом дало понять, как чёрные дыры и галактики могут влиять друг на друга. Тот факт, что Markarian 817 создавал эти ветры около года, не находясь в особо активном состоянии, предполагает, что чёрные дыры могут изменять форму своих галактик-хозяев гораздо сильнее, чем считалось ранее», — сообщили авторы исследования в статье, опубликованной в журнале Astrophysical Journal Letters. В галактиках других типов эти процессы не встречаются, но, как показало новое исследование, мы просто не умели находить такие события. Астрономы из США показали пример , как случаи «жестокой расправы» чёрных дыр со звёздами обнаруживать повсеместно. Приливное разрушение звезды чёрной дырой в представлении художника. Kornmesser Когда звезда оказывается в опасной близости от чёрной дыры, она теряет большую часть своего вещества в процессе так называемого приливного разрушения. Вещество звезды образует диск вокруг чёрной дыры и запускает процесс аккреции вещества — его падение на чёрную дыру. Гравитация, трение и нагрев вещества вызывают выбросы энергии как от внутренней стороны аккреционного диска, так и с полюсов чёрной дыры, куда вещество из диска забрасывается мощными магнитными полями этого объекта. Эти выбросы энергии мы регистрируем в основном в оптическом и рентгеновском диапазонах.
Буквально на прошлой неделе появились результаты исследования, которые, возможно, помогут решить проблему "напряжения Хаббла". Однако эта тема по-прежнему является предметом жарких дискуссий среди астрономов. Кроме того, существует проблема "темных потоков" - космического явления, связанного с необъяснимым движением большого количества галактических кластеров в одном направлении. Ученые обнаружили, что скорость движения этих потоков в четыре раза выше, чем предсказывает стандартная модель космологии. Напряжение Хаббла стремится к нулю - учёные приблизились к разгадке одной из главных тайн Вселенной И он далеко не единственный, кто так считает. Индранил Баник, исследователь из Университета Сент-Эндрюс в Великобритании, занимающийся изучением войда KBC, говорит, что напряженность Хаббла, проблема темных потоков и космические пустоты, подтверждают существование космологического кризиса. По его словам, исправить ситуацию, придерживаясь стандартной модели, "невозможно", поэтому пришло время искать другие решения. Вариантов здесь только два. Баник и его коллеги недавно проанализировали первый из этих вариантов, подкорректировав старую идею - модифицированную ньютоновскую динамику MOND. Согласно этой гипотезе на очень больших расстояниях - например, на периферии галактик - сила тяготения между двумя объектами изменяется по законам, отличным от классической теории тяготения Ньютона. Они вычислили, как MOND может изменить "наше местное окружение", предположив, что мы живем в пустоте, в которой на 20 процентов меньше материи, чем в среднем по космосу. Исследователи пришли к выводу, что это закономерно приведет к тому, что местный Войд будет расширяться быстрее, поскольку материя - включая сверхновые и галактики, используемые для измерения расширения Хаббла - будет постоянно "вытекать" из этого региона, гравитационно притягиваясь к более плотным структурам, находящимся за пределами нашей пустоты. Таким образом, живя в пустоте, мы в конечном итоге получаем завышенную оценку скорости расширения космоса. Более того, эта модель совпала с последними данными по темным потокам. Для Лопес эти результаты интересны тем, что они потенциально могут объяснить найденные ею гигантские структуры. Тем не менее, MOND - довольно спорная гипотеза, поскольку она отвергает существование темной материи - идею, которая хорошо подтверждается наблюдениями. Вместе с тем Баник подчеркивает, что не считает свою работу решением проблемы как таковой. Скорее, по его словам, она иллюстрирует, что некоторые изменения в стандартной космологической модели могут позволить ускорить процессы формирования гигантских космических структур. Баник считает, что для этого достаточно лишь слегка "подкорректировать" законы общей теории относительности, так чтобы гравитация стала чуть сильнее на расстояниях свыше миллиона световых лет, но не настолько, чтобы это повлияло на все остальное в стандартной модели, включая темную материю. Впрочем, пишет эксперт, сила гравитации на таких масштабах пока не проверялась. Не исключено, что "менее заметная" материя может группироваться совершенно иначе, возможно, создавая крупномасштабные структуры или зияющие пустоты гораздо чаще, чем мы думаем. Если это так, то войды не такая уж редкость. Одна из гипотез предполагает, что темная материя тянется нитями по всему космосу. Стандартная космологическая модель предполагает, что темная материя "холодная", то есть медленно движущаяся и почти не взаимодействующая с обычной материей или светом, кроме как через гравитацию. Но некоторые космологи утверждают, что темная материя может быть "горячей", движущейся со скоростью, близкой к скорости света. Согласно этой модели, космические структуры растут иерархически: мелкие объекты объединяются в более крупные. В таком случае темная материя должна состоять из безмассовых частиц, таких как нейтрино.
При этом они скорректировали разделы, чтобы они по-прежнему функционировали как единое целое. Код, отвечающий за упаковку инженерных данных, был отправлен в новое место в памяти FDS 18 апреля. Радиосигналу требуется около 22,5 часа, чтобы достичь "Вояджера-1", который находится на расстоянии более 24 млрд км от Земли, и еще столько же, чтобы прийти обратно на Землю. Когда 20 апреля команда получила ответ от космического корабля, впервые за пять месяцев она смогла проверить исправность и состояние зонда. В ближайшие недели специалисты переместят другие затронутые части программного обеспечения FDS.
Где край у Вселенной? Астроном отвечает на наивные вопросы о космосе
Она находится в южном созвездии Эридана на расстоянии 1 000 световых лет от Солнца. Рубрика Вселенная расскажет о современных открытиях в рамках космического пространства. В разработке находится OPEN — игра во вселенной «Первому игроку приготовиться». Ученые нашли в космосе возможные «порталы» в отдаленные районы Вселенной. А зачем, за краем вселенной находятся миллиарды точно таких же вселенных как и наша и что находится за их пределом?
Содержание
- Последние выпуски
- Мультивселенная действительно существует? Что об этом думали Стивен Хокинг и другие ученые
- Что находится за пределами Вселенной? Устройство Вселенной. Тайны космоса
- Есть ли предел космосу?
Вселенная – последние новости
В одной из первых галактик Вселенной нашли сверхактивную черную дыру. Этот факт означает, что, возможно, за пределами наблюдаемой Вселенной лежит еще огромное пространство, скрытое от нас пределом скорости света. «Где-то под «сердцем» Плутона находятся осколки массивного тела, которое он так и не смог полностью переварить». В разработке находится OPEN — игра во вселенной «Первому игроку приготовиться». На рисунке справа в кубической вырезке из Вселенной видны многие сотни больших и малых войдов, расположенных, как пузыри в пене, между многочисленными галактическими нитями.
Что находится за пределами вселенной и есть ли у вселенной конец?
Поскольку мы знаем, что возраст Вселенной составляет 13,8 млрд лет, мы возвращаемся почти к самому началу». Исследователи скоро начнут узнавать больше о массе, возрасте, истории и составе галактик, поскольку «Уэбб» ищет самые ранние галактики во Вселенной. Телескоп, запущенный 25 декабря прошлого года из Французской Гвианы, будет исследовать Вселенную в инфракрасном диапазоне, что позволит ему проникать сквозь облака газа и пыли, где рождаются звезды. Его предшественник «Хаббл» с момента запуска в 1990 году работал преимущественно в оптическом и ультрафиолетовом диапазонах волн.
В настоящее время самые ранние космологические наблюдения относятся к периоду в пределах 330 млн лет от Большого взрыва, но благодаря возможностям «Уэбба» астрономы считают, что они легко побьют этот рекорд. У телескопа гигантское золотое зеркало размером чуть более 6,5 м в поперечнике, состоящее из 18 отдельных шестиугольных сегментов, которые могут складываться и раскладываться. Они медленно и тщательно раскладывались в течение последних шести месяцев, чтобы подготовить «Джеймс Уэбб» к научной миссии.
Рабочая температура обсерватории и большинства ее приборов составляет примерно 40 Кельвинов — около минус 233 градусов Цельсия. А еще они надеются, что он ответит на некоторые вопросы, о которых мы даже не подозреваем. Все изображения NASA.
Читайте также.
Внутренние жидкости ещё не кипят, так как тело генерирует достаточно внутреннего давления, но могут начать кипеть слюна и слёзы с образованием пены, набухать глаза. На этих высотах вид из иллюминатора почти как в околоземном космосе, но спутники здесь не летают, небо тёмно-фиолетовое и чёрно-лиловое, хотя и выглядит чёрным по контрасту с яркими Солнцем и поверхностью. Яркость неба днём в 20—40 раз меньше яркости на уровне моря [30] , как в центре полосы полного солнечного затмения и как в сумерки , когда Солнце ниже горизонта на 2—3 градуса и могут быть видны планеты. Тогда не знали о стратосфере и обратном подъёме температуры. Высота однородной атмосферы над этим уровнем 95—100 м [36] [34]. Тем не менее этот разреженный воздух способен ветрами поднять пыль, окрашивающую спокойное марсианское небо в жёлто-розовый цвет с яркостью в сто раз больше расчётной при отсутствии пыли [39].
Единой точки зрения, является ли Вселенная действительно бесконечной или она конечная в пространстве и объёме, не существует. Однако, мы можем рассмотреть наиболее правдоподобные теории об этом. Имеет ли Вселенная границы? Несмотря на множество исследований, учёные до сих пор не вполне уверены, бесконечна ли наша Вселенная или просто она очень велика. Чтобы определиться между этими двумя вариантами, астрономы смотрят на кривизну пространства-времени на масштабах всей Вселенной. На столь больших масштабах она говорит о самой форме нашей Вселенной, и если она геометрически совершенно плоская, то она может быть по-настоящему бесконечной. Можно подумать, будто это означает, что Вселенная бесконечна, но всё не так просто. Даже в случае плоской Вселенной космос необязательно должен быть бесконечно велик. Если, например, взять поверхность цилиндра, она геометрически является плоской, ведь параллельные линии на её поверхности не пересекаются, но при этом цилиндр имеет конечный размер.
В качестве примера исследователь приводит ядра с протонами и нейтронами с разными зарядами, но достаточно близкими по массе частицами. Если бы соотношение масс между ними различалось всего на процент, то вся жизнь вокруг была бы другой. Законы физики, соответственно, тоже. На стыке между физикой и философией есть антропный принцип. Грубо говоря, его суть в том, что жизнь устроена именно так, потому что иначе никакой жизни бы не было. Перемещаться между мирами в мультивселенной возможно? Ответ на этот вопрос, в отличие от законов физики, более однозначен, причем по версиям разных исследователей. Даже если принять факт существования «мультиверса» правдивым в том или ином виде, о перемещении между мирами, как это зачастую происходит в комиксах, с научной точки зрения речь можно вести вряд ли. Кадр с перемещением между вселенными из фильма «Доктор Стрэндж: В мультивселенной безумия» Томас Хертог, работавший вместе с Хокингом, в комментарии для BBC добавил: «Один из волнующих выводов теории в том, что она может помочь исследователям обнаружить следы параллельных вселенных в нашей. Это возможно сделать, изучая микроволновые следы Большого взрыва. Но каким-то образом перескочить из одной вселенной в другую вряд ли получится». Другие теории склоняются примерно к тем же выводам. Параллельные вселенные при условии их существования быстро расширяются — это же происходит и с нашей. А перспектива добраться до ее края практически нулевая, так что «соседний» мир повлиять на нас не сможет: если он и существует, то находится чрезмерно далеко. Один из основных аргументов противников моделей существования мультивселенной заключается в невозможности проверить описанные выше теории экспериментально, а значит, и доказать их. Британский космолог Джордж Эллис в комментарии для журнала Scientific Reports заявлял, что сама идея о параллельных вселенных зачастую используется ее сторонниками как «универсальное объяснение природы нашего существования, не имеющей проверяемой подоплеки». В общем, описанные выше умозаключения лишь теоретические и подразумевают слишком много «если» и «возможно».
Из глубин Вселенной: ожил космический зонд, запущенный в межзвездное пространство в 1977 г
Многие слышали, что диаметр видимой Вселенной составляет 93 млрд световых лет и видели картинки, изображающие нашу Вселенную также как на изображении внизу. В самых отдаленных уголках Вселенной астрономы сделали потрясающее открытие: квазар, питаемый сверхмассивной черной дырой, наблюдался в том виде, в каком. По теме: Телескоп Джеймса Уэбба обнаружил самую маленькую "несостоявшуюся звезду" во Вселенной в скоплении, полном загадочных молекул. Top Day News» Новости Науки и техники» Новости науки» Астрономы объяснили, что находится за пределами видимой Вселенной. Но существует целый ряд теорий, объясняющих, что находится за пределами нашей Вселенной.
Что находится за пределами космоса?
В целом поиск жизни во Вселенной не лишён смысла, и здесь я люблю приводить пример одного процента. Путешествие к самым странным объектам во вселенной. РБК Life рассказывает, что на данный момент ученым известно о Вселенной и Солнечной системе. Сегодня мы видим Вселенную в том виде, в котором она существует спустя 13,8 миллиарда лет после горячего Большого взрыва. Если мяч находится в долине, он не движется, имеет низкую энергию и находится в стабильной Вселенной, потому что сильный толчок заставил бы его откатиться. Многие слышали, что диаметр видимой Вселенной составляет 93 млрд световых лет и видели картинки, изображающие нашу Вселенную также как на изображении внизу.