Новости брест 300 северск

В Северске стартовало строительство уникального энергоблока БРЕСТ-ОД 300.

Архив метки: Брест-300

Начало его возведения, как и ранее, запланировано на 2025-2026 годы. Общий объем инвестиций в проект по состоянию на сентябрь 2022 года оценивался в 240 млрд рублей. Реализация проекта ведется на территории АО "Сибирский химический комбинат", который расположен в Северске Томской области.

Наталья Ильина Директор по управлению научно-техническими программами и проектами — директор департамента научно-технических программ и проектов госкорпорации «Росатом»: — Проектное направление «Прорыв» — одно из ключевых в федеральном проекте «Новая атомная энергетика» в составе комплексной программы РТТН. Государственное финансирование осуществляется из средств федерального бюджета. Оно в основном используется для реализации проектов с длительными сроками окупаемости. В настоящее время завершаются НИОКР, связанные со стендовым экспериментальным подтверждением заявленных в проекте характеристик, обоснований безопасности, верификации и валидации кодов, а также обоснования работоспособности и ресурса оборудования. В частности, можно отметить предстоящее полномасштабное моделирование активной зоны реакторной установки РУ БРЕСТ-ОД-300 на комплексе быстрых физических стендов в Обнинске, завершение НИОКР по технологии свинцового теплоносителя, в том числе по датчикам контроля кислорода в свинце. Среди них подготовка программ исследований на стадиях физического и энергетического пуска реактора БРЕСТ-ОД-300, получение основных характеристик реактора на мощности, которые невозможно получить на стендах, демонстрация замыкания ядерного топливного цикла с рециклом топлива и затем с трансмутацией минорных актинидов, с выходом в равновесный режим с малым запасом реактивности. Особое внимание, конечно, будет уделено и экспериментальной отработке технологии свинцового теплоносителя.

Идет разработка коммерческого свинцового реактора БР-1200. Для дальнейшего совершенствования быстрых реакторов со свинцовым теплоносителем по основным показателям, характеризующим безопасность и экономическую эффективность, проводятся дополнительные НИОКР. Надо добиться увеличения срока эксплуатации основного оборудования с 30 до 60 лет , провести масштабирование части основного оборудования из-за увеличения мощности установки, обосновать конструкционные материалы и изделия активной зоны для условий повышенного уровня выгорания топлива. Однако, как показало рассмотрение на НТС, существует дополнительный потенциал улучшения экономики, с одной стороны, а также необходимость доказательства конкурентоспособности в «железе», с другой. НИОКР в направлении дальнейшего улучшения технико-экономических характеристик блока с РУ БН-1200М не прекращаются и должны получить дальнейшее развитие при доработке проекта указанного энергоблока. Перед реакторами на быстрых нейтронах ставится также задача обеспечения конкурентоспособности не только в рамках ядерной отрасли, но и с другими источниками энергии. Работы в этом направлении также не прекращаются как применительно к БН-1200М, так и к новому проекту коммерческого энергоблока со свинцовым реактором БР-1200 в рамках разработки промышленного энергокомплекса ПЭК. Топливо: от разработки до переработки Юрий Мочалов: В мире сейчас отсутствует промышленное производство смешанного нитридного уран-плутониевого СНУП топлива и не осуществляется эксплуатация таких твэлов. Основной акцент в этих исследованиях сделан на лабораторных методах получения требуемых показателей чистоты нитрида по кислороду и углероду, исследованиях дореакторных характеристик и получении данных по реакторному поведению топлива, необходимых для расчетного обоснования работоспособности твэлов в условиях работы реакторов на быстрых нейтронах.

К началу реализации проекта «Прорыв» мировой опыт по облучению смешанного уран-плутониевого нитридного топлива был ограничен 150—200 твэлами, включая и наши экспериментальные твэлы, исследованные в реакторе БОР-60.

Новый конкурентоспособный продукт должен обеспечить лидерство российских технологий в мировой атомной энергетике. Северск объединяет четыре завода по обращению с ядерными материалами. Одно из основных направлений работы СХК — обеспечение потребностей атомных электростанций в уране для ядерного топлива. Топливный дивизион Госкорпорации «Росатом» Топливная компания Росатома «ТВЭЛ» включает предприятия по фабрикации ядерного топлива, конверсии и обогащению урана, производству газовых центрифуг, а также научно-исследовательские и конструкторские организации. Являясь единственным поставщиком ядерного топлива для российских АЭС, «ТВЭЛ» обеспечивает топливом в общей сложности более 70 энергетических реакторов в 15 государствах, исследовательские реакторы в девяти странах мира, а также транспортные реакторы российского атомного флота.

Каждый шестой энергетический реактор в мире работает на топливе «ТВЭЛ».

Ранее госкорпорация называла плановым сроком запуска 2026-2027 годы. Также определен более точный срок запуска модуля переработки отработавшего ядерного топлива - предполагается, что он будет введен в 2030 году ранее сообщалось о горизонте после 2029 года.

Начало его возведения, как и ранее, запланировано на 2025-2026 годы.

Сделано в России

Строители работали круглосуточно. Бетонированию фундамента реакторной установки предшествовали научно-исследовательские работы, были тщательно изучены свойства бетона, которые обязаны обеспечить необходимое качество фундамента реактора. В мае 2021 года, перед началом заливки первого бетона, был создан макет фундаментной плиты, где эксперты протестировали качество швов между бетонными блоками.

Охрана труда Авторское право на систему визуализации содержимого портала iz. Указанная информация охраняется в соответствии с законодательством РФ и международными соглашениями. Частичное цитирование возможно только при условии гиперссылки на iz.

Охрана труда Авторское право на систему визуализации содержимого портала iz. Указанная информация охраняется в соответствии с законодательством РФ и международными соглашениями. Частичное цитирование возможно только при условии гиперссылки на iz.

Но цель тогда у атомщиков была одна — создание атомной бомбы, мирный атом возник, по сути, как продукт побочный. Сегодня же вся мировая атомная энергетика работает над решением главной задачи — обеспечить человечество чистой, безопасной и бесконечной энергией. А российские атомщики уже готовят настоящую энергетическую революцию. О строительстве уникального энергоблока с реактором на быстрых нейтронах, о неиссякаемом источнике безопасной атомной энергии и о том, почему небольшой сибирский город Северск становится одной из мировых атомных столиц, — в материале «Ленты. Энергия без границ По словам генерального директора госкорпорации «Росатом» Алексея Лихачева, к этому историческому событию-повороту наука и практика двигались 60 лет. Ведь идеи замыкания ядерного топливного цикла были высказаны еще советским физиком Александром Лейпунским и поддержаны академиком Курчатовым после запуска первой атомной электростанции в Обнинске. Так что над созданием замкнутого ядерного топливного цикла, когда на отработавшем в реакторах существующих АЭС топливе работают реакторы нового поколения, ведущие ядерщики планеты бьются уже не одно десятилетие.

Подрядчики начали строить ЛЭП под реактор БРЕСТ-300 в Северске

Строительство первого в мире энергоблока нового поколения БРЕСТ-ОД-300 с реакторной установкой на быстрых нейронах стартовало городе Северске Томской области. В Северске в составе опытного демонстрационного энергокомплекса (ОДЭК) появится реакторная установка "БРЕСТ-ОД-300" с пристанционным ядерным топливным циклом, а также производство уран-плутониевого (нитридного) топлива для реакторов на быстрых нейтронах. В составе реакторной установки «БРЕСТ-ОД-300» будут работать восемь парогенераторов массой 72 тонны каждый.[33]. В Северске Томской области на площадке Сибирского химического комбината (предприятие Топливной компании Росатома «ТВЭЛ») началось строительство атомного энергоблока мощностью 300 МВт с инновационным реактором на быстрых нейтронах.

"Росатом" рассчитывает запустить реактор "БРЕСТ-300" в 2027 году

Руководитель обособленного подразделения АО «Концерн Титан-2» генподрядчик строительства реакторной установки БРЕСТ-ОД-300 Иоанн Аверьянов сообщил, что в фундаментную плиту ядерного острова уложено почти 19 тыс кубометров бетона, 4,3 тыс тонн арматуры — этого объема хватило бы для строительства двух восьмиэтажных домов. Строители работали круглосуточно. Бетонированию фундамента реакторной установки предшествовали научно-исследовательские работы, были тщательно изучены свойства бетона, которые обязаны обеспечить необходимое качество фундамента реактора.

Важнейшие технические решения по развитию энергосистемы региона включены в Схему и программу развития электроэнергетических систем России СиПР на 2023—2028 годы, разработанную Системным оператором и утвержденную Министерством энергетики РФ. В ближайшие 6 лет планируем реализовать ряд перспективных проектов в томской энергосистеме в рамках СиПР, что позволит динамичному развитию нашей промышленности и экономики в целом», — подчеркнул Андрей Антонов. Ключевым проектом в энергетике региона является строительство атомной электрической станции мощностью 300 МВт в ЗАТО Северск, на площадке Сибирского химического комбината. Реактор на быстрых нейтронах БРЕСТ-300 — прорывной для отечественной атомной промышленности проект, который станет первым в мире образцом для отработки атомных технологий четвертого поколения.

Непосредственно в прошлом году завершены работы по возведению строительных конструкций трех основных зданий технологического производства будущего завода по производству топлива", — говорится в сообщении. В основной технологический корпус завода по производству нитридного топлива уже подано временное отопление и освещение, ведутся отделочные работы, чтобы можно было приступать к монтажу основного технологического оборудования, которого уже поставлено на СХК. Однако до сих пор остаются нерешенными некоторые технологические вопросы по монтажу оборудования.

Кандидатов было немного, но победу в 50-х годах одержал химически активный натрий. Стоимость в долларах уже значительно устарела информация на 2002 год , но относительный порядок величин представить даёт Почему натрий? Его реально много в земной коре, он не вступает в реакцию с нержавеющей сталью и цирконием в отличии от ртути и калия. При этом из всех конкурентов он обладает одной из лучшей нейтронной активностью. Почти идеал, если забыть о том, что натрий имеет свойство воспламеняться и взрываться при контакте с водой и воздухом. Тем не менее из всех вариантов теплоносителей, отрабатывавшихся на экспериментальных установках, именно он оказался единственным кандидатом для энергетических реакторов на быстрых нейтронах, в частности отечественных реакторов типа БН. Высокая химическая активность натрия потребовала специальных технических решений, которые, при переходе от бумажной концепции к металлу, вызвали сильное удорожание проектов. Во-первых, требовалось изолировать натриевый контур охлаждения от водяного, так как их протечка могла привести к пожару или взрыву внутри реактора. Для этого пришлось делать промежуточных контур, разделяющий натрий и воду и снижающий КПД реактора, а также удорожавший конструкцию. Требование недопуска контакта натрия и воздуха заставило продумывать и хитрую систему замены отработанного топлива с помощью роботизированного комплекса, что ещё больше усложнило конструкцию реактора. Кроме того, пришлось решать проблему и загрязнения самого натрия в процессе работы реактора — обычными фильтрами тут не обойтись, поэтому создали так называемые «холодные ловушки». В итоге проект, который на бумаге выглядел не дороже легководника при переходе с кульманов на площадку строительства, значительно прибавил в стоимости и потерял в рентабельности. Реактор типа БН — сложно, дорого, с туманными перспективами Второй проблемой стала переработка топлива. Реакторы на быстрых нейтронах вырабатывали много плутония оружейного качества. Этот плутоний предполагалось выделять, часть его отправлять обратно в составе топливной сборки в реактор, добавив свежего U-238, а остальное использовать для легководников. И вот тут-то и возник целый ворох проблем. Во-первых, плутоний нельзя просто так взять и запихнуть в обычный реактор. Совершенно иные параметры деления и тепловыделения у плутония требуют изменения многих параметров реакторной установки, в том числе и геометрии самих топливных сборок, из-за чего реакторы, рассчитанные на классическое урановое топливо, могут быть неспособны безопасно работать на смешанном урано-плутониевом топливе MOX-топливо. Упрощённая схема замкнутого цикла с реакторами типа БН Во-вторых, отработанное топливо в реакторах типа БН содержало кроме большого количества плутония ещё небольшое не больше процента содержание изотопов Америция, Нептуния и Кюрия — крайне радиотоксичных и сложных в утилизации. В-третьих, само наличие процесса выделения плутония оружейного качества из топлива ставил крест на любых попытках экспорта реактора. И МАГАТЭ, и США, заинтересованные в нераспространении технологий промышленного производства компонентов для ядерного оружия, сделали бы всё, чтобы не допустить экспорт такого реактора. Нерадужные перспективы экспорта реакторов типа БН стали последним гвоздиком в крышку надежд на новое будущее. Есть у реакторов типа БН и ещё один недостаток, который может проявиться при увеличении их мощности — натриевый пустотный эффект. Выражается он в росте реактивности при закипании натрия, что приводит к росту процесса деления атомных ядер. Поэтому для реакторов на натриевом теплоносителе удалось получить стабильный коэффициент воспроизводства отношение скорости образования ядерного горючего к скорости выгорания ядерного горючего лишь немногим больше 1 от 1 до 1,05. Все эти вместе взятые причины привели к тому, что у серийных реакторов серии БН нет никаких преимуществ перед легководными собратьями, а даже в случае реализации ЗЯТЦ рентабельность всё равно была сомнительной. Коллеги по опасному бизнесу Свинец всему голова Одной из ключевых проблем реакторов на натриевом теплоносителе был сам натрий. Выход из ситуации казался очевидным — нужно сменить теплоноситель. Но сделать это было непросто. В 60-70е в СССР для подводных лодок создавались реакторы на быстрых нейтронах с теплоносителем эвтектического жидкий гомогенный сплав состава свинец-висмут. Кроме того, из-за редкости висмута и сам теплоноситель влетал в копеечку, будучи дороже натрия в 7-8 раз. Для АПЛ всё это было не столь критично, так как выигрыш по весу и линейным размерам относительно легководных реакторов компенсировал все недостатки.

Новейший Реактор БРЕСТ ОД 300 - Прорыв в атомной энергетике от РОСАТОМ | Геоэнергетика Инфо

концепция инновационного реактора естественной безопасности. концепция инновационного реактора естественной безопасности. Росатом 17 января сообщил, что в рамках проекта «Прорыв» начал установку инновационного реактора БРЕСТ-ОД-300 на территории Опытно-демонстрационного энергетического комплекса, расположенного в Северске Томской области.

Подписан договор на строительство энергоблока с реактором «БРЕСТ-ОД-300» в рамках проекта «Прорыв»

Здание реактора - это сердце опытной демонстрационной энергетической установки. Его строительство продолжится до 2026 года. Сегодня работы идут строго по графику. Ежедневно на площадке трудятся 1300 человек из разных регионов нашей страны. Все здания второй очереди находятся в стадии сооружения. Ничего подобного в мире сейчас нет, заметил генеральный директор Росатома Алексей Лихачев, побывав на стройплощадке.

Успешная реализация этого проекта позволит нашей стране стать первым в мире носителем атомной технологии, полностью отвечающей принципам устойчивого развития — в экологичности, доступности, надежности и эффективности использования ресурсов. Сегодня мы вновь подтверждаем свою репутацию лидера мирового прогресса в области ядерных технологий, предлагая человечеству уникальные решения, направленные на улучшение жизни людей», — заявил генеральный директор Госкорпорации «Росатом» Алексей Лихачев.

Цель проекта — демонстрация высоких физических и эксплуатационных характеристик, свойств естественной безопасности реактора данного типа, а также возможность его работы в замкнутом цикле в равновесном топливном режиме. С точки зрения безопасности БРЕСТ-ОД-300 будет иметь ряд существенных преимуществ перед любым эксплуатируемым сегодня реактором — он самостоятельно заглушается при отклонении любых параметров. Плотное нитридное топливо надежнее оксидного, легче переносит механические дефекты и температурные режимы.

По оценке специалистов, на это потребуется несколько месяцев непрерывной работы печей в режиме плавления. На СХК уже поступило 425 тонн свинца, поставки металла продолжаются. Завершив строительство стенда для проведения испытаний главного циркуляционного насосного агрегата реактора БРЕСТ-ОД-300, мы начинаем отрабатывать технологию обращения с расплавленным свинцом.

Благодаря тщательной работе наших ученых, конструкторов и инженеров удалось создать технологию, которая обеспечит коррозионную стойкость всех конструкционных материалов. Дальнейшее внедрение достижений проекта «Прорыв» существенно расширит возможности для использования атомной энергетики в мире», - подчеркнул генеральный директор Госкорпорации «Росатом» Алексей Лихачев. Проект «Прорыв» впервые в мире должен продемонстрировать в этом десятилетии устойчивую работу полного комплекса объектов, обеспечивающих замыкание топливного цикла и заложить основу развития крупномасштабной экологически приемлемой ядерной энергетики естественной безопасности. Сегодняшнее событие — реальный шаг к достижению этой амбициозной цели», - подчеркнул научный руководитель проектного направления «Прорыв» Евгений Адамов. Возведение объекта началось осенью прошлого года. Во время строительства активно применялись технологии Производственной системы Росатома, позволившие оптимизировать процесс сооружения стенда.

Новое слово в энергетике: зачем России нужен атомный реактор с замыканием топливного цикла

Энергоблок с инновационной реакторной установкой БРЕСТ-ОД-300 станет частью строящегося в Северске Томской области опытно-демонстрационного энергокомплекса (ОДЭК) с пристанционным ядерным топливным циклом в рамках стратегического направления "Прорыв". Специальный модуль создает ядерное топливо, затем оно поступает в энергоблок «Брест-ОД-300» на быстрых нейтронах, а после переработки то же самое топливо возвращается обратно в реактор, и снова по кругу. Он побывал на стройплощадке Сибирского химкомбината, где возводится уникальный энергокомплекс БРЕСТ-300. Мощность атомного энергоблока с реактором на быстрых нейтронах составит 300 Мегаватт. Энергоблок с реактором БРЕСТ-ОД-300 станет частью Опытного демонстрационного энергокомплекса (ОДЭК), который строится на площадке СХК в рамках стратегического отраслевого проекта «Прорыв». Главная > Пресс-Центр > Новости > В Томской области началось строительство первой в мире реакторной установки БРЕСТ-300.

Бесконечная энергия: «Росатом» строит первый в мире реактор с замкнутым циклом

Борис Марцинкевич. В Северске Томской области на площадке Сибирского химического комбината предприятие Топливной компании Росатома «ТВЭЛ» началось строительство атомного энергоблока мощностью 300 МВт с инновационным реактором на быстрых нейтронах БРЕСТ-ОД-300 со свинцовым теплоносителем и новым смешанным нитридным уран-плутониевым топливом, оптимальным для реакторов на быстрых нейтронах.

Кроме неотработанности технологии, были обозначены «узкие» технические вопросы: в большом объёме интегральной схемы «БРЕСТ» не обеспечивается равномерность поддержания кислородного потенциала в узком разрешённом диапазоне если он будет подтвержден. Чтобы обеспечить работоспособность тепловыделяющих элементов, необходимо найти оптимальное для заданного уровня и диапазона изменения температур содержание кислорода в теплоносителе и стабильно поддерживать его на этом уровне в течение всего срока эксплуатации реакторной установки; не обоснована работоспособность конструкционных материалов в свинце при принятой температуре и при высоком облучении нейтронами расплавленный свинец вызывает сильную коррозию конструкционных материалов ; не изучено влияние облучения в реальных реакторных условиях на поведение в свинце тепловыделяющих элементов и топливной композиции; сама по себе проблема смешанного нитридного топлива требует значительных усилий и времени для её разрешения; технические решения по переработке топлива находятся на начальной стадии разработки. Вследствие наличия этих вопросов: По состоянию обоснования технических решений проект «Брест» — быстрый реактор со свинцовым теплоносителем — не подготовлен для стадии технического проектирования и не может быть выделен в настоящее время как единственный вариант долгосрочной стратегии развития ядерной энергетики России. Доллежаля» В. Орлова [19] , опубликованной в том же 2001 году на сайте НИКИЭТ, практически не содержится ответных доводов в технической части, напротив, подтверждаются слова академика Пономарёва-Степного о начальности стадии разработки проекта, неотработанности и неисследованности многих важных вопросов, однако содержатся нападки на личность критика: «статья Н. Пономарева-Степного не содержит каких-либо новых возражений против Стратегии или идей по её корректировке, которые не были бы обсуждены в ходе её выработки и принятия. Африкантова » В. Кроме того, при облучении свинцово-висмутового теплоносителя дополнительно образуется большое количество радиоактивного полония этот процесс характерен и для свинцового теплоносителя [21].

К этому следует добавить проблему накопления трития во втором пароводяном контуре этих реакторных установок ; большие энергетические и временные затраты для расплавления и поддержания теплоносителя в жидком состоянии на разогрев реактора в РУ БРЕСТ-ОД-300 по проекту потребуется 7 месяцев ; токсичность «тяжёлых» теплоносителей и образование долгоживущих изотопов альфа-активного свинца, альфа- и бета-активного висмута с периодом полураспада более 106 лет, что усугубляет проблему их утилизации после прекращения эксплуатации реактора. Также в этой статье высказываются сомнения вообще относительно возможности создания надёжных реакторных установок с «тяжёлым теплоносителем» с длительным сроком эксплуатации, ставится вопрос об экономической целесообразности создания таких установок, а также высказывается мнение, что: РУ с «тяжёлыми» теплоносителями не имеют новых качеств и в отношении возможности утилизации долгоживущих актинидов по сравнению с быстрыми реакторами, охлаждаемыми натрием. Общий вывод, который в своей статье делает Костин: Таким образом, предлагаемые ядерные технологии на основе свинцово-висмутовых или свинцовых быстрых реакторов по комплексу определяющих характеристик не имеют преимуществ по сравнению с освоенными ядерными технологиями тепловых легководных и быстрых натриевых реакторных установок. Поэтому использование «тяжелого» теплоносителя в реакторных установках для широкомасштабной гражданской атомной энергетики представляется совершенно нецелесообразным. Развертывание работ по созданию таких технологий приведёт к большим затратам при отсутствии положительного результата в конечном итоге.

Общий объем инвестиций в проект по состоянию на сентябрь 2022 года оценивался в 240 млрд рублей. Реализация проекта ведется на территории АО "Сибирский химический комбинат", который расположен в Северске Томской области. Предприятие объединяет четыре завода по обращению с ядерными материалами.

Быстрые нейтроны Работающий на АЭС уран-235, распадаясь, выбрасывает множество высокоэнергетических быстрых нейтронов. Они попадают в толщу воды, куда погружены топливные сборки. Жидкость замедляет нейтроны, позволяя тем взаимодействовать с новыми ядрами урана-235 и вовлекать их в цепную реакцию. Но большая часть выделяемой при делении энергии уходит на нагревание воды, которая играет еще и роль теплоносителя: отводит энергию, превращается в пар и вращает турбину электрогенератора. Водо-водяные реакторы — самые распространенные в мире, но для работы с плутонием они малопригодны. Такому топливу требуются быстрые нейтроны, а не замедленные тепловые, и это уже совсем другой уровень. Неудивительно, что первый экспериментальный реактор на быстрых нейтронах БР-1 , запущенный еще в 1948 году, через несколько лет пережил серьезную аварию. Началась долгая и кропотливая работа, которая заняла более полувека и лишь теперь выходит на финишную прямую. Жидкий свинец Использовать в реакторе в качестве теплоносителя воду, которая замедляет быстрые нейтроны, нельзя. Требуется другой материал, способный обеспечить съем тепла, но не поглощающий высокоэнергетические частицы, позволяя тем продолжить цепь ядерных реакций. За последние десятилетия физики проверили множество заменителей воды, включая жидкие литий, калий и даже ртуть. Это обеспечивает очень широкий диапазон рабочих температур — от границы, начиная с которой свинец становится жидкостью, и до границы, за которой он закипит, сделавшись практически непригодным для охлаждения. Вспомним, что именно этим была вызвана авария на АЭС «Фукусима-1». Из-за отключения генераторов остановились насосы, которые прокачивали теплоноситель; отвод тепла прекратился, вода закипела, произошел взрыв и расплавление активной зоны реактора.

Похожие новости:

Оцените статью
Добавить комментарий