Новости теория струн кратко и понятно

Главное преимущество теории струн является ее способность объединить общую теорию относительности Эйнштейна и квантовую механику. В теории струн каждая струна колеблется так же, в зависимости от влияющих на нее факторов. Тегичто такое теория струн для чайников, о чем теория струн кратко, m теория струн, теория струн и м теория современное введение, теория струн сумма всех натуральных чисел. Объединить эти два подхода призвана теория струн. Кратко и понятно объяснить ее можно, используя аналогии в повседневной жизни. Как и любая неподтвержденная теория, теория струн имеет ряд проблем, которые говорят о том, что она требует доработки.

Теория струн и квантовая механика

В квантовой теории поля измеренные свойства частиц выступают в качестве исходных данных — на их основе строится и определяется сама теория. Сможет ли теория струн справиться с этим лучше? Одна из самых красивых черт струнной теории состоит в том, что свойства частиц определяются размером и формой дополнительных измерений. Поскольку струны очень малы, они вибрируют не только в трёх привычных больших измерениях, но и в малых, свёрнутых измерениях. Колебания струн в струнной теории определяются формой скрученных измерений. Вспоминая, что вибрационное поведение струн определяет свойства частиц, такие как массу и электрический заряд, мы видим, что эти свойства диктуются геометрией дополнительных измерений. Поэтому если достоверно известно, как выглядят дополнительные измерения в теории струн, то можно легко предсказать любые свойства вибрирующих струн и, следовательно, все свойства элементарных частиц, порождённых колебаниями струны. Трудность, как и раньше, в том, что никто не знает, какова точная геометрическая форма дополнительных измерений. Уравнения теории струн накладывают математические ограничения на геометрию дополнительных измерений и требуют, чтобы они принадлежали частному классу так называемых пространств Калаби—Яу.

Проблема в том, что нет какой-то одной, выделенной формы Калаби—Яу. Наоборот, эти пространства имеют разные размеры и контуры. Дополнительные измерения, различающиеся по размерам и по форме, порождают разные вибрации струн и, следовательно, разные наборы свойств частиц. Отсутствие однозначной спецификации для дополнительных измерений является главным камнем преткновения, который не позволяет струнным теоретикам делать конкретные предсказания. В середине 1980-х годов, было известно небольшое количество пространств Калаби—Яу, поэтому можно было надеяться проанализировать каждое из них и соотнести с известной физикой. Спустя несколько лет, число пространств Калаби—Яу возросло до нескольких тысяч, что стало серьёзной задачей для обстоятельного изучения. Время шло и число страниц в каталоге пространств Калаби—Яу только увеличивалось. Теперь их больше чем песчинок на пляже.

И речи быть не может о том, чтобы математически рассмотреть каждое на роль дополнительных измерений. Поэтому струнные теоретики продолжают поиск математической подсказки, которая позволит выделить из всех возможных пространств Калаби—Яу то самое, единственное. Теория струн пока не реализовала свои возможности по объяснению свойств фундаментальных частиц. В этом отношении теория струн до сих пор не имеет особых преимуществ перед квантовой теорией поля. Теория струн и эксперименты Если типичная струна имеет чрезвычайно крохотный размер, то для обнаружения её протяжённой структуры — той самой характеристики, которая отличает её от частицы — потребуется ускоритель в миллионы миллиардов раз мощнее, чем БАК. Предполагая, что выдающийся технологический прорыв не предвидится, такая ситуация означает, что на сравнительно малых энергиях, достижимых на имеющихся ускорителях, струны неотличимы от точечных частиц. Экспериментальная версия упомянутого ранее теоретического факта: на низких энергиях теория струн сводится к квантовой теории поля. Таким образом, даже если теория струн и является правильной фундаментальной теорией, в широком диапазоне доступных экспериментов она будет проявляться как квантовая теория поля.

Выбор полей и кривых энергий в квантовой теории поля равносилен выбору формы дополнительных измерений в теории струн. Одна из проблем в теории струн состоит в том, что математика, которая связывает свойства частиц с формой дополнительных измерений, в высшей степени своеобразна. Поэтому работа в обратном направлении очень трудна — использование экспериментальных данных для определения конкретной формы дополнительных измерений, аналогично тому, как такие данные определяют состав полей и кривых энергий в квантовой теории поля. В обозримом будущем наиболее обещающим способом связи теории струн с экспериментальными данными будут предсказания, которые можно объяснить с помощью более традиционных методов, но для которых гораздо более естественное и убедительное объяснение возникает из теории струн. Теория струн, сингулярность и черные дыры В большинстве ситуаций квантовая механика и гравитация успешно игнорируют друг друга, при этом первая применяется к малым объектам, таким как молекулы и атомы, а вторая к большим объектам, соразмерным звёздам и галактикам. Однако обе теории вынуждены встречаться в мирах, известных как сингулярности. Сингулярность — это любая физическая ситуация, реальная или гипотетическая, которая настолько экстремальна огромные массы, малый размер, гигантская кривизна пространства, проколы или разрывы в самой пространственно-временной структуре , что квантовая механика и общая теория относительности ведут себя неадекватно. Цель любой квантовой теории гравитации - свести воедино квантовую механику и гравитацию таким образом, чтобы сингулярности исчезли.

Именно в этом направлении теория струн достигла своих самых впечатляющих успехов, уменьшив список сингулярностей. В середине 1980-х годов группа исследователей пришла к выводу, что некоторые проколы в ткани пространства, которые доставляли много хлопот уравнениям Эйнштейна, прекрасно ведут себя в теории струн. Ключ к успеху состоял в том, что струна в отличие от точечной частицы не может свалиться в такой прокол. Поскольку струна — это протяжённый объект, она может удариться о прокол, может обмотаться вокруг него либо воткнуться в него, но подобного рода умеренные взаимодействия совершенно не портят уравнения теории струн. Это важно не потому, что такие изъяны в пространстве действительно имеют место — может, да, а может, и нет, — а потому, что именно таких свойств физики хотят от квантовой теории гравитации: способности работать осмысленно в ситуации, когда по отдельности отказывают как общая теория относительности, так и квантовая механика. В 1990-х годах было установлено, что более сильные сингулярности известные как флоп-сингулярности , возникающие при сжатии сферической области пространства до бесконечно малого размера, тоже описываются теорией струн. Интуиция подсказывает, что струна при движении может накрутиться на такую сжатую область пространства, подобно обручу на мыльный пузырь, создавая нечто вроде кругового ограждения. Вычисления показывают, что такой «струнный щит» сводит на нет любые потенциально разрушительные последствия и гарантирует, что уравнения теории струн остаются непротиворечивыми.

За прошедшие годы исследователи показали, что множество других, более сложных сингулярностей также полностью контролируются теорией струн. Но остаётся проблема устранения с помощью теории струн сингулярностей чёрных дыр и Большого взрыва, более суровых, чем рассмотренные ранее. Тем не менее одно важное открытие пролило свет на теорию чёрных дыр. В 1970-х годах в работах Бекенштейна и Хокинга было установлено, что чёрные дыры обладают определённой степенью беспорядка, известной как энтропия. Беспорядок внутри чёрной дыры, согласно фундаментальным физическим законам, свидетельствует о множестве вариантов случайного размещения её внутренностей. Однако даже после долгих усилий физикам не удалось достаточно хорошо разобраться в том, как устроены внутренности чёрных дыр, не говоря уж о том, чтобы проанализировать возможные способы их размещения. Однако смешав фундаментальные ингредиенты теории струн, они построили математическую модель беспорядка чёрной дыры, достаточно простую и понятную, чтобы извлечь из неё численное значение энтропии. Полученный результат в точности совпал с ответом Бекенштейна и Хокинга.

Хотя осталось много открытых вопросов, эта работа стала первым надёжным квантово-механическим анализом беспорядка чёрной дыры. Замечательный прогресс в изучении сингулярности чёрной дыры и её энтропии привёл физическую общественность к обоснованной убеждённости, что со временем оставшиеся трудности, связанные с чёрными дырами и Большим взрывом, будут преодолены. Оценивая текущий статус теории струн, многие струнные теоретики считают, что следующий важный шаг состоит в том, чтобы придать уравнениям теории наиболее полный и точный вид. Большая часть исследований на протяжении первых двух десятилетий развития теории до середины 1990-х годов была выполнена с помощью приближённых уравнений, ибо многие полагали, что так можно выявить общие свойства теории. Однако приближённые уравнения оказались слишком грубы, чтобы дать точные предсказания. Последние открытия вывели понимание на уровень, намного превосходящий тот, что был достигнут приближёнными методами. Ссылки на все части.

На самом деле ученые не смогли объединить две теории в единую теорию всего. Объединение двух столпов физики в одно целое может показаться не слишком важным. Ведь по отдельности теория относительности и квантовая механика могут объяснить большую часть Вселенной. Однако наличие двух отдельных законов, управляющих вселенной, имеет свои проблемы. Например, представьте, что есть два типа улиц, и тип определяет правила движения. Некоторые улицы имеют тот или иной тип, поэтому правила довольно просты. Однако другие улицы подходят под определение обоих типов, так какие правила применяются к ним? Как и наличие двух совершенно разных правил дорожного движения, невозможность объединить квантовую механику и теорию относительности создает хаос при попытке понять нашу вселенную.

Однако, несмотря на то, что обе поддерживают все, что мы знаем о вселенной, теория относительности и квантовая механика плохо работают вместе. На самом деле ученые не смогли объединить две теории в единую теорию всего. Объединение двух столпов физики в одно целое может показаться не слишком важным. Ведь по отдельности теория относительности и квантовая механика могут объяснить большую часть Вселенной. Однако наличие двух отдельных законов, управляющих вселенной, имеет свои проблемы. Например, представьте, что есть два типа улиц, и тип определяет правила движения. Некоторые улицы имеют тот или иной тип, поэтому правила довольно просты. Однако другие улицы подходят под определение обоих типов, так какие правила применяются к ним?

Объединяющую их единую теорию называют М-теорией. Под струной физики подразумевают некий одномерный протяженный объект, средний размер которого должен быть порядка Планковской длиной, то есть 10-35 м. Работа Барса и Рычкова станет, возможно, одним из шагов к созданию единой теории поля, объединению различных областей теоретической физики на одном базисе. К сожалению, современные технологии не позволяют подтвердить результаты исследования экспериментально, поскольку не существует методов и оборудования, позволяющих исследования объектов меньшего масштаба, чем отдельные частицы.

Что такое теория струн

Что такое теория струн? Простой обзор Сравнительно недавно появился подход, дающий возможность разрешить это противоречие — теория струн.
Что такое теория струн? Стало отчетливо понятно, что эта программа на самом деле является отнюдь не содержанием теории струн, а только еще одной областью ее приложения.
Что такое теория струн и может ли она открыть дверь в другие измерения Причина, по которой теория струн является потенциальной теорией всего, заключается в том, что она предсказывает, что все формы материи состоят из струн, и, следовательно, все на самом деле состоит из одного и того же «вещества».

Читайте также

  • Что такое теория струн и может ли она открыть дверь в другие измерения | РБК Тренды
  • Форма поиска
  • Теория суперструн популярным языком для чайников
  • Теория струн простым языком
  • Что такое теория струн простыми словами (насколько это возможно)?

Теория струн кратко и понятно. Теория струн для чайников.

Именно поэтому физики, занимающиеся теорией струн, рассматривают вселенную, в которой более четырёх пространственно-временных измерений. В начале XX столетия в нескольких статьях математика Калуцы и физика Клейна было высказано предположение о существовании измерений, легко ускользающих от обнаружения. Они предсказывали, что в отличие от привычных пространственных измерений, простирающихся на большие или даже бесконечные расстояния, могут существовать дополнительные измерения, настолько малые и скрученные, что их очень трудно увидеть. На рисунке поверхность высокой трубочки имеет два измерения; длинное вертикальное измерение легко увидеть, а малое круговое измерение обнаружить труднее. Из предложения Калуцы—Клейна следует, что похожее различие между одними измерениями, большими и легко видимыми, и другими, малыми и слабо различимыми, может иметь место и для структуры самого пространства. Причина, по которой мы всё знаем о привычных трёх пространственных измерениях, может быть в том, что их протяжённость велика может даже бесконечны. Однако если дополнительное пространственное измерение скручено и имеет чрезвычайно малый размер, то оно совершенно равноправно обычным нескрученным измерениям и при этом остаётся невидимым даже для самого мощного современного увеличивающего оборудования. Так начиналась теория Калуцы—Клейна, гипотеза о том, что наша Вселенная имеет больше трёх пространственных измерений.

Если вернуться в 1920-е годы, откуда вообще возникла такая экзотическая идея? Калуца заинтересовался этим, потому что вскоре после публикации Эйнштейном общей теории относительности ему на ум пришла одна идея. Он обнаружил, что может модифицировать уравнения Эйнштейна и применить их ко вселенной с одним дополнительным пространственным измерением. Результат изучения модифицированных уравнений оказался захватывающим. Среди модифицированных уравнений Калуца обнаружил уравнения, уже применённые Эйнштейном для описания гравитации в трёх пространственных и одном временном измерениях. Но поскольку новая формулировка включала одно дополнительное пространственное измерение, Калуца обнаружил дополнительное уравнение. Получив это уравнение, Калуца распознал в нём уравнение электромагнитного поля, обнаруженное Максвеллом полувеком ранее.

Как показал Калуца, во вселенной с одним дополнительным пространственным измерением гравитация и электромагнетизм могут быть описаны единым образом как пространственно-временные искривления. Но гравитация рябит в привычных трёх пространственных измерениях, а электромагнетизм — в четвёртом. Огромной проблемой для гипотезы Калуцы стало объяснение того, почему мы не видим четвёртое пространственное измерение. Именно тогда Калуца предложил описанное выше решение: дополнительные измерения, если они достаточно малы, могут ускользать от фиксации нашими органами чувств и оборудованием. Однако последующие исследования показали, что программа Калуцы—Клейна сталкивается с некоторыми препятствиями, самым трудным из которых является невозможность встроить детальные свойства частиц материи, таких как электрон, в математическую структуру. В течение двух десятилетий предлагались и отвергались различные способы обойти эту проблему. Однако поскольку не было предложено ни одного подхода, свободного от этих недостатков, то к середине 1940-х годов идея объединения через дополнительные измерения практически была забыта.

Спустя тридцать лет возникла теория струн. Математический аппарат теории струн не просто разрешал существование во Вселенной дополнительных измерений, он требовал их присутствия. Теория струн возродила программу Калуцы—Клейна, и к середине 1980-х годов учёные во всём мире воодушевлённо полагали, что это только вопрос времени, когда теория струн приведёт к полному описанию всей материи и взаимодействий. Большие надежды В первые годы теории струн развитие происходило настолько быстро, что уследить за всеми новостями было практически невозможно. При таком возбуждении понятно, что некоторые теоретики заговорили о скорой революции в решении основных проблем фундаментальной физики: слиянии гравитации и квантовой механики, объединении всех сил в природе, выяснении происхождения Вселенной. Но более умудрённые физики полагали, что такие надежды преждевременны. Теория струн настолько насыщена, обширна и математически трудна, что спустя почти три десятилетия после первой эйфории современные учёные одолели лишь часть исследовательского пути.

С учётом того, что мир квантовой гравитации в сотни миллиардов миллиардов раз меньше чем всё, что мы сегодня можем экспериментально измерить, дорога будет длинная, даже по самым скромным оценкам. Теория струн и свойства частиц Один из самых основных вопросов всей физики стоит так: почему частицы, которые наблюдаются в природе, являются именно такими, а не какими-нибудь другими? Интерес к этому вопросу непросто академический, он отражает очень важный факт. Если бы у частиц были другие свойства, ядерные процессы, питающие звёзды, подобные нашему Солнцу, были бы нарушены. Вселенная без звёзд была бы совсем другой. Очевидно, что без солнечного света и тепла не возникла бы сложная цепочка событий, приведшая к возникновению жизни на Земле. Поэтому возникает фундаментальный вопрос: как с помощью ручки, бумаги и, возможно, компьютера, а также руководствуясь нашим пониманием законов природы, вычислить свойства частиц и получить результаты, которые согласуются с экспериментальными данными.

В рамках квантовой теории поля ответа на этот вопрос нет и не может быть. В квантовой теории поля измеренные свойства частиц выступают в качестве исходных данных — на их основе строится и определяется сама теория. Сможет ли теория струн справиться с этим лучше? Одна из самых красивых черт струнной теории состоит в том, что свойства частиц определяются размером и формой дополнительных измерений. Поскольку струны очень малы, они вибрируют не только в трёх привычных больших измерениях, но и в малых, свёрнутых измерениях. Колебания струн в струнной теории определяются формой скрученных измерений. Вспоминая, что вибрационное поведение струн определяет свойства частиц, такие как массу и электрический заряд, мы видим, что эти свойства диктуются геометрией дополнительных измерений.

Поэтому если достоверно известно, как выглядят дополнительные измерения в теории струн, то можно легко предсказать любые свойства вибрирующих струн и, следовательно, все свойства элементарных частиц, порождённых колебаниями струны. Трудность, как и раньше, в том, что никто не знает, какова точная геометрическая форма дополнительных измерений. Уравнения теории струн накладывают математические ограничения на геометрию дополнительных измерений и требуют, чтобы они принадлежали частному классу так называемых пространств Калаби—Яу. Проблема в том, что нет какой-то одной, выделенной формы Калаби—Яу. Наоборот, эти пространства имеют разные размеры и контуры. Дополнительные измерения, различающиеся по размерам и по форме, порождают разные вибрации струн и, следовательно, разные наборы свойств частиц. Отсутствие однозначной спецификации для дополнительных измерений является главным камнем преткновения, который не позволяет струнным теоретикам делать конкретные предсказания.

В середине 1980-х годов, было известно небольшое количество пространств Калаби—Яу, поэтому можно было надеяться проанализировать каждое из них и соотнести с известной физикой. Спустя несколько лет, число пространств Калаби—Яу возросло до нескольких тысяч, что стало серьёзной задачей для обстоятельного изучения. Время шло и число страниц в каталоге пространств Калаби—Яу только увеличивалось. Теперь их больше чем песчинок на пляже. И речи быть не может о том, чтобы математически рассмотреть каждое на роль дополнительных измерений. Поэтому струнные теоретики продолжают поиск математической подсказки, которая позволит выделить из всех возможных пространств Калаби—Яу то самое, единственное.

Обычно ученому, что не рассказывай, он никогда не будет тебя слушать, если ты не подкрепишь свои мысли математикой.

Модель моего кванта подтверждается теорией Ритца, а модель фотона — теорией струн, хотя я их и не знаю. Будем двигаться по книге дальше. Брайан полагает, что это одно из предсказаний теории струн, вытекающее из суперсимметрии. До этого в различных теориях существовала симметрия, но она ничего не говорила о новых частицах. Теория струн расширила симметрию до суперсимметрии, из которой следовало, что моды колебаний струны реализуются парами суперпартнёров, спин которых отличается на?. Они на много тяжелее протона. Из-за этого ученые полагают, мы их и не можем обнаружить.

Книгу Брайан писал до постройки Большого адронного коллайдера, но уже знал, что такой ускоритель строится. Он, и много других ученых, возлагали надежду обнаружить суперпартёры этим ускорителем, но пока положительных результатов нет. Да и быть не должно: там частицы разбиваются, а не собираются. Так что это предсказание пока ничем не подтверждено. Второе предсказание. Частицы с дробным электрическим зарядом. Ну а это, то что частица может обладать дробным зарядом, для тех, кто знает, что ускоряемая частица излучает и поглощает это является послесказанием, а не предсказанием.

Излучившая частица потеряла часть заряда и массы, а поглотившая частица прибавила в заряде и массе. А величины этих изменений можно и посчитать. Для тех, кто этого не знал, выводы теории о дробности можно считать предсказанием. Некоторые более отдалённые перспективы. Еще одно предсказание в теории струн Виттен увидел такое.

Физики решили эту загадку, рассматривая эти частицы как «точку» в нашем трехмерном мире. В сочетании с четвертым измерением времени они прослеживают «мировую линию».

Более того, у этих точек есть квантовые состояния, которые мы называем массой, зарядом и т.

Напомним, что одной из важных особенностей теории струн является то, что она требует дополнительных измерений пространства-времени для математической согласованности. Однако далеко не каждый способ обработки этих дополнительных измерений, также называемый «компактификацией», дает модель с правильными свойствами для описания природы. Для так называемой восьмимерной компактификации модели теории струн, называемой F-теорией, дополнительные измерения должны иметь форму поверхности K3. В новой работе исследователи рассматривали двойственность двух видов теории струн — F-теории и гетеротической — в восьми измерениях. Теории струн быть Команда нашла четыре уникальных способа разрезать поверхности K3 особенно полезным способом, с помощью якобианских эллиптических расслоений — комплексов из нескольких волокон, по форме напоминающих батон или бублик. Исследователи построили явные уравнения для каждого из этих расслоений и показали, что концепции теории струн в реальном физическом мире имеют право на существование. Пример К3 поверхности «Вы можете думать об этом семействе поверхностей как о буханке хлеба, а о каждой фибрации — как о «ломтике» этой буханки», пишут исследователи.

Изучая последовательность «ломтиков», мы можем визуализировать и лучше понять всю буханку. По мнению авторов статьи, важной частью этого исследования является выявление определенных геометрических строительных блоков, называемых «делителями», внутри каждой поверхности K3. Вам будет интересно: Восход и закат теории струн Часы кропотливой работы, в результате позволили математикам доказать теоремы каждого из четырех расслоений, а затем протолкнуть каждую теорему через сложные алгебраические формулы.

Космический эксперимент поставил под сомнение теорию струн

Что такое теория струн простыми словами: объясняем на пальцах Эту теорию вспоминают в контексте теории струн, потому что она очень естественно возникает из ее уравнений.
Теория струн простыми словами - Телеканал "Наука" 20–минутное видео о теории струн. Про эту теорию впервые прочитал в журнале "Юный техник" ещё в школе.
Теория струн простым языком Причина, по которой теория струн является потенциальной теорией всего, заключается в том, что она предсказывает, что все формы материи состоят из струн, и, следовательно, все на самом деле состоит из одного и того же «вещества».
Квантовая механика – следствие теории струн? Так, начал вырисовываться фундаментальный физический принцип, получивший прекрасное название Теория всего или Теория струн, которая стала воплощением мечты всех физиков по объединению двух противоречащих друг другу ОТО и квантовой механики.

Теория струн кратко и понятно

Теория струн: простое объяснение неоднозначной идеи Теория струн предположительно решает эту проблему и стремится описать гравитацию в соответствии с принципами квантовой механики, называются теориями квантовой гравитации.
Теория струн для чайников Причина, по которой теория струн является потенциальной теорией всего, заключается в том, что она предсказывает, что все формы материи состоят из струн, и, следовательно, все на самом деле состоит из одного и того же «вещества».

Что такое теория струн и может ли она открыть дверь в другие измерения

Основные этапы ее развития: 1943—1959 гг. Появилось учение Вернера Гейзенберга об s-матрице, в рамках которого предлагалось отбросить понятия пространства и времени для квантовых явлений. Гейзенберг впервые обнаружил, что участники сильных взаимодействий представляют собой протяженные объекты, а не точки; 1959—1968 гг. Были обнаружены частицы с высокими спинами моментами вращения. Итальянский физик Туллио Редже предложит группировать квантовые состояния в траектории которые были названы его именем ; 1968—1974 гг.

Гарибрэле Венециано предложил модель двойного резонанса для описания сильных взаимодействий. Есиро Намбу развил эту идею и описал ядерные силы как вибрационные одномерные струны; 1974—1994 гг. Открытие суперструн, во многом благодаря работам российского ученого Александра Полякова; 1994—2003 гг. Появление М-теории, допустила большее, чем 11, количество измерений; 2003 — н.

Майкл Дуглас разработал ландшафтную теорию струн с понятием ложного вакуума.

Этот тип также имеет важные математические различия в отношении группы симметрии. Дополнительные измерения Теории струн требуются дополнительные измерения: говорится о добавлении по меньшей мере 6 измерений к 4 известным всего 10 измерений. В ней также предусмотрены способы связать большие дополнительные измерения с малыми. Мы знаем три измерения, что нас окружают — те, которые определяют длину, ширину и глубину всех объектов оси x, y и z соответственно. Четвёртое измерение — это время, оно определяет свойства всей известной материи в любой заданной точке. Кто открыл теорию струн? Основателем теории струн, ключевым теоретиком, стоящим за самыми ранними моделями, считается итальянский физик-теоретик Габриеле Венециано родился в 1942 г. Также в середине 1970-х годов одними из первых и наиболее важных теоретиков были: Пьер Рамон,.

В настоящее время нет прямых экспериментальных данных, которые могли бы подтвердить или опровергнуть предсказания теории струн. Это ограничивает ее статус как научной теории и вызывает сомнения в ее достоверности. Альтернативные модели и гипотезы Существуют альтернативные модели и гипотезы, которые предлагают альтернативные подходы к объединению гравитации и квантовой механики. Некоторые из них включают: Петлевая квантовая гравитация: Это альтернативная теория, которая основана на квантовании гравитационного поля в терминах петель. Она предлагает другой математический формализм и подход к описанию гравитации, который может быть более фундаментальным и ближе к экспериментальным данным. Теория супергравитации: Это теория, которая объединяет гравитацию и суперсимметрию. Она предлагает другой подход к объединению фундаментальных взаимодействий и может быть более простой и понятной, чем квантовая теория струн. Нелокальные теории: Это класс теорий, которые предлагают изменить принцип локальности, который является основой квантовой теории струн. В нелокальных теориях взаимодействия могут распространяться на большие расстояния и быть связаны с неклассическими эффектами. Эти альтернативные модели и гипотезы предлагают другие подходы к объединению гравитации и квантовой механики и могут быть объектом дальнейших исследований и экспериментов. Дискуссии и перспективы развития будущих теорий Дискуссии и дебаты вокруг квантовой теории струн и ее альтернативных подходов продолжаются в научном сообществе. Ученые исследуют различные аспекты и проблемы теории струн, а также альтернативные модели и гипотезы. Будущие теории могут включать в себя комбинацию различных подходов и идей, а также новые математические и физические концепции. Они могут предложить новые предсказания, которые могут быть проверены экспериментально и привести к новым открытиям и пониманию фундаментальных взаимодействий и структуры Вселенной. Заключение Квантовая теория струн представляет собой уникальный и амбициозный подход к объединению гравитации и квантовой механики. Она предлагает новый математический формализм и концепции, которые могут пролить свет на фундаментальные взаимодействия и структуру Вселенной. Несмотря на свою сложность и ограничения, квантовая теория струн имеет большой потенциал для дальнейших исследований и развития. Она может помочь нам лучше понять природу гравитации, создать единое поле физики элементарных частиц и раскрыть новые аспекты Вселенной. Однако, критика и альтернативные подходы также играют важную роль в развитии науки. Альтернативные модели и гипотезы предлагают другие пути и идеи для объединения гравитации и квантовой механики, и могут привести к новым открытиям и пониманию фундаментальных взаимодействий. В целом, квантовая теория струн и ее альтернативные подходы представляют собой захватывающую область исследований, которая продолжает привлекать внимание ученых и исследователей. Будущие исследования и эксперименты могут привести к новым откры Квантовая теория струн обновлено: 28 августа, 2023 автором: Научные Статьи. Ру Нашли ошибку? Сертифицированный копирайтер , автор текстов для публичных выступлений и презентаций. Количество оценок: 0 Поставьте вашу оценку Сожалеем, что вы поставили низкую оценку! Позвольте нам стать лучше! Расскажите, как нам стать лучше?

Но я все же постараюсь объяснить это максимально доступно. Итак, начинаем: теория струн для чайников от такого же чайника. Теория струн предполагает, что в нашей Вселенной существует гораздо больше измерений, чем четыре нам привычные: три пространственных плюс время. Проблемы с объяснением этой теории возникают не только у обывателей, но и у ученых. Весьма сложно соединить все основы типа гравитации и магнитных полей в одно целое. Физики хотели получить единую Теорию Всего, и вывели теорию суперструн. А что дальше с ней делать, как это все объяснить, никто не знает. Чтобы собрать этот пазл, оказалось мало четырех измерений. Поэтому теория суперструн предполагает, что их десять. И, если это вам кажется много, то дальнейшее развитие данной теории привело к появлению на свет M и F-теорий, подразумевающих 11 и 12 измерений соответственно. Почему так много? Потому что при меньшем количестве все математические измерения своими результатами уходят в бесконечность. Не стоит забывать, что все это лишь теория, существующая пока только в математических расчетах. Где же все остальные измерения, спросите вы? Говорят, что они находятся где-то в квантовом мире, заключенные в сфероподобные пространства Калаби-Яу. Внутри этих сфер находятся эдакие маленькие мирки с размерностью, которую нам не понять. Выглядит все это безобразие как-то так: Но всей этой запары ученым было мало, и они придумали почти 500 миллионов 470 вариантов таких сфер. И сейчас они активно пытаются выяснить, какая же из них настоящая. Из выборки в 470 миллионов практически вымышленных объектов нужно найти одну, соответствующую нашей реальности. Это уже не DarkSouls на банане, это просто лютое безумие. У меня нет ни желания, ни ученой степени, чтобы объяснять вам про бозоны, кварки и гравитоны. Думаю, вам это и не нужно — углубление в физику. У нас же все-таки теория струн для чайников. Поэтому пойдем более простым путем. Суть теории струн Чтобы объяснить суть теории струн, начнем с самого начала. А что у нас в начале? До всего этого десятка измерений, кое-что безразмерное, так называемое нулевое измерение. Конечно же, это точка. А у вас были другие варианты? Теперь возьмем две точки и соединим как в начальных классах на математике. Что получилось? Правильно, отрезок. Он, в отличие от точки уже имеет одно измерение — длину. Однако ни ширины, ни высоты здесь по-прежнему нет. Двигаться в одномерном пространстве можно только вперед и назад. Никаких вверх-вниз, влево-вправо там и в помине нет. Если на вашем пути поставить какое-либо препятствие, вы в лепешку расшибетесь, но обогнуть его не сможете. Зато на такой линии уже можно определить нахождение объекта по одной координате. Итак, представьте, что на отрезке все-таки возникло препятствие, как его обойти? Логично, что нужно добавить еще одно измерение, ибо в одном никак. Поэтому дорисовываем где-нибудь рядом с этой линией еще одну точку. Совместим ее с любой из двух других точек и получим двумерную систему координат. Теперь у нас есть два измерения — длина и ширина. Но для настоящего 3D-пространства нам все еще не хватает высоты. Поэтому сейчас мы будем творить настоящую магию. Добавим еще одну точку и соединим ее с той, с которой соединяли предыдущую.

Квантовые поля

  • Популярно о теории струн
  • Теория струн. Что это?
  • Теория струн — Неолурк, народный Lurkmore
  • О чем теория струн? Самое простое и понятное объяснение – Физика
  • На пути к теории струн / Хабр

Космический эксперимент поставил под сомнение теорию струн

Соответственно, если собрать все элементарные частицы в один предмет, он будет связкой огромного количества таких вибраций. Это объяснение теории струн очень простыми словами, без использования терминов теории относительности и квантовой механики, на стыке которых она находится. Основные элементы теории Экспериментальных доказательств верности теории струн пока нет, но физики, работающие над ней, выделяют несколько обязательных элементов этой гипотезы: Дополнительные измерения. Чтобы «струны Вселенной», из которых могут состоять все предметы, действительно работали, измерений должно быть не меньше десяти. Суперсимметрия, под которой понимается связь между двумя классами элементарных частиц — фермионами и бозонами.

Объединение сил.

Характер этого взаимодействия таков, что имеется некое расстояние между взаимодействующими объектами, на котором интенсивность сильного взаимодействия практически нулевая положение равновесия. Но стоит этому расстоянию измениться, как возникает сила, возвращающая взаимодействующие объекты в первоначальное положение, причем, чем дальше от положения равновесия отклоняются эти объекты, тем больше по интенсивности возвращающая сила. Вследствие этой особенности сильного взаимодействия возникла модель, позволяющая формально заменить это взаимодействие, не конкретизируя его особенностей, понятием струны — одномерного протяженного объекта, обладающего натяжением. Причем, для многих задач оказалось вполне достаточным полагать это натяжение постоянным. Так возникла исторически первая струнная модель — модель мезона, частицы с простейшим кварковым содержанием: два кварка, связанных между собой струной, обладающей натяжением картинка справа. Подобный подход, позволяющий отказаться от детализации описания процесса взаимодействия, моделируя его физическими свойствами такого наглядного объекта, как струна, соединяющая взаимодействующие объекты не мог не привлечь пристального внимания физиков. А некая аналогия между исходными уравнениями, описывающими сильные взаимодействия и уравнениями Эйнштейна, описывающими гравитационное взаимодействие эти уравнения сильно нелинейны немедленно возродила в физике огромные надежды на построение Теории Великого Объединения на струнной основе.

И грянул струнный бум в физике и математике. Сейчас можно с уверенностью утверждать, что теория струн благополучно прошла через эти периоды энтузиазма, неоправданных надежд и неизбежного при этом разочарования. Она вступила в полосу достаточно спокойного развития, продолжая привлекать к себе внимание физиков и математиков. При этом и струнная программа объединения взаимодействий не утратила своей актуальности. Стало отчетливо понятно, что эта программа на самом деле является отнюдь не содержанием теории струн, а только еще одной областью ее приложения. Ситуация со струнной теорией сложилась так, что многие, если не большинство решаемых ею задач имеют разве что косвенное отношение к проблемам физики элементарных частиц. Развитие ее сегодня уже определяется в большей степени своей внутренней логикой, а не потребностями того или иного физического приложения. И, как следствие, эта внутренняя логика, а не трудности альтернативных подходов к решению конкретных задач, становится обоснованием теории струн, как это и должно происходить с любой полноценной теорией.

Более того, следуя этой логике, в орбиту теории струн вовлекаются все более разнообразные области физики и математики, и это приводит к образованию нового здания естествознания, внося новые штрихи в наше понимание структуры и взаимосвязей различных наук. Не обошли эту теорию вниманием и эзотерики самых различных течений. Если теперь попытаться ответить на вопрос, что из себя представляет теория струн в современном понимании, придется признать, что эта теория является не столько конкретной теорией или схемой, направленной на описание конкретной физической системы, сколько большая совокупность идей и методов, призванных дать широкое обобщение используемого физиками математического формализма и применить этот формализм во множестве новых приложений. В этом смысле теория струн —раздел математической физики, имеющий самостоятельную ценность, независимо от успехов конкретных попыток построить на ее основе модель того или иного физического явления. Совершенно естественно, что теория струн повторяет путь, пройденный в свое время, классической и квантовой теорией поля, так же зародившейся в недрах физики элементарных частиц и ставшей впоследствии одним из наиболее эффективных инструментов в исследовании самого широкого круга физических явлений. Как это происходило не раз при развитии других разделов науки, нередко наиболее плодотворными оказываются приложения математического аппарата, о которых даже и не подозревали при его создании. Более того, даже идеи, возникающие при создании нового формализма при его разработке, могут в итоге оказаться ошибочными и отброшенными как ложные. В лучшем случае их приходится модифицировать, а в худшем заменять на нечто, вообще ранее не предвиденное.

Наличие такого рода критериев и определяет ценность этой теории в плане постановки новых физических и математических задач, указывая возможные пути их решения [1, 3]. Возникновение и использование теории струн, в широком смысле этих терминов, связано с необходимостью решения широкого круга задач, возникающих с завидным постоянством в самых различных областях современной физики и пониманием того, что от решения этих задач вряд ли возможно уйти. Попробуем выделить классы этих задач, избегая при этом излишней детализации и понимая, что такое разделение проблем на самом деле является довольно поверхностным и условным и никоим образом не претендует на какую бы то ни было общность. Теория сильной связи и вообще теория нелинейных явлений В настоящее время для обозначения всего, что связано с нелинейными процессами используется термин синергетика. По своим целям синергетика и теория струн весьма близки, но последняя отличается от первой более конкретными методами анализа, за что приходится платить меньшей универсальностью. Но при этом потеря универсальности приводит к более точным предсказанием развития процессов в изучаемом явлении. Методы теории струн позволяют довольно эффективно выделять различного рода симметрии процесса, очень часто являющиеся внутренними для изучаемой физической системы и далеко не очевидными на первый взгляд.

Например, представьте, что есть два типа улиц, и тип определяет правила движения. Некоторые улицы имеют тот или иной тип, поэтому правила довольно просты. Однако другие улицы подходят под определение обоих типов, так какие правила применяются к ним? Как и наличие двух совершенно разных правил дорожного движения, невозможность объединить квантовую механику и теорию относительности создает хаос при попытке понять нашу вселенную. Интересно, что существует несколько потенциальных теорий, объединяющих два столпа физики, самой известной из которых является теория струн. Мир согласно теории струн Согласно теории струн, если бы мы заглянули внутрь любой фундаментальной частицы, например, такой как электрон, мы бы обнаружили там крошечную вибрирующую струну энергии одномерный объект. В теории струн фундаментальные частицы можно рассматривать как энергетические колебания. Рисунок, изображающий теорию струн.

Почему мы не видим всех этих измерений? Потому что они существуют на таком малом уровне, что невидимы для нас, не поддаются обнаружению. Они компактные, укомплектованные таким образом, что воспроизводят физику нашего мира, складываясь в интересные формы Калаби-Яу. Различные формы Калаби-Яу позволяют существовать различным вибрациям струн и совершенно разным вселенным. Мы даже можем протестировать предполагаемые множественные вселенные. Поскольку мы предполагаем, что гравитация просачивается в более высокие измерения, после столкновения двух частиц должно быть меньше времени, чем до столкновения. Но даже в самых благоприятных условиях тестирование чего-то подобного было бы невероятно трудным, неуловимым. Расчеты теории струн производятся в моделируемых вселенных с 10 или 11 измерениями, где математика работает. Затем ученые пытаются стереть дополнительные измерения, но пока никто не преуспел в описании нашей вселенной или разработке какого-то эксперимента для доказательства теории. Однако это не значит, что у нас нет никаких применений для теории струн. Математический инструмент, разрабатываемый в рамках исследований теории струн, помогает нам понимать части нашей вселенной. Мы можем использовать его для лучшего объяснения информационного парадокса, квантовой гравитации и некоторых проблем чистой математики. Некоторые ученые используют теорию для своих вычислений в физике частиц или при наблюдении экзотических состояний материи.

Теория струн

  • Теория струн простыми словами
  • Теория струн
  • Что такое теория струн?
  • В чем суть Теории струн

Обнаружено новое доказательство теории струн

Теория струн основана на идее физики о том, что все известные силы, частицы и взаимодействия могут быть связаны. Теория струн возникла в середине 1970-х годов в результате развития струнной модели строения адронов. Как известно, теория струн была предложена в 1970-х годах для решения проблем квантовой гравитации и Стандартной модели. Теория суперструн кратко и понятно, просто и элегантно объясняет переход длины в массу. Квантовая теория струн – это фундаментальная теория, которая стремится объединить квантовую механику и общую теорию относительности.

Теория струн кратко и понятно

теория струн имеет значительное значение для понимания ранней Вселенной и происхождения нашей вселенной. Важнейшее значение теории струн для физиков, если излагать кратко: она претендует на роль «теории всего», то есть может объединить в одно целое все физические аспекты существования Вселенной. Теория струн кратко и понятно. меньших, чем атомы, электроны или кварки.

Теория струн, Мультивселенная

Теория струн, обобщение квантовой теории поля (КТП), связанное с ослаблением требований локальности и перенормируемости, открывшее возможность. Теория струн, обобщение квантовой теории поля (КТП), связанное с ослаблением требований локальности и перенормируемости, открывшее возможность. Не так давно физический мир облетела новость: знаменитая теория струн несовместима с существованием тёмной энергии, какой её себе представляет большинство космологов. Причина, по которой теория струн является потенциальной теорией всего, заключается в том, что она предсказывает, что все формы материи состоят из струн, и, следовательно, все на самом деле состоит из одного и того же «вещества». Теория струн кратко и струн — это одна из революционных и самых противоречивых теорий в физике, целью которой является объединение всех частиц и фундаментальных сил природы в единую тео.

Похожие новости:

Оцените статью
Добавить комментарий