The Gini coefficient measures inequality on a scale from 0 to 1. Higher values indicate higher inequality. Depending on the country and year, the data relates to income measured after taxes and benefits, or to consumption, per capita.
Коэффициент Джини. Формула. Что показывает
В данной статье приведены показатели коэффициента и индекса Джини — показателя, характеризующего дифференциацию населения России по доходам. В России по итогам 2023 года вырос показатель доходного неравенства среди граждан, так называемый "коэффициент Джини". Чем больше коэффициент Джини, тем сильнее распределение отклоняется от прямой и тем выше уровень неравенства доходов в данной группе. Коэффициент Джини имеет числовое значение от 0 до 1, где ноль означает полное равенство, то есть все люди получают одинаково. Степень неравенства доходов внутри групп населения (коэффициент Джини) выросла по итогам 2023 года до 0,403, тогда как в 2022 этот показатель составлял 0,395, констатировал Росстат.
Неравенство доходов и коэффициент Джини в России: причины, последствия и пути решения
Применение коэффициента Джини в России началось в 1990-х годах — в это время, как и позднее период экономического роста в 2000-е годы , он демонстрировал низкую эгалитарность равенство российского общества [2]. Показатели коэффициента Джини в России за все время измерения 1991—2018 Содержание.
В этом смысле понимание демографии может быть важно для понимания того, что представляет собой данный коэффициент Джини. Например, большое количество пенсионеров повышает индекс Джини. В какой стране самый высокий индекс Джини? Южная Африка с коэффициентом Джини 63,0 в настоящее время признана страной с самым высоким неравенством доходов. World Population Review объясняет это массовое неравенство расовой, гендерной и географической дискриминацией, поскольку белые мужчины и городские рабочие в Южной Африке получают гораздо более высокие зарплаты, чем все остальные.
Что означает индекс Джини, равный 50? Джини в 50 — это половина пути, и в целом его можно воспринимать как место, где доходы распределяются несправедливо: только в 15 странах мира индекс Джини составляет 50 и более. Коэффициент Джини в США высокий или низкий? В США коэффициент Джини равен 41,1, что является высоким показателем для такой развитой экономики. Экономисты возлагают вину за растущее неравенство доходов в США на такие факторы, как технологические изменения, глобализация, упадок профсоюзов и снижение минимальной заработной платы. Особенности Индекс Джини — это показатель распределения доходов среди населения. Из-за данных и других ограничений индекс Джини может завышать неравенство доходов и скрывать важную информацию о распределении доходов.
Глобальное неравенство, измеряемое индексом Джини, неуклонно росло в течение последних нескольких столетий и резко возросло во время пандемии COVID-19. Более высокий индекс Джини указывает на большее неравенство, когда люди с высокими доходами получают гораздо больший процент от общего дохода населения.
С 1950 по 1970 год неравенство имело тенденцию снижаться по мере того, как ВВП на душу населения превышал определенный порог. С 1980 по 2000 год неравенство снижалось с ростом ВВП на душу населения, а затем резко возрастало. Ограничения индекса Джини Хотя коэффициент Джини полезен для анализа экономического неравенства, он имеет некоторые недостатки. Точность показателя зависит от надежных данных о ВВП и доходах. Теневая экономика и неформальная экономическая деятельность присутствуют в каждой стране. Неформальная экономическая деятельность, как правило, представляет большую часть реального экономического производства в развивающихся странах и находится в нижней части распределения доходов внутри стран.
В обоих случаях это означает, что индекс Джини измеренных доходов будет завышать истинное неравенство доходов. Точные данные о богатстве получить еще труднее из-за популярности налоговых убежищ. Другой недостаток заключается в том, что очень разные распределения доходов могут привести к одинаковым коэффициентам Джини. Поскольку индекс Джини пытается свести двумерную область разрыв между кривой Лоренца и линией равенства к одному числу, он скрывает информацию о «форме» неравенства. В бытовом плане это было бы похоже на описание содержимого фотографии исключительно ее длиной по одному краю или простым средним значением яркости пикселей. Хотя использование кривой Лоренца в качестве дополнения может предоставить больше информации в этом отношении, она также не показывает демографические различия между подгруппами в рамках распределения, такие как распределение доходов по возрасту, расе или социальным группам. В этом смысле понимание демографии может быть важно для понимания того, что представляет собой данный коэффициент Джини. Например, большое количество пенсионеров повышает индекс Джини.
Экономика В первом полугодии 2023 г. Ведомство оценивает показатель по так называемым квантилям - группам по доходам всего их пять. Отдельное значение — коэффициент Джини — показывает индекс концентрации доходов.
Значение может варьироваться от 0 до 1, и чем ближе оно к верхнему порогу, тем в большей степени доходы сконцентрированы в руках отдельных групп. За год показатель вырос с 0,400 до 0,405. Статведомство также распределяет население по величине среднедушевых денежных доходов.
До 7 000 руб. Напряженность на рынке труда Рост заработных плат связан с кадровым голодом, уверена профессор кафедры государственных и муниципальных финансов РЭУ им.
Gini Coefficient
Меньше всего получают работники почты и курьеры 40 583 руб. Средний размер пенсии на июль по сравнению с данными о зарплате, оценки по этому показателю доходов населения Росстат публикует более оперативно составил 19 476 руб. Экономика В первом полугодии 2023 г. Ведомство оценивает показатель по так называемым квантилям - группам по доходам всего их пять. Отдельное значение — коэффициент Джини — показывает индекс концентрации доходов. Значение может варьироваться от 0 до 1, и чем ближе оно к верхнему порогу, тем в большей степени доходы сконцентрированы в руках отдельных групп. За год показатель вырос с 0,400 до 0,405. Статведомство также распределяет население по величине среднедушевых денежных доходов.
Индекс гендерного неравенства был представлен Секретариатом Всемирного экономического форума в Женеве в 2010 году.
Используется Организацией Объединённых наций в докладе о человеческом развитии с 2010 года. Скорость обращения денег англ. Скорость обращения денег во многом зависит от объёмов экономической активности при заданной денежной массе. Если период времени заявлен, скорость может быть представлена числом. В противном случае показатель должен быть задан в форме число за период времени. Благосостояние — обеспеченность населения государства, социальной группы или класса, семьи, отдельной личности необходимыми для жизни материальными, социальными и духовными благами. Кривая спроса — это график, иллюстрирующий связь между ценой определенного товара или услуги и количеством товара, которое может и хочет купить потребитель по данной цене. Является графическим представлением спроса.
Счёт текущих операций — раздел платёжного баланса страны, в котором фиксируются экспорт и импорт товаров и услуг, чистый доход от инвестиций и чистый объём трансфертных платежей. Коэффициент демографической нагрузки — обобщённая количественная характеристика возрастной структуры населения, показывающая нагрузку на общество непроизводительным населением. Определяется различными соотношениями численности укрупненных возрастных групп: детей 0-14 лет , пожилых и старых 60 лет и старше , трудоспособных условно 15-59 лет. Различают следующие показатели демографической нагрузки: отношение числа детей или числа пожилых людей или общего числа детей и пожилых людей к числу людей... Экономическое неравенство - это различие по показателям экономического благосостояния между отдельными лицами в группе, между группами населения или между странами. Проблема экономического неравенства имеет отношение к понятиям справедливости, равенства результатов и равенства возможностей. Занятость — не противоречащая законодательству деятельность граждан, связанная с удовлетворением их личных и общественных потребностей и приносящая им заработок, трудовой доход. Существуют следующие виды занятости...
Предельные издержки также маржинальные издержки англ. Модель Харрода — Домара англ. Harrod—Domar model — неокейнсианская модель экономического роста, объясняющая рост экономики при условии постоянства коэффициентов капиталоёмкости и склонности к сбережению в долгосрочном периоде. В модели были впервые интегрированы процессы мультипликации и акселерации. Модель объединила работы Роя Ф. Харрода, впервые предложившего свою модель гарантированного роста в 1939 году, и Евсея Домара, который в 1946 году расширил условия краткосрочного кейнсианского равновесия... Конвергенция в экономике эффект наверстывания — гипотеза, что более бедные страны с низкими доходами на душу населения будут иметь более высокие темпы экономического роста, чем богатые страны. В результате доход на душу населения всех экономик должен в конечном итоге сойтись.
Развивающиеся страны имеют потенциал к росту более высокими темпами, чем развитые страны, поскольку убывание доходности факторов производства в частности, капитала меньше, чем в богатых странах. Кроме того, более бедные... ВВП в расчёте на душу населения определяет уровень экономического развития государства.
И что самое главное — не изменился алгоритм построения кривой.
Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Идея следующая: вместо ранжирования населения по уровню дохода, мы ранжируем предсказанные вероятности модели по убыванию и подставляем в формулу кумулятивную долю истинных значений целевой переменной, соответствующих предсказанным вероятностям.
Иными словами, сортируем таблицу по строке «Predict» и считаем кумулятивную долю классов вместо кумулятивной доли доходов. Код на Python from scipy. Мало это или много? Насколько точен алгоритм?
Без знания точного значения коэффициента для идеального алгоритма мы не можем сказать о нашей модели ничего. Поэтому метрикой качества в машинном обучении является нормализованный коэффициент Джини, который равен отношению коэффициента обученной модели к коэффициенту идеальной модели. Далее под термином «Коэффициент Джини» будем иметь ввиду именно это. Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче.
Бедность и прожиточный минимум Неравенство часто ассоциируется с бедностью, иногда их даже отождествляют. Но это две разные, хотя и глубоко взаимосвязанные, проблемы. Определяющий признак бедности — такой уровень лишений, при котором человек не имеет доступа к товарам и услугам, считающимся в данном обществе необходимыми для поддержания приемлемого уровня жизни. Из такого определения видно, что критерии бедности могут изменяться от страны к стране и в различные периоды истории данного общества. Сегодня за этой чертой живут примерно 700 миллионов человек. Когда бедность определяется через установленную денежную величину дохода или потребления черта бедности , говорят об абсолютной бедности. Другой подход заключается в привязке к постоянно меняющимся стандартам уровня жизни.
Ваш пароль
Для измерения фактического распределения доходов используют «кривую Лоренца» и «коэффициент Джини», показывающие, какая доля совокупного дохода приходится на каждую группу населения, что позволяет судить об уровне экономического неравенства в данной стране. Первой с конца является Южно-Африканская Республика – коэффициент Джини здесь достиг 63%. Насколько равномерно происходил рост богатства швейцарцев показывает так называемый «коэффициент Джини» (Gini-Koeffizienten). В 2023 году в России коэффициент Джини, характеризующий степень неравенства в распределении доходов внутри групп населения, вырос до 0,403 против 0,395 годом ранее, следует из доклада Росстата о социально-экономическом положении .pdf). вы делаете те новости, которые происходят вокруг нас.
Некоторые равнее: что такое коэффициент Джини и зачем он нужен
Может быть, интересно поделить чужие доходы или чужое имущество? Если нас интересуют самые богатые жители России, мы можем посмотреть список Forbes. И, наверное, полезнее узнать, за счёт чего они стали богатыми. Понимание того, как добиться успеха, может стать хорошим стимулом для молодёжи. Кроме того, делить доходы миллиардеров на численность жителей страны смысла нет.
Как правило, богатые люди — владельцы не национального, а международного капитала, их корпорации производят товары и услуги для жителей всей планеты. В нашей стране при составлении государственных экономических и социальных программ ориентируются на другие показатели. Коэффициент Джини показывает, насколько фактическое распределение доходов населения отклоняется от показателя их равномерного распределения. Чем больше он отклоняется от нуля, тем больше неравенство в распределении доходов.
Условно говоря, если все доходы в руках одного господина, тот этот коэффициент будет равен единице. Потом он немного снизился, а с 2012 года снова растёт.
Бедные становятся еще беднее, им труднее зарабатывать и приумножать свой капитал, чем богатым. Между тем количество миллиардеров растет и это тоже факт. У богатых денег больше, соответственно, и возможностей больше. Они увеличивают свое состояние быстрее. Поэтому даже при равных условиях в более выгодном положении остается тот, у кого средств оказалось больше. Но, как говорится, нет ничего не возможного. Если абстрагироваться от размера капитала, и исходить из реальности, то оптимальной позицией будет следующая.
Самостоятельность в действиях, анализ доходов и трат, четкий план действий, а также грамотное распределение денег, накопление, откладывание, инвестиции — необходимый минимум на пути к благосостоянию. Подытоживая, следует заметить, что, безусловно, есть много людей, которые считают, что со временем ситуация ухудшится и число бедных будет только расти. Но если все время придерживаться этой позиции и ничего совсем не делать, то лучше от этого точно не станет. Все в руках человека. Преимущества коэффициента Джини Gini coefficient позволяет: Провести сопоставления по распределению исследуемого признака в совокупностях, разных по числу единиц, и между разными совокупностями. К примеру, в регионах с различной численностью либо между странами. Скорректировать данные по ВВП и среднедушевому доходу. Проследить динамику неравномерного рассредоточения изучаемого признака. Сопоставить также разделение рассматриваемого признака по разнородным группам населения к примеру, для сельчан и горожан.
И чем он отличается от других показателей неравенства? Коэффициент Джини, или индекс Джини, является наиболее распространённым показателем неравенства. Он был разработан итальянским статистиком Коррадо Джини 1884—1965 гг. Значение 1 означает полное неравенство, когда один человек получает весь доход, а все остальные — ничего Как рассчитывается коэффициент Джини? Существует два основных способа расчёта коэффициента Джини. Оба приводят к одним и тем же значениям, но дают нам два представления о том, что именно измеряет коэффициент Метод 1: Расчёт разницы между доходами двух человек по отношению к среднему значению Первый метод можно проиллюстрировать следующим мысленным экспериментом Представьте двух людей, случайно столкнувшихся на улице. Они сравнивают свои доходы и выясняют, насколько один из них богаче другого. Насколько большую разницу можно ожидать? Этот ожидаемый разрыв между двумя случайно выбранными людьми и измеряется коэффициентом Джини.
Предположим, есть три деревни, в каждой из которых проживает 10 жителей. В каждой деревне суммарный годовой доход населения 100 рублей. В первой деревне все жители зарабатывают одинаково — 10 рублей в год, во второй деревне распределение дохода иное: 3 человека зарабатывают по 5 рублей, 4 человека — по 10 рублей и 3 человека по 15 рублей. И в третьей деревне 7 человек получают 1 рубль в год, 1 человек — 10 рублей, 1 человек — 33 рубля и один человек — 50 рублей. Для каждой деревни рассчитаем коэффициент Джини и построим кривую Лоренца. Представим исходные данные по деревням в виде таблицы и сразу рассчитаем и для наглядности: Код на Python import pandas as pd import numpy as np import matplotlib.
Ещё один немаловажный момент. Давайте мысленно закрепим концы кривой в точках и и начнем изменять её форму. Вполне очевидно, что площадь фигуры не изменится, но тем самым мы переводим членов общества из «среднего класса» в бедные или богатые при этом не меняя соотношения доходов между классами. Возьмем для примера десять человек со следующим доходом: Теперь к человеку с доходом «20» применим метод Шарикова «Отобрать и поделить! В этом случае коэффициент Джини не изменится и останется равным 0,772, мы просто притянули «закрепленную» кривую Лоренца к оси абсцисс и изменили её форму: Давайте остановимся на ещё одном важном моменте: рассчитывая коэффициент Джини, мы никак не классифицируем людей на бедных и богатых, он никак не зависит от того, кого мы сочтем нищим или олигархом. Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых.
Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению.
Из Википедии — свободной энциклопедии
- Коэффициент Джини: все ли равны? | Частных инвесторов журнал | Дзен
- Какие страны и почему отличаются высоким показателем джини география реферат
- Что такое коэффициент / индекс Джини?
- Индекс Джини | Investor's wiki
- В России выросла разница в доходах самых богатых и самых бедных. И еще 10 главных новостей ночи
Коэффициент Джини (распределение дохода)
За счет продолжения в 2023 г. Несмотря на отсутствие официальных данных о росте зарплат в ВПК, полная загрузка производственных мощностей в отрасли увеличила спрос на кадры, а следовательно, и уровень дохода сотрудников. Дефицит кадров в определённых отраслях. Например, за счет значительного сокращения в 2022 г. Эксперты считают, что тенденция продолжится Фото: pixabay.
Государственная статистика Единая межведомственная информационно-статистическая система ЕМИСС разрабатывалась в рамках реализации федеральной целевой программы «Развитие государственной статистики России в 2007-2011 годах». Целью создания Системы является обеспечение доступа с использованием сети Интернет государственных органов, органов местного самоуправления, юридических и физических лиц к официальной статистической информации, включая метаданные, формируемой в соответствии с федеральным планом статистических работ.
Величина коэффициента ограничена промежутком от ноля до единицы — чем выше значение показателя, тем более неравномерно распределены доходы в обществе [1]. Индекс Джини — процентное представление этого коэффициента. Расчёт коэффициента Джини базируется на кривой Лоренца — для её построения требуется частотное распределение единиц исследуемой совокупности и взаимосвязанное с ним частотное распределение изучаемого признака.
Коэффициент Джини — статистический показатель меры расслоения доходов или богатства общества. Измеряется по шкале от 0 до 1, где ноль означает полное равенство, а единица — полное неравенство. Нулевое значение будет в стране или в регионе, в которой абсолютно у всех одинаковый доход. На практике же значения чаще всего укладываются в диапазон от 0,2 до 0,6.
Социальная поддержка сократила уровень неравенства в России
Коэффициент Джини является основным широко используемым показателем для измерения неравенства распределения доходов в обществе. Доверительный интервал коэффициента Джини определяется на основе стандартного отклонения, которое рассчитывается с использованием значения AUC по следующей формуле. Значение коэффициента Джини для этих стран стабильно удерживается в диапазоне 0,25-0,3. Тут уместно провести параллели с коэффициентом Джини, который показывает имущественное расслоение населения.
Вы точно человек?
Коэффициент Джини рассчитывается по формуле. В данной статье приведены показатели коэффициента и индекса Джини — показателя, характеризующего дифференциацию населения России по доходам. Отдельное значение — коэффициент Джини — показывает индекс концентрации доходов. Коэффициент концентрации доходов, или индекс Джини, может быть рассчитан и с помощью других методик.
Неравенство доходов и коэффициент Джини в России: причины, последствия и пути решения
Для каждой деревни рассчитаем коэффициент Джини и построим кривую Лоренца. Представим исходные данные по деревням в виде таблицы и сразу рассчитаем и для наглядности: Код на Python import pandas as pd import numpy as np import matplotlib. Ещё один немаловажный момент. Давайте мысленно закрепим концы кривой в точках и и начнем изменять её форму. Вполне очевидно, что площадь фигуры не изменится, но тем самым мы переводим членов общества из «среднего класса» в бедные или богатые при этом не меняя соотношения доходов между классами. Возьмем для примера десять человек со следующим доходом: Теперь к человеку с доходом »20» применим метод Шарикова «Отобрать и поделить! В этом случае коэффициент Джини не изменится и останется равным 0,772, мы просто притянули «закрепленную» кривую Лоренца к оси абсцисс и изменили её форму: Давайте остановимся на ещё одном важном моменте: рассчитывая коэффициент Джини, мы никак не классифицируем людей на бедных и богатых, он никак не зависит от того, кого мы сочтем нищим или олигархом. Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых.
Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению. Машинное обучение 1. Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл. Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца. Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур.
Недостатки коэффициента Джини В разделе не хватает ссылок на источники см. Так, чем на большее количество групп поделена одна и та же совокупность больше квантилей , тем выше для неё значение коэффициента Джини. Коэффициент Джини не учитывает источник дохода, то есть для определённой географической единицы страны, региона и т. Метод кривой Лоренца и коэффициента Джини в деле исследования неравномерности распределения доходов среди населения имеет дело только с денежными доходами, меж тем некоторым работникам заработную плату выдают в виде продуктов питания и т.
Различия в методах сбора статистических данных для вычисления коэффициента Джини приводят к затруднениям или даже невозможности в сопоставлении полученных коэффициентов. Коэффициент Джини отчасти неадекватен для плановых экономик, где распределение ресурсов зависит не только от доходов, но и от лояльности к государству партии.
В сущности, эта кривая может отражать неравенство в распределении самых разных величин, но вначале предназначалась именно для отражения экономического неравенства в обществе [2]. И на её основании можно вывести коэффициент Джинни. Для простоты понимания рассмотрим рисунок 1. Заштрихованная площадь, обозначенная буквой Т, демонстрирует степень неравенства в распределении доходов. На основе этих данных можно вывести формулу, по которой рассчитывается коэффициент Джини. Данная формула будет выглядеть следующим образом: Чем выше неравенство в распределении доходов, тем больше коэффициент приближается к единице абсолютное неравенство. И чем выше равенство в распределении доходов, тем меньше данный коэффициент.
Недостатки коэффициента Джини Хотя коэффициент Джини полезен для анализа экономического неравенства, он имеет некоторые недостатки. Точность показателя зависит от достоверных данных о ВВП и доходах. Теневая экономика и неформальная экономическая деятельность присутствуют в каждой стране. Неформальная экономическая деятельность, как правило, составляет большую часть реального экономического производства в развивающихся странах и находится на нижнем уровне распределения доходов внутри стран. В обоих случаях это означает, что индекс измеренных доходов Джини будет завышать истинное неравенство доходов. Получить точные данные о богатстве еще труднее из-за популярности налоговых убежищ офшорных зон. Другой недостаток заключается в том, что очень разные распределения доходов могут привести к одинаковым коэффициентам Джини. Поскольку индекс Джини пытается разделить двумерную область разрыв между кривой Лоренца и линией равенства до одного числа, он скрывает информацию о «форме» неравенства. В повседневных терминах это было бы похоже на описание содержимого фотографии только по ее длине вдоль одного края или простому среднему значению яркости пикселей. Хотя использование кривой Лоренца в качестве дополнения может предоставить больше информации в этом отношении, она также не показывает демографические различия между подгруппами внутри распределения, например распределение доходов по возрасту, расе или социальным группам.
В этом ключе понимание демографии может быть важным для понимания того, что представляет данный коэффициент Джини. Например, большая часть пенсионеров повышает индекс Джини. Резюме Индекс Джини - это показатель распределения доходов населения. Более высокий индекс Джини указывает на большее неравенство, когда люди с высоким доходом получают гораздо больший процент от общего дохода населения.