"Первые результаты телескопа горизонта событий M87. На пресс-конференции в Европейской южной обсерватории ученые коллаборации «Телескоп горизонта событий» (Event Horizon Telescope) представили первое изображение сверхмассивной черной дыры Стрелец А, расположенной в центре галактики Млечный Путь.
«Необычайное объявление» о центральной черной дыре нашей галактики ожидается 12 мая
Это стало одним из первых прямых подтверждений существования сверхмассивных черных дыр раньше ученые могли судить о них в основном по косвенным признакам. Тем не менее, даже получив этот снимок, ученые не нашли однозначного ответа на вопрос о том, какие физические процессы задействованы в формировании характерного огненного кольца и полумесяца, которые окружают черную сферу горизонта событий. Ученые пока не знают, как именно черные дыры поглощают материю и какую роль в этом процессе играют магнитные поля, которые, предположительно, возникают в так называемом диске аккреции. Он представляет собой огромное кольцо из пыли и газа, которое вращается вокруг черной дыры и подпитывает ее, разогреваясь при этом до очень высоких температур. Другие исследователи сомневаются в этом и считают, что ведущую роль в этих процессах играют не только магнитные поля, но и другие физические явления.
Самая внешняя особенность имеет особенно высокую степень линейной поляризации, что свидетельствует об очень хорошо упорядоченном магнитном поле. Светлана Йорстад , старший научный сотрудник Бостонского университета и руководитель проекта по исследованию NRAO 530 Астрофизики полагают, что дальнейшие наблюдения за квазаром помогут понять, как со временем меняются характеристики самых внутренних джетов и их связь с производством фотонов высокой энергии. Телескоп горизонта событий — международное сотрудничество, которое объединяет радиотелескопы в разных странах мира для наблюдения за сверхмассивными черными дырами. Ранее исследователи проекта показали, как выглядят такие объекты в центре галактики M87 и Млечного Пути , а также нашли фотонное кольцо в галактике M87. Читать далее:.
Галилей оценил бы эту иронию — телескоп ведь смотрит на горизонт. Да, мы видели их в «Интерстелларе» и других научно-фантастических фильмах, но обычно это работа графических дизайнеров, пусть в некоторых случаях и подкрепленная научной основой. Парадоксально, что слово «фотография» буквально означает «запись света», а согласно теории относительности Эйнштейна черная дыра — это сверхтяжелый объект, из гравитационного поля которого ничто не может вырваться, даже свет. Тот порог, до которого свет может избежать затягивания в черную дыру, а после которого — уже нет, и называется горизонтом событий. В 2012 году известный физик Стивен Хокинг поставил под сомнение существование горизонта событий, предложив переформулировать термин в «видимый горизонт». По мнению Хокинга, подобная сфера не поглощает материю, информацию и свет, а только временно удерживает их, потом «выбрасывая» в космос в искаженном виде.
Обратное противоречило бы законам квантовой физики. Но человечество, тем не менее, твердо решило сфотографировать то, что свет не излучает, а, наоборот, поглощает. Еще и техникой с существенными недостатками. Подобная возможность дала бы человечеству материал для изучения общей теории относительности в режиме сильного поля, прояснила бы научное положение горизонта событий и фундаментальную физику черных дыр, самых загадочных объектов во Вселенной, чья мистическая природа давно будоражит умы мечтателей и исследователей. В космических масштабах черные дыры считаются объектами не очень большими, но находятся они от нас в миллионах световых лет. Самым большим объектом в нашем распоряжении пока остается собственная планета, поэтому работать пришлось с ней.
Ученые объединили восемь радиотелескопов, расположенных в разных местах, от Северной Америки до Испании, в один большой Телескоп Горизонта Событий Event Horizon Telescope.
Участники проекта Event Horizon Telescope впервые проверили эти гипотезы. Он обнаружил, что мощные магнитные поля определенным образом закручивают волны света и заставляют его поляризоваться. Оказалось, что магнитные поля действительно играют важную роль в движении потоков материи в окрестностях горизонта событий. Декстер и его коллеги надеются, что дальнейшее изучение данных EHT поможет уточнить, как именно магнитные поля влияют на формирование выбросов черных дыр. Понимание этого критически важно для оценки влияния сверхмассивных черных дыр на рост галактик, в том числе и Млечного Пути, заключают ученые.
#Event Horizon Telescope
Благодаря синхронизации работы телескопов, расположенных на разных континентах, при помощи атомных часов и использовании суперкомпьютеров для обработки данных ученые в 2019 году впервые в истории получили изображение тени сверхмассивной черной дыры в центре активной эллиптической галактики M87, увидели ее колебания и измерили магнитное поле вблизи дыры. Первоначально о существовании компактного объекта ученые узнали в конце прошлого века путем отслеживания движения звезд вблизи черной дыры, за что в 2020 году была вручена Нобелевская премия по физике. Для такой массы радиус горизонта событий составляет около 12 миллионов километров. Это стало возможным благодаря модернизации проекта EHT и применения новых методов обработки получаемых данных.
Здесь-то и пригодился Event Horizon Telescope. По сути, EHT — это объединенная сеть из восьми обсерваторий по всему миру, чьи радиотелескопы синхронизированы по сверхточным атомным часам.
Вся эта сеть работает как единый телескоп диаметром 10 тыс. Это и еще специально разработанный компьютерный алгоритм, позволяющий распознавать образы на основе зашумленной информации, и позволили построить, как из элементов пазла, фотографическое изображение черной дыры. Выглядит это как темный круг с оранжевым ореолом. М87 в 1500 раз более массивная и в 2000 раз более далекая черная дыра. Чтобы решить эту проблему, была создана модель вращения, которая распознавала, в какой именно фазе находится изображение с данной фотографии.
Таким образом, у астрономов появилось окончательное доказательство существования столь массивного компактного объекта в центральной зоне нашей галактики. На изображении видна яркая кольцеобразная область, за свечение которой ответственен горячий газ, падающий на черную дыру. О том, как благодаря EHT астрономам удалось увидеть тень черной дыры, и что это дало науке можно узнать из материалов «Взгляд в бездну» и «Заглянуть за горизонт».
Нашли опечатку?
Эта сверхмассивная черная дыра весит как 4 млн наших Солнца. Находится в созвездии Стрельца. О ее существовании подозревали с 1970-х годов, но до сих пор не было подтверждения, что это именно черная дыра, а не какое-то другое скопление материи. Размером объект — примерно как орбита Меркурия. На нашем небе примерно такого размера, как если бы мы пытались разглядеть бублик на Луне невооруженным глазом. Фото очень похоже на фото первой черной дыры. Но новая черная дыра меньше в несколько тысяч раз, так что заметить ее было гораздо сложнее.
Первый взгляд на чёрную дыру в центре Млечного пути
Для такой массы радиус горизонта событий составляет около 6 миллионов километров, что примерно в 15 раз больше расстояния от Земли до Луны. На изображении видна яркая кольцеобразная область, за свечение которой ответственен горячий газ, падающий на черную дыру. Хотя мы не можем видеть саму черную дыру, потому что она совершенно темная, светящийся газ вокруг нее дает характерный признак: темную центральную область называемую тенью , окруженную яркой кольцеобразной структурой.
Еще до появления Эйнштейна некоторые дальновидные ученые предполагали, что источник гравитации может быть настолько интенсивным, что даже свет, движущийся со скоростью 670 миллионов миль в час, не сможет избежать его притяжения. В 1915 году Эйнштейн опубликовал теорию общей теории относительности, удивительно успешную теорию гравитации, которая вытеснила концепцию Ньютона «таинственное действие на расстоянии» с новым подходом к геометрии пространства-времени. Вместо того, чтобы рассматривать объекты, притягиваемые к другой массе силой гравитации, общая теория относительности описывает способ, которым масса и энергия деформируют пространство, а объекты, включая свет, просто следуют контурам искривленного пространства.
Общая аналогия - представить батут или матрас с шаром для боулинга, вызывающим углубление на окружающей поверхности, в то время как движущийся рядом мрамор следует по пути наименьшего сопротивления и спирали внутрь. Перефразируя физика Джеймса Уилера: «искривленное пространство говорит материи, как двигаться, в то время как материя говорит пространству, как изгибаться». Концепция проста и изящна, но математика для решения конкретных задач устрашает. Через год после публикации Эйнштейн был удивлен, получив письмо от молодого математика Карла Шварцшильда, который тогда находился на российском фронте Первой мировой войны, в котором было дано точное решение общих уравнений относительности для сферической массы достаточного веса, которая бы заставила пространство-время изгибаться так сильно, что вся материя и свет будут захвачены внутри. Граница, из которой ничто не могло уйти, стала называться «горизонтом событий».
Эйнштейн поздравил Шварцшильда с его математическим достижением, но утверждал, что таких объектов на самом деле не существует. Вселенная не должна содержать все явления, которые соответствуют уравнениям теории. Немногие физики взялись за этот вопрос, но в 1939 году Роберт Оппенгеймер и Хартленд Снайдер рассчитали, как массивная звезда, лишенная ядерного топлива, будет бесконечно взрываться до точки «сингулярности». Ничто, кроме ее гравитационного поля, не будет сохраняться для внешних наблюдателей. Уникальные свойства черной дыры продолжают оставаться предметом изучения великих умов теоретической физики.
Общая теория относительности описывает материю и пространство в большом масштабе, в то время как квантовая механика описывает свойства очень малых с выдающейся предсказательной силой. Но эти две теории имеют фундаментальные различия в своих математических основах, включая саму природу пространства, что делает их несовместимыми везде, где они оба необходимы для описания реальности. Это существо, где интенсивная масса ограничена крошечными пространствами. Два места, где происходит это столкновение теорий, находятся в начале вселенной большого взрыва и в черных дырах. Общая теория относительности предсказывает, что ничто не остановит коллапс до сингулярности звезды, более чем в десять раз превышающей массу Солнца, когда оно исчерпало внешнее давление своего ядерного синтеза.
И ничто не остановит падение неосторожного космического путешественника, когда он упадет в черную дыру. Но может ли вселенная действительно иметь массовый контракт с бесконечно малой точкой? Многие ученые надеются, что возможная теория квантовой гравитации покажет, что такая особенность предотвращена. Поиски этой теории остаются одной из величайших задач современной физики. Первое «обнаружение» черной дыры произошло не от ее непосредственного наблюдения, а от анализа ее взаимодействия с соседними звездами.
Более десяти лет, начиная с 1960-х годов, усовершенствования в орбитальных рентгеновских обсерваториях предоставили подробную информацию о мощном источнике рентгеновских лучей, названном Cygnus X-1.
Но уже сегодня известны семь планет размером с Землю, и три из них вполне могут находиться в обитаемой зоне. Большим скачком вперед стал телескоп «Кеплер», с помощью которого удалось обнаружить около пяти тысяч планет. Впрочем, он не дает возможность подробно изучить многие планеты, которые напоминают Землю по размеру.
Они вполне могут иметь атмосферу и даже жизнь, но распознать их поможет только телескоп «Джеймс Уэбб». Ученые смогут использовать встроенные в него инфракрасные спектрометры, которые помогут в обнаружении возможной жизни на планетах из потенциально обитаемой зоны ближайших звездных систем. Около 10 лет назад ученые мало что знали о планетах, расположенных за пределами Солнечной системы, но вскоре смогут проанализировать их на наличие жизни Look Как зарождаются новые звезды в нашем Млечном пути «Хаббл» не может рассмотреть то, что находится за облаками «Хаббл» способен делать достаточно интересные снимки как в видимом свете, так и в инфракрасном. Впрочем, известно, что звезды зарождаются в массивных облаках пыли и газа, которые называют туманностями.
Данный телескоп вполне может увидеть, как они выглядят снаружи, но их внутренняя часть остается недостаточно подробной даже в инфракрасном спектре. Телескоп «Джеймс Уэбб» отличается повышенной эффективностью именно в этом частотном диапазоне, поэтому должен помочь получить еще более детализированные снимки подобных туманностей. Вполне вероятно, что ученые смогут воочию наблюдать за рождением и начальным периодом в жизни звезд и молодых планет.
Как пошутил один из астрономов, они предпринимали что-то вроде попытки сделать чёткий снимок щенка, быстро гоняющегося за своим хвостом.
Тем не менее, обе чёрные дыры выглядят удивительно похожими, несмотря на совершенно разные типы галактик и разницу в массе более чем в тысячу раз. Поразительная похожесть этих чёрных дыр вблизи края говорит нам, что там ими «управляет» общая теория относительности, и любые различия, которые мы видим дальше, должны быть связаны с различиями в окружающем их материале. Теперь астрономы смогут изучить различия между этими двумя сверхмассивными чёрными дырами, чтобы получить новые ценные сведения о том, как протекают процессы, играющие огромную роль в космологии, и как гравитация ведёт себя в экстремальных условиях. Телескоп горизонта событий в этом исследовании объединил восемь радиообсерваторий, расположенных в разных концах Земли, превратив их в огромный телескоп, обладающий большой разрешающей способностью, то есть способностью различать мелкие детали на огромном расстоянии.
Поскольку чёрная дыра в Млечном пути находится на расстоянии около 27 000 световых лет от Земли, на небе она имеет примерно такой же размер, как теннисный мяч на Луне.
Черную дыру впервые разглядели в телескоп
Телескоп горизонта событий — это проект, объединяющий в глобальную сеть данные нескольких телескопов. В рамках международного проекта «Event Horizon Telescope» астрономам впервые за всю историю наблюдений удалось получить снимок черной дыры, а точнее ее тени, «отбрасываемой» на светящийся диск из перегретого газа и пыли. View a PDF of the paper titled First M87 Event Horizon Telescope Results. When the Event Horizon Telescope (EHT) observed Sgr A* in April 2017 to make the new image, scientists in the collaboration also peered at the same black hole with facilities that detect different wavelengths of light.
Event Horizon Telescope captures images of NRAO 530 quasar
Впервые в истории опубликована фотография черной дыры галактики — 12.05.2022 — В мире на РЕН ТВ | Траектория полёта и маршрут зонда "Новые горизонты" к Плутону. |
Первый снимок чёрной дыры в центре нашей Галактики | Sputnik International. |
Event Horizon Telescope | Европейская южная обсерватория совместно с "Телескопом горизонта событий" представили первую в истории фотографию сверхмассивной черной дыры в центре галактики Млечный Путь, в которой находится Земля. |
Получен первый в истории снимок сверхмассивной черной дыры | Телескоп Event Horizon Telescope (EHT) запечатлел квазар под названием NRAO 530. |
Получена первая в истории фотография черной дыры - Ин-Спейс | и миллиметровых обсерваторий «Телескоп горизонт событий» (EHT) и Европейская южная обсерватория (ESO) получили первую в истории фотографию сверхмассивной черной дыры в центре галактики Млечный путь, в которой расположена Земля. |
Астрономы показали первое в истории изображение черной дыры
«Впервые мы получили поляриметрические изображения в масштабе горизонта событий черной дыры в центре нашей Галактики, Sgr A*», — говорят исследователи. Телескоп горизонта событий (EHT) получил самое подробное изображение ядра и релятивистского джета квазара NRAO 530. Телескоп горизонта событий — это проект, объединяющий в глобальную сеть данные нескольких телескопов.
Первый взгляд на чёрную дыру в центре Млечного пути
Наблюдение тех же магнитных структур в нашей сверхмассивной черной дыре позволяет предположить, что эти основные механизмы являются общими для всех черных дыр. На заднем плане справа: Коллаборация Планка нанесла на карту поляризованное излучение пыли по всему Млечному Пути. Исследование опубликовано в The Astrophysical Journal Letters.
Так выглядит квазар NRAO 530. Фото: Phys. Об этом пишет Phys. Квазары — это типы активных галактических ядер, которые, как полагают астрономы, питаются от черных дыр сверхмассивного типа.
Отсюда и возникает присущая квазарам яркость.
Он обнаружил, что мощные магнитные поля определенным образом закручивают волны света и заставляют его поляризоваться. Оказалось, что магнитные поля действительно играют важную роль в движении потоков материи в окрестностях горизонта событий. Декстер и его коллеги надеются, что дальнейшее изучение данных EHT поможет уточнить, как именно магнитные поля влияют на формирование выбросов черных дыр. Понимание этого критически важно для оценки влияния сверхмассивных черных дыр на рост галактик, в том числе и Млечного Пути, заключают ученые.
Заметили ошибку?
И на сегодня, на 16 часов по Москве, учёные созвали срочную пресс-конференцию, чтобы рассказать о своем открытии миру. Такое заявление вызвало довольно много хайпа в Сети. Особенно потому, что минобороны США на днях вдруг объявило, что 17 мая впервые за 50 лет проведёт закрытые слушания об НЛО. Как-то уж очень совпали эти две даты. Но более реалистичным было бы ожидать снимки нового небесного тела в пределах нашей галактики. Напомню, в 2019-м именно этот Event Horizon точно так же дразнил публику новым открытием, которое потом оказалось первым в истории реальным «фото» черной дыры. Всё-таки мы говорим о проекте телескопа.
Опубликован первый снимок гигантской черной дыры в Млечном Пути
Телескоп Event Horizon (EHT) добавил большее количество обсерваторий в глобальную сеть радиотелескопов, и первое изображение черной дыры нашей галактики может быть получено меньше, чем через год. Event Horizon Telescope Collaboration (testing-general-relativity-with-the-event-horizon).jpg 2,358 × 1,762; 674 KB. The Event Horizon Telescope is an international collaboration aiming to capture the first image of a black hole by creating a virtual Earth-sized telescope. Их получила обсерватория «Телескоп горизонта событий» (Event Horizon Telescope), объединившая в глобальную сеть несколько крупнейший радиотелескопов, разбросанных по разным континентам. На пресс-конференции в Европейской южной обсерватории ученые коллаборации «Телескоп горизонта событий» (Event Horizon Telescope) представили первое изображение сверхмассивной черной дыры Стрелец А, расположенной в центре галактики Млечный Путь. Next Generation Event Horizon Telescope.
Телескоп Event Horizon будет зондировать тайны пространства
From the EHT observations, we expect to better understand the physics around the black hole, as well as probe General Relativity. In 2019, EHT reported the first-ever picture of the black hole with the observation of the nuclear black hole in the galaxy M87 EHT Collaboration et al.
Масса газа, падающего в черную дыру, достигает примерно одной массы Солнца каждые десять лет. Возможность увидеть это при помощи гигантского виртуального интерферометра стала одним из наиболее интересных достижений в астрофизике в течение последних десятилетий. Естественно, что сразу после первого опыта ученые решили сосредоточиться на наиболее важной для Земли черной дыре, которая находится в центре нашей галактики Млечный Путь. Астрофизики довольно давно высказывают предположение, что в центре спиральных галактик, к которым относится и Млечный Путь, должно находиться сверхмассивное небесное тело, которое служит центром масс и вокруг которого вращается галактика. Еще в прошлом веке говорилось, что таким телом может быть сверхмассивная черная дыра — именно такой вывод подсказывали уравнения Эйнштейна.
Исследователи обнаружили схожесть в строении магнитных полей обеих чёрных дыр. Поляризация света относится к ориентации, в которой колеблются волны. Когда свет поляризован, он колеблется в определённом направлении, и хотя для человеческого глаза он выглядит так же, как обычный свет, исследователи изучают поляризованный свет, чтобы узнать об ориентации магнитных полей.
Хотя этот размер и может показаться большим, получающееся световое кольцо имеет видимый поперечник всего около 40 угловых микросекунд, что эквивалентно видимому размеру кредитной карты, лежащей на поверхности Луны. Хотя телескопы решетки не связаны друг с другом физически, получаемые ими наблюдательные данные можно точно синхронизировать при помощи атомных часов — водородных мазеров. Во время глобальной наблюдательной кампании 2017 года такие синхронные наблюдения были выполнены на длине волны 1.
Каждый телескоп EHTв ходе кампании получал громадное количество данных: 350 терабайт в день. Эти данные записывались на высокопроизводительные жесткие диски, наполненные гелием, а затем отсылались на высокоспециализированные суперкомпьютеры — так называемые корреляторы — в Институте радиоастрономии Макса Планка и обсерватории Хэйстек MIT для суммирования.