Новости почему поверхностное натяжение зависит от рода жидкости

Поверхностное натяжение зависит от свойств молекул жидкости и внешних условий, таких как температура и давление. Таким образом, рода жидкости влияют на поверхностное натяжение различными способами, причем эффект температуры может варьироваться для каждого рода жидкости.

Вода с низким поверхностным натяжением

Этот более плотный ряд поверхностных молекул образует нечто вроде упругой мембраны на поверхности жидкости. Молекулы расположены более плотно и плавно выстроены рядом друг с другом, в отличие от более хаотических молекулярных схем ниже. Прочность этой «эластичной мембраны» зависит от типа жидкости. Вода, например, имеет очень высокое поверхностное натяжение, потому что кислород и водород - два химических компонента воды H2O - имеют частичные отрицательные и положительные заряды, соответственно, и, таким образом, притягиваются ко всем другим молекулам воды, окружающим их. Водородные связи, как известно, прочны, поэтому вода имеет тенденцию удерживаться на поверхности даже лучше, чем другие жидкости, образуя щит, который может быть на удивление трудно сломать. Почему поверхностное натяжение так важно? Хотя это свойство жидкостей, безусловно, интересно, оно, похоже, не играет большой роли в нашей повседневной жизни, но именно здесь вы ошибаетесь. Помимо просмотра крутых видеороликов об идеально круглых каплях воды, падающих в замедленном режиме еще один пример поверхностного натяжения или водомерки, которые двигаются со скоростью 2 метра в секунду, скользя по поверхности озера, почему поверхностное натяжение имеет значение?

Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь. По этой причине свободная капля жидкости принимает шарообразную форму. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие стягивающие эту поверхность.

Эти силы называются силами поверхностного натяжения.

Следовательно, на нить со стороны плёнки действуют силы, удерживающие её в натянутом состоянии и стремящиеся сократить свободную поверхность жидкости. Рассмотрим молекулы М1 и М2, находящиеся на поверхности жидкости рис. Эти молекулы взаимодействуют не только с молекулами, находящимися внутри жидкости, но и с молекулами, расположенными на её поверхности в пределах сферы молекулярного действия. Модуль результирующей молекулярных сил притяжения, направленных вдоль поверхности жидкости, действующих на молекулу М1,. Модуль же результирующей молекулярных сил притяжения, которыми молекулы этой жидкости, находящиеся на её поверхности, действуют на молекулу М2, разместившуюся у края поверхности,. Результирующая направлена по касательной к свободной поверхности жидкости перпендикулярно линии, ограничивающей эту поверхность.

Молекулярные силы, направленные по касательной к свободной поверхности жидкости, действуют на любую замкнутую линию, ограничивающую эту поверхность, перпендикулярно ей таким образом, что стремятся сократить площадь ограниченной поверхности жидкости. Эти силы получили название сил поверхностного натяжения. Прямоугольную рамку с подвижной перекладиной длиной l опустим в мыльный раствор. После извлечения рамки из раствора видим, что перекладина перемещается, так как мыльная плёнка стремится сократить площадь своей поверхности. Чтобы перекладину удержать в равновесии, к ней следует приложить силу , которая уравновесит действующие на каждой из двух поверхностей плёнки силы поверхностного натяжения: , так как рис. Если проводить опыты с рамками разных размеров, можно установить, что отношение для плёнки данной жидкости при фиксированной температуре всегда одинаковое.

В 1983 году было доказано теоретически и подтверждено данными из справочников [2] , что понятие поверхностного натяжения жидкости однозначно является частью понятия внутренней энергии хотя и специфической: для симметричных молекул близких по форме к шарообразным. Приведенные в этой журнальной статье формулы позволяют для некоторых веществ теоретически рассчитывать значения поверхностного натяжения жидкости по другим физико-химическим свойствам, например, по теплоте парообразования или по внутренней энергии [3] [4]. В 1985 году аналогичный взгляд на физическую природу поверхностного натяжения как части внутренней энергии при решении другой физической задачи был опубликован В. Вайскопфом в США [5]. Поверхностное натяжение возникает на границе газообразных , жидких и твёрдых тел.

2.2.3. Факторы, влияющие на величину поверхностного натяжения

Сейчас это внешнее давление измеряют с помощью точных весов, которые взвешивают давление пленки масла на подвижную перекладину. Применение длинных молекул масла Смазывание. При смазывании высокоскоростных подшипников молекулы растительного масла присоединяются к металлу металл вытесняет водород из кислотного конца молекулы масла , и масло образует мономолекулярные бархатистые «ковры», инертные внешние слои которых удобно скользят друг по другу. К смазке добавляют также минеральные масла, чтобы между этими «коврами» получить инертные масляные «ролики». При крайне небрежном обращении с металла сдираются даже бархатистые монослои; тогда движущиеся металлические детали с большой силой прилипают друг к другу «схватываются» , и это чревато неприятными последствиями. Ланолиновый жир пристает к коже и проникает в нее, перенося с собой необходимые медикаменты, тогда как инертные минеральные масла беспорядочно распределяются на коже в виде жирных комков; поэтому избегайте мазей, изготовленных не на ланолине, а на минеральных маслах. К коже пристают и молекулы хорошей ваксы, а парафин разновидность минерального масла с более длинной цепью образует беспорядочные пятна[81]. Полировка обуви щеткой облегчает прилипание и распределяет молекулы по поверхности более равномерно. Укрощение штормов в море. Укрощение бурных морей с помощью масла — отнюдь не сказка.

Достаточно вылить за борт совсем немного подходящего масла, чтобы оно распространилось по большой поверхности. Ветер пытается создать большие волны, раскачивая небольшую рябь, масло сдувается в лужи неправильной формы, и различие поверхностного натяжения помешает действию ветра, создав своего рода поверхностное трение. Поэтому в таком месте образуется меньше больших волн. А волны, приходящие издалека, не смогут по крайней мере создать разрушительных гребней. Поверхностное натяжение играет важную роль при образовании вспененных гребней, и масло может помешать их образованию. Как изменится поверхностное натяжение при повышении температуры? Попробуйте нагреть припудренную поверхность воды, поднося к ней раскаленную докрасна кочергу. Опыт 21. Распылите по чистой воде камфару.

Каждая частица совершает беспорядочные движения. Это происходит потому, что камфара медленно растворяется в воде, ослабляя поверхностную оболочку. Каждую частицу вперед тянет чистая вода, а назад — слабее вода с камфарой, поэтому частица плывет вперед, подобно лодке, крутясь и поворачиваясь из-за своей неправильной формы. Попробуйте добавить еще немного масла. Движение камфары сразу прекратится. Не правда ли, это красивый несложный опыт, немного похожий на детскую забаву? Однако эта забава играет важную роль в одном из великих экспериментов атомной физики — в измерении размеров молекулы. Размер молекулы Шестьдесят лет назад лорд Рэлей наблюдал за растеканием масла по воде. В то время, когда ученые строили различные предположения о размерах молекул, он догадался, что самый тонкий слой масла, который может полностью покрыть водную поверхность, будет иметь толщину как раз в одну молекулу, и решил определить эту толщину.

Рэлей представил себе растекание капли масла как хаотическое движение молекул, карабкающихся друг на друга и сваливающихся назад, пока каждая не достигнет поверхности воды и не сможет прицепиться к воде эти масла состоят из молекул с длинной цепью, на одном конце которых находится химическая группа, имеющая сродство к воде. Как только все молекулы масла расположатся таким способом, они будут держаться в виде мономолекулярного покрова и перестанут стремиться к дальнейшему растеканию фиг. Масло на воде. Капля масла, нанесенная на чистую поверхность воды, растекается и покрывает ее слоем толщиной в одну молекулу. Молекулы масла, вероятно, стоят «дыбом» подобно ворсу на ковре. Если масла как раз достаточно для данной поверхности воды, слой будет иметь толщину в одну молекулу, и все молекулы будут плотно упакованы по вертикали, подобно ворсинкам бархата. При меньшем количестве масла останутся участки открытой воды. Если масла будет …??? Лорд Рэлей вымыл и заполнил водой круглый большой таз, имевший 82 см в поперечнике.

На поверхность воды он поместил взвешенную каплю масла и наблюдал, как оно растекается и закрывает всю поверхность. Затем он опять взял чистую воду и каплю меньшего размера, затем еще меньшую, пока не дошел до такой капли, которая уже не могла полностью закрыть всю поверхность. Как же он обнаружил, что закрыта не вся поверхность? Если перед опытом распылить на поверхности порошок, можно изменить свойства поверхности. Поэтому Рэлей после масла распылял камфару помните детскую забаву? Пока поверхность воды была полностью покрыта маслом, камфара не находила чистой воды, по которой она могла бы танцевать, но когда капля масла была мала, на поверхности открывались участки чистой воды. Условия приведенной ниже задачи 5 следуют за ходом вычислений Рэлея. Используя результаты его измерений, определите размеры молекул масла. Задача 5.

Измерение размеров молекулы Рэлей наносил каплю оливкового масла на чистую воду в большом сосуде. Для простоты примем, что сосуд был прямоугольным с размером зеркала воды 0,55 м х 1,00 м это даст ту же площадь, что и в круглом тазу, взятом Рэлеем. Предположим, что плотность остается такой же и в очень тонкой пленке. Помните, что поскольку масло менее плотно, чем вода, его объем должен быть больше объема той же массы воды. Поверим химикам, что это масло имеет «длинные» молекулы, один конец которых сильно притягивается водой. Какой вывод можно сделать из вопроса а относительно размеров молекул? Длина молекул очень мала; чтобы образовать линию в 1 см их требуются миллионы. В те времена, когда Рэлей производил свои измерения, ученые делали грубые, поспешные предположения о размере и массе молекул; их косвенные догадки основывались на трении в газах, на рассеянии солнечного света в небе молекулами и на некоторых сомнительных электрических аргументах. Здесь же был поразительно простой эксперимент и, вероятно, надежный.

С тех пор метод был улучшен и обобщен многими, особенно Ленгмюром в США. Оливковое масло, которое применял Рэлей, было неопределенной смесью маслянистых веществ. Позднейшие исследователи применяли чистые химические соединения, часто используя несколько членов «гомологического ряда» или, иначе, химической семьи. Например, Ленгмюр применял «жирные кислоты». Их получают из природных жиров и масел, и они дают мыло, соединяясь с натрием или калием. Они имеют длинные молекулы с одним инертным, а другим «кислым» концом, который притягивается водой. Существует целый ряд таких соединений, причем молекула каждого представителя этого ряда больше своего предшественника на один атом углерода и два атома водорода. Очень давно химики изобразили молекулы различных членов этих рядов структурными формулами, подобными трем приведенным на стр. Это были лишь догадки, основанные на химических данных, но они наводили на мысль о длинных цепных молекулах, удлиняющихся на группу СН3 при переходе от одного члена семьи к другому.

Задача 6 основана на усовершенствовании метода Рэлея, осуществленном Ленгмюром, Адамом и другими. Задача 6. Точное измерение размеров молекул Адам использовал прямоугольную ванну шириной 0,14 м и длиной 0,5 м. Ванна была наполнена водой до краев; исследуемая область ограничивалась положенными сверху на расстоянии около 0,4 м друг от друга брусками А и В фиг. Упрощенный рисунок прибора Адама. Пленка масла ограничена брусками А и В. Брусок В был подвижен; он свободно плавал по воде и был соединен с измерительным устройством, которое имело пружину или грузик и позволяло обнаружить любое горизонтальное смещение бруска, а также предотвращало его случайные движения. Брусок А клали поперек ванны, он имел выступающие края и его можно было перемещать рукой. Ванну и бруски покрывали воском, чтобы уровень воды мог подниматься немного выше краев, так что бруски А и В отсекали центральную часть поверхности.

Располагая сначала брусок А далеко от бруска В, Адам помещал на водную поверхность между брусками небольшое измеренное количество пальмитиновой кислоты. Брусок В не смещался. Затем передвигался брусок А, собирая пленку масла на все меньшей и меньшей площади, пока вдруг брусок В не испытывал заметного толчка; это позволяло думать, что молекулы вобрались в сплошной слой. В реальных экспериментах толкающее усилие не возрастало абсолютно резко от нуля до полного значения. Оно появлялось при определенной величине поверхности и быстро росло при дальнейшем перемещении, достигая постоянной величины, после которой дальнейшее сближение, вероятно, заставляло «слой» изгибаться. По графику легко было найти момент, в который появляется значительное усилие. Для нанесения жирных кислот на поверхность вода Адам растворял их в бензоле и наносил несколько капель раствора. Бензол быстро испарялся. Вот типичные результаты измерений это не подлинные данные Адама, но они основаны на его записях : Бензольный раствор.

Состав: 4 г пальмитиновой кислоты растворены в 996 г бензола. Следовательно, каждый килограмм раствора содержит 0,004 кг пальмитиновой кислоты. Размер капель. В сосуд капают 100 капель раствора и сосуд взвешивают. Масса 100 капель раствора равна 0,33 г, или 0,00033 кг. Основной опыт. На воду наносят 5 капель раствора. Когда бензол испаряется остается невидимая нерастворимая поверхностная пленка пальмитиновой кислоты , брусок А двигают по направлению к бруску В. Последний испытывает сильный толчок, когда расстояние между А и В составляет 0,23 м.

В этот момент поверхность воды между брусками составляет 0,23 м в длину и 0,14 м в ширину. Задание: предполагая, что пленка пальмитиновой кислоты имеет ту же плотность, с помощью приведенной ниже инструкции определите размеры ее молекул. Даже одна арифметическая ошибка может превратить решение этой задачи в бессмыслицу. Расчет объема взятого масла пальмитиновой кислоты является простой задачей на дроби, подобно расчету рецепта теста для пирога или разбавления соков. Он требует знания элементарных арифметических правил и уверенности. Чтобы избежать ошибок, лучше производить его по стадиям, например, по количеству раствора 5 капель , нанесенного на воду, рассчитать: а массу нанесенного на воду раствора; б массу пальмитиновой кислоты, содержащейся в этом количестве раствора; в объем, который займет эта масса пальмитиновой кислоты 850 кг занимают 1 м3, следовательно…. Цепная формула изображает молекулу в 19 атомов длиной и только несколько атомов шириной. Трудно догадаться о форме поперечного сечения молекулы; атомы Н должны быть меньше, чем атомы С в цепи. Возможно, что поперечное сечение содержит 3 атома в ширину и один в толщину, либо чередующиеся связи могут колебаться в разные стороны, делая поперечное сечение квадратом, скажем, со сторонами по 3 атома.

В качестве грубого предположения[83], допустим, что поперечное сечение является квадратом со стороной от 1,5 до 3 атомов. Глупо было бы пытаться сузить эти пределы фиг. Схема к рассуждению о форме молекулы пальмитиновой кислоты. Современные химики, группируя атомы углерода и водорода в молекулы, приписывают им четкие размеры, причем углероду намного больше, чем водороду. Здесь показаны ранние предположения о размерах атомов, и атом С изображен лишь немного больше атома Н. Каково поперечное сечение: «продолговатое» а или «квадратное» б? Рассчитайте объем молекулы пальмитиновой кислоты, для этого возьмите длину, полученную в п. Если 850 кг занимают 1 м3, то… 4 Простые химические измерения анализ путем сжигания и взвешивания и т. Химические опыты не могут дать действительных значений масс отдельных атомов и молекул, но позволяют легко определить их относительные величины.

Предположите, что правильно это значение, и проделайте вычисление в обратном порядке. Что теперь можно сказать о форме молекулы пальмитиновой кислоты? Проделать детально всю работу в обратном порядке может оказаться утомительным. Можно ограничиться сокращенными выкладками. Задача 7. Цепные молекулы Измерения с помощью бруска и весов, подобные описанным в задаче 6, дают следующие оценки для длины молекул нескольких членов ряда жирных кислот. Длина дается в специальных единицах часто используемые в атомной физике единицы Ангстрема, равные 10-10 м. Указанное число групп включает первый атом углерода с тремя атомами водорода. Подтверждают ли эти опыты идею о цепных молекулах?

Проанализируйте их о помощью графика. Физическая проверка химической картины Только плохой преподаватель льстит себя надеждой, что способен объяснить, что такое молекулы масла, с помощью одних разговоров о «цепях связей» или «ворсе бархата» в тонких пленках. Однако если после вычислений, подобных приведенным выше, у вас появилось чувство, что вы что-то понимаете, то вы делаете гениальные успехи в науке. Использованные нами структурные формулы были остроумными догадками, сделанными по косвенным химическим соображениям. Они оставались совершенно непроверенными, пока метод Рэлея не дал в высшей степени удовлетворительное подтверждение существования длинных тонких молекул с одинаковым увеличением длины на каждую группу СН2. Все же рассуждения Рэлея допускали определенный риск; были желательны независимые измерения. В наше время еще более тонким средством измерения размеров молекул стали рентгеновские лучи. Превращая масла в воски путем замораживания, мы можем заставить слои молекул в кристаллах отражать рентгеновские лучи и по отражению рентгеновских лучей можем определить расстояние между слоями или размер молекул , подобно тому как физики во времена Рэлея могли определить расстояние между жилками на крыльях бабочки по цветам отраженного света[84]. Некоторое понятие об этих «эффектах дифракционной решетки» будет дано в последующих главах.

Рентгеновские измерения с удовлетворительной точностью подтвердили догадку Рэлея и дали дополнительные сведения о размерах и строении молекул. Если теперь вернуться к вопросам смачивания и водонепроницаемости, то можно оценить количества веществ, требуемые для придания материалу нужных свойств. Вероятно, достаточен слой толщиной в одну молекулу, поэтому потребные количества минимальны.

Внутри краевого угла всегда находится жидкость рис. При смачивании он будет острым рис. В случае вогнутой поверхности результирующая сила направлена, наоборот, в сторону газа, граничащего с жидкостью рис. Если смачивающая жидкость находится на открытой поверхности твердого тела рис.

Если на открытой поверхности твердого тела находится несмачивающая жидкость, то она принимает форму, близкую к шаровой рис. Хорошее смачивание необходимо при крашении, стирке, обработке фотоматериалов, нанесении лакокрасочных покрытий, при склеивании материалов, при пайке, во флотационных процессах обогащение руд ценной породой. И наоборот, при сооружении гидроизоляционных устройств необходимы материалы, не смачиваемые водой. Капиллярные явления Искривление поверхности жидкости у краев сосуда особенно отчетливо видно в узких трубках, где искривляется вся свободная поверхность жидкости. В трубках с узким сечением эта поверхность представляет собой часть сферы, ее называют мениском. У смачивающей жидкости образуется вогнутый мениск рис. Так как площадь поверхности мениска больше, чем площадь поперечного сечения трубки, то под действием молекулярных сил искривленная поверхность жидкости стремится выпрямиться.

Если поверхность жидкости вогнутая, то сила поверхностного натяжения направлена из жидкости рис. Если поверхность жидкости выпуклая, то сила поверхностного натяжения направлена внутрь жидкости рис. Радиус кривизны положителен, если центр кривизны соответствующего сечения находится внутри жидкости, и отрицателен, если центр кривизны находится вне жидкости. Если поместить узкую трубку капилляр одним концом в жидкость, налитую в широкий сосуд, то вследствие наличия силы лапласова давления жидкость в капилляре поднимается если жидкость смачивающая или опускается если жидкость несмачивающая рис.

Если рассмотреть атом в середине жидкости, то другие атомы тянут его к себе со всех сторон, то есть, суммарная сила будет равна нулю. Однако атомы на границе жидкости притягиваются только нижними атомами, создавая ненулевую силу. Именно эта сила и ответственна за натяжение жидкостей. В видео показана классическая демонстрация поверхностного натяжения жидкостей. С помощью мыльного раствора создается пленка между двумя металлическими стержнями. Эта пленка стягивает два стержня, будто пружинка. Вода удерживается над стаканом силами поверхностного натяжения Еще один классический эксперимент, который каждый может повторить дома, на работе, в детском саду,... В стакан наливают воду до краев и начинают дозированно увеличивать объем содержимого. Можно использовать пипетку или докидывать в стакан небольшие тела. Аналогичный опыт проводят с монеткой. Мы с вами видели, как мыльная пленка стягивала два металлических стержня. Это приводит к довольно интересной вещи - капельки ртути силами поверхностного натяжения стягиваются так, что представляют собой практически идеальные шарики, если они небольшого размера. С увеличением размера капли сил натяжения больше не хватает, и капля "расползается". Поэтому при плавке золото собирается в большой красивый шарик, который даже при больших размерах имеет почти идеальную сферическую форму. Капиллярный эффект Поверхностное натяжение жидкости является причиной появления капиллярного эффекта. Если окунуть кончик тонкой трубочки капилляра в жидкость, то жидкость начнет подниматься по трубочке на достаточно большую высоту. Затягивает жидкость туда как раз сила натяжения, которую постепенно уравновешивает сила тяжести. Высота подъема зависит от двух факторов - она увеличивается при увеличении коэффициента поверхностного натяжения данной жидкости и при уменьшении диаметра трубочки.

В этом случае жидкость неограниченно растекается по поверхности твердого тела — имеет место полное смачивание. Замена поверхности твердое тело — газ двумя поверхностями, твердое тело — жидкость и жидкость — газ, оказывается энергетически выгодной. При полном смачивании краевой угол равен нулю. Замена поверхности твердое тело — жидкость двумя поверхностями, твердое тело — газ и жидкость — газ, оказывается энергетически выгодной. В этом случае имеет место частичное смачивание. В этом случае имеет место частичное несмачивание. Частичное смачивание и частичное несмачивание Понравилась статья?

Почему поверхностное натяжение зависит от рода воды?

тем большая сила поверхносного натяжения. Иными словами, в зависимости от силы взаимодействия молекул жидкостного раствора зависит значение сила натяжения поверхности. Зависимость поверхностного натяжения от температуры Плотность газа и жидкости в критической точке.

Остались вопросы?

Если на открытой поверхности твердого тела находится несмачивающая жидкость, то она принимает форму, близкую к шаровой рис. Хорошее смачивание необходимо при крашении, стирке, обработке фотоматериалов, нанесении лакокрасочных покрытий, при склеивании материалов, при пайке, во флотационных процессах обогащение руд ценной породой. И наоборот, при сооружении гидроизоляционных устройств необходимы материалы, не смачиваемые водой. Капиллярные явления Искривление поверхности жидкости у краев сосуда особенно отчетливо видно в узких трубках, где искривляется вся свободная поверхность жидкости. В трубках с узким сечением эта поверхность представляет собой часть сферы, ее называют мениском. У смачивающей жидкости образуется вогнутый мениск рис. Так как площадь поверхности мениска больше, чем площадь поперечного сечения трубки, то под действием молекулярных сил искривленная поверхность жидкости стремится выпрямиться. Если поверхность жидкости вогнутая, то сила поверхностного натяжения направлена из жидкости рис.

Если поверхность жидкости выпуклая, то сила поверхностного натяжения направлена внутрь жидкости рис. Радиус кривизны положителен, если центр кривизны соответствующего сечения находится внутри жидкости, и отрицателен, если центр кривизны находится вне жидкости. Если поместить узкую трубку капилляр одним концом в жидкость, налитую в широкий сосуд, то вследствие наличия силы лапласова давления жидкость в капилляре поднимается если жидкость смачивающая или опускается если жидкость несмачивающая рис. Капиллярные явления весьма распространены. Поднятие воды в почве, система кровеносных сосудов в легких, корневая система у растений, фитиль и промокательная бумага — капиллярные системы. Литература Аксенович Л. Физика в средней школе: Теория.

Примером такой формы может быть жидкость, находящаяся в тонкой трубке или капилляре. В этом случае, поверхностное натяжение преодолевает силу тяжести и создает вогнутую форму. Поверхностное натяжение также может влиять на форму пузырьков воздуха, образующихся в жидкости. Они также принимают сферическую форму, так как поверхностное натяжение стремится уменьшить площадь поверхности пузырька. Все эти примеры демонстрируют, как поверхностное натяжение влияет на форму жидкости и объясняют некоторые явления, которые мы наблюдаем в повседневной жизни. Практическое применение поверхностного натяжения Поверхностное натяжение имеет множество практических применений в различных областях науки и техники. Вот некоторые из них: Мыльные пузыри Поверхностное натяжение играет ключевую роль в образовании мыльных пузырей. Мыльные пузыри образуются из мыльного раствора, который содержит поверхностно-активные вещества.

Поверхностно-активные вещества снижают поверхностное натяжение жидкости, позволяя пузырю образовываться и сохранять свою форму. Мыльные пузыри также могут быть использованы для демонстрации различных физических явлений, таких как интерференция света. Капиллярное действие Капиллярное действие — это явление, при котором жидкость поднимается или опускается в узкой трубке или капилляре. Это явление обусловлено поверхностным натяжением и капиллярным давлением. Капиллярное действие имеет множество практических применений, например, в капиллярных термометрах, где изменение уровня жидкости в капилляре позволяет измерять температуру. Капиллярные материалы Некоторые материалы обладают способностью впитывать жидкость благодаря капиллярному действию. Это свойство используется в различных областях, таких как медицина впитывающие повязки , строительство капиллярные материалы для управления влагой и фильтрация капиллярные фильтры. Поверхностно-активные вещества Поверхностно-активные вещества, такие как моющие средства и детергенты, используются для снижения поверхностного натяжения жидкости.

Как видите, с повышением температуры воды все больше водородных связей разрывается. Почему хунзакутская вода имеет пониженное поверхностное натяжение - Фланаган об этом ничего не говорит. И неужели в хунзакутской воде нет больше ничего примечательного кроме пониженного поверхностного натяжения? Нам важнее было бы знать в каком количестве содержатся те или иные элементы. А то, что в воде много серебра, тоже нельзя рассматривать как позитивное явление, так как с определенной концентрации этого элемента в воде начинается его негативное воздействие на организм более подробно об ионах серебра говорится в 6-ой главе. Странно в общем-то видеть, что исследователь столько времени затратил на разгадку причины благоприятного воздействия хунзакутской воды на организм человека, но при этом не определил химический состав этой воды, хотя мне кажется, что он все же производил анализы химического состава этой воды, иначе откуда бы он знал, что в ней находятся почти все химические элементы. Вероятнее всего, что он не пришел к определенному выводу, так как эта вода содержит очень мало минеральных веществ и ее можно было бы назвать маломинерализованной.

Но и это определение еще мало о чем нам говорит, как мы знаем из предыдущей главы. Поэтому Фланаган мог намеренно упустить вопрос о минерализации и уделил главное внимание поверхностному натяжению. Почему я пришел к такому выводу? А потому, что, опустив по сути дела вопрос о минерализации воды, Фланаган в итоге предлагает понижать поверхностное натяжение не обычной водопроводной воды, которой большинство людей пользуется, а только дистиллированной. Поэтому я считаю, что Фланаган не совсем логично заявляет, что позитивный биологический эффект дает вода, имеющая только одно качество - низкое поверхностное натяжение. Следует учитывать и второе явное качество предлагаемой им воды - отсутствие в ней ионов кальция. Здесь уместно будет заметить, что вся грандиозная система Гималаев сложена из магматических пород, в которых практически нет кальция, а поэтому и все воды с этих гор являются мягкими и благоприятными для здоровья человека.

Точно так же и Тибетское нагорье составляют магматические породы, и в Тибете вода всегда была мягкая, а поэтому и так называемую высокоэффективную тибетскую медицину надо воспринимать через призму благодатной природной воды этих мест.

Причина натяжения пленки заключается в том, что между атомами и молекулами действуют силы притяжения - именно они ответственны за то, что у нас молекулы газа собираются в жидкость, а молекулы жидкости формируются в кристаллическую решетку твердого тела. Если рассмотреть атом в середине жидкости, то другие атомы тянут его к себе со всех сторон, то есть, суммарная сила будет равна нулю.

Однако атомы на границе жидкости притягиваются только нижними атомами, создавая ненулевую силу. Именно эта сила и ответственна за натяжение жидкостей. В видео показана классическая демонстрация поверхностного натяжения жидкостей.

С помощью мыльного раствора создается пленка между двумя металлическими стержнями. Эта пленка стягивает два стержня, будто пружинка. Вода удерживается над стаканом силами поверхностного натяжения Еще один классический эксперимент, который каждый может повторить дома, на работе, в детском саду,...

В стакан наливают воду до краев и начинают дозированно увеличивать объем содержимого. Можно использовать пипетку или докидывать в стакан небольшие тела. Аналогичный опыт проводят с монеткой.

Мы с вами видели, как мыльная пленка стягивала два металлических стержня. Это приводит к довольно интересной вещи - капельки ртути силами поверхностного натяжения стягиваются так, что представляют собой практически идеальные шарики, если они небольшого размера. С увеличением размера капли сил натяжения больше не хватает, и капля "расползается".

Поэтому при плавке золото собирается в большой красивый шарик, который даже при больших размерах имеет почти идеальную сферическую форму. Капиллярный эффект Поверхностное натяжение жидкости является причиной появления капиллярного эффекта. Если окунуть кончик тонкой трубочки капилляра в жидкость, то жидкость начнет подниматься по трубочке на достаточно большую высоту.

Затягивает жидкость туда как раз сила натяжения, которую постепенно уравновешивает сила тяжести.

Вода с низким поверхностным натяжением

Знание о зависимости поверхностного натяжения от рода жидкости является важным для множества процессов и приложений. Поверхностное натяжение зависит от рода жидкости из-за различной структуры и взаимодействия молекул вещества. Коэффициент поверхностного натяжения не зависит от площади свободной поверхности жидкости, хотя может быть рассчитан с ее помощью. Рис.2.5. Зависимость поверхностного натяжения неполярной жидкости от Т. Другие вещества менее строго следуют этой зависимости, но часто отклонениями можно пренебречь, т.к. dσ/dТ слабо зависит от температуры (для воды dσ/dТ= -0,16 10-3 Дж/м2). Поверхностное натяжение жидкости зависит от. Причины поверхностного натяжения. тем большая сила поверхносного натяжения.

Загадки поверхностного натяжения: почему жидкость любит себя?

Ответить Поверхность натяжения зависит от рода жидкости из-за различной молекулярной структуры и взаимодействия между молекулами разных веществ. Молекулы жидкости имеют слабые притяжения друг к другу, называемые межмолекулярными силами. Эти силы определяют поверхностное натяжение — силу, с которой молекулы жидкости притягиваются к поверхности.

Поскольку молекулы воды маленькие, они движутся очень быстро, что приводит к большому избытку энергии и, следовательно, к высокому поверхностному натяжению и низкой вязкости.

Смотрите также, как безопасно наблюдать за солнцем Чем отличается поверхностное натяжение воды? Чем отличается поверхностное натяжение воды от поверхностного натяжения большинства других жидкостей? Это выше.

Имеет ли вода высокое поверхностное натяжение? Вода имеет высокую или низкую вязкость? Вязкость описывает внутреннее сопротивление жидкости течению и может рассматриваться как мера трения жидкости.

Таким образом, вода «тонкая», имеющий низкую вязкость, а растительное масло «густое» с высокой вязкостью. Почему вещества с высоким поверхностным натяжением обладают высокой вязкостью? Почему вещества с высоким поверхностным натяжением также имеют высокую вязкость?

Жидкости с более сильными межмолекулярными силами притяжения удерживают молекулы ближе друг к другу. Почему вода прилипает к поверхностям? Вода очень клейкая; он хорошо прилипает к различным веществам.

Вода прилипает к другим вещам по той же причине, по которой она прилипает к самой себе — поскольку он полярен, он притягивается к веществам, имеющим заряд. Какой из следующих эффектов может возникнуть из-за высокого поверхностного натяжения воды? Высокое поверхностное натяжение жидкой воды держит лед наверху.

Частичный отрицательный заряд на одном конце молекулы воды притягивается к частичному положительному заряду другой молекулы воды. Что произойдет, если у воды слабое поверхностное натяжение? Как вы думаете, что произойдет, если вода будет иметь слабое поверхностное натяжение?

Насекомые не смогут приземляться или ходить по воде. Почему вода имеет более высокую температуру кипения? Вода имеет необычно высокая температура кипения для жидкости.

Эти сильные межмолекулярные силы заставляют молекулы воды «прилипать» друг к другу и препятствовать переходу в газообразную фазу. Почему вода имеет высокую температуру кипения и плавления? Высокая температура кипения и низкая температура плавления.

При этом, силами, которые оказывают воздействие на такую молекулу жидкости со стороны молекул газа можно пренебречь. Вследствие этого возникает некая направленная вглубь жидкости равнодействующая сила. Поверхностные молекулы втягиваются внутрь жидкости, с помощью действия сил межмолекулярного притяжения. Однако все молекулы, в том числе и принадлежащие пограничному слою, должны находиться в состоянии равновесия.

Почему поверхностное натяжение зависит от рода воды? Почему поверхностное натяжение зависит от рода жидкости?

Почему поверхностное натяжение зависит от состава и свойств жидкости

Поскольку поверхностное натяжение определяется на молекулярном уровне, любое изменение компонентов жидкости, поверхностно-активных веществ, топлива или соединений в жидкости может привести к изменению поверхностного натяжения. Зависимость поверхностного натяжения от температуры Плотность газа и жидкости в критической точке. Поверхностное натяжение жидкости определяется силами межмолекулярного взаимодействия, поэтому оно зависит.

Почему поверхностное натяжение зависит от рода жидкости?

Энергетическое термодинамическое определение: поверхностное натяжение — это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое механическое определение: поверхностное натяжение — это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости [1]. Сила поверхностного натяжения направлена по касательной к поверхности жидкости, перпендикулярно к участку контура, на который она действует и пропорциональна длине этого участка. В СИ он измеряется в ньютонах на метр. В этом случае появляется ясный физический смысл понятия поверхностного натяжения.

Изучение связи молекулярных свойств с поверхностным натяжением позволяет лучше понять не только физическую природу этого явления, но и его важность в различных процессах и приложениях, включая капиллярность, смачивание и адгезию. Количество изученных жидкостей существует ограниченное число, и дальнейшие исследования помогут расширить наши знания в этой области.

Роль полярности и неполярности в поверхностном натяжении Полярные молекулы вещества обладают дипольным моментом, то есть разницей в электрическом заряде между атомами и молекулами. Вода является ярким примером полярной жидкости: у нее есть частично положительно заряженный водород и частично отрицательно заряженный кислород. Это приводит к возникновению внутренних электрических сил, которые удерживают молекулы воды вместе и создают поверхностное натяжение. Полярные жидкости образуют сильные водородные связи между молекулами на поверхности, что делает их поверхность более устойчивой и способной выдерживать внешние воздействия. Этот факт объясняет, почему вода образует выпуклую форму на поверхности и почему насекомые могут ходить по воде благодаря поверхностному натяжению. С другой стороны, неполярные жидкости, такие как масло или бензин, не обладают дипольным моментом и не образуют сильных водородных связей между молекулами.

Из-за этого их поверхностное натяжение будет меньше, чем у полярных жидкостей.

Условное изображение молекулы ПАВ Полярные группы в воде гидратируются, неполярная часть молекул ПАВ представляют собой гидрофобную углеводородную цепь или радикал. Молекула ПАВ из-за своего дифильного строения по-разному взаимодействует с молекулами воды в растворе: полярная часть легко гидратируется благодаря этому идет растворение молекул ПАВ — этот процесс энергетически очень выгоден , неполярный углеводородный радикал, слабо взаимодействуя с водой, препятствует межмолекулярному взаимодействию диполей воды друг с другом. В результате на поверхности образуется определённым образом ориентированный адсорбционный слой, в котором полярная часть обращена в воду, а неполярный радикал - в контактирующую фазу например, в воздух. При этом уменьшается избыточная поверхностная энергия, а, следовательно, и поверхностное натяжение.

На поверхности остается такое число молекул, при котором площадь поверхности оказывается минимальной в каждом конкретном случае — при заданном объеме жидкости, силах, действующих на жидкость. Для перенесения молекул из глубины объема жидкости в ее поверхностный слой необходимо совершить работу по преодолению равнодействующей сил притяжения, действующих на молекулу в поверхностном слое. Поверхностное натяжение зависит от рода жидкости и от ее температуры : с повышением температуры оно уменьшается. Так называемые поверхностно-активные вещества мыло, жирные кислоты также уменьшают поверхностное натяжение. Для экспериментального определения значения поверхностного натяжения жидкости можно использовать процесс образования и отрыва капель, вытекающих из капельницы. Пока капля мала, она не отрывается, ее удерживают силы поверхностного натяжения.

Похожие новости:

Оцените статью
Добавить комментарий