Коэффициент Джини (индекс концентрации доходов) в целом по России и по субъектам Российской Федерации.
Как рассчитать коэффициент Джини в Excel (с примером)
Далее мы покажем, что Коэффициент Джини является абсолютно точной алгебраической интерпретацией Кривой Лоренца, а она в свою очередь является его графическим отображением. показателе расслоения общества. В современной России реальные показатели децильного коэффициента и коэффициента Джини установить практически невозможно.
Индекс Джини
- Индекс Джини
- Коэффициент Джини (распределение дохода)
- Среди населения России растет доходное неравенство: почему ускорился этот процесс?
- В России зафиксирован рост доходного неравенства - АБН 24
- Неравенство и бедность
- Как рассчитывать коэффициент Джини
В России выросла разница в доходах самых богатых и самых бедных. И еще 10 главных новостей ночи
Так образуется специфическая «ловушка бедности», которая не позволяет обществу полноценно развиваться. Передовые страны, которые входят в рейтинги самых лучших по разным показателям, стараются устранить это негативное явление. Так, например, в Норвегии, за последние 15 лет коэффициент Джини стремится вниз — он уменьшился с 0,4 до 0,2, то есть в 2 раза. Обобщая, в случае этой скандинавской страны можно утверждать, что количество бедных здесь снизилось вдвое.
И такая картина наблюдается во многих развитых странах. А вот бедные и медленно развивающиеся страны, к сожалению, демонстрируют обратную тенденцию. Естественно, чтобы отслеживать этот параметр, нужно найти это число и контролировать его изменение ежегодно.
А для этого нужно точно знать, как рассчитать коэффициент Джини и как использовать кривую Лоренца для формирования этих статистических показателей.
Вычитая эту цифру из 0,5 площадь под линией равенства , мы получаем 0,3, которую затем делим на 0,5. Другой способ представить коэффициент Джини как меру отклонения от идеального равенства. Чем дальше кривая Лоренца отклоняется от идеально ровной прямой линии которая представляет собой коэффициент Джини, равный 0 , тем выше коэффициент Джини и тем менее равноправным является общество. В приведенном выше примере Гаити более неравноправно, чем Боливия. В 1820 г.
Источник: Всемирный банк. COVID-19, вероятно, окажет дальнейшее негативное влияние на равенство доходов. По данным Всемирного банка ,. Экономисты считают, что COVID-19 вызвал ежегодное увеличение коэффициента Джини на 1,2—1,9 процентных пункта в 2020 и 2021 годах. Джини внутри стран Ниже приведены коэффициенты Джини по доходам для каждой страны, для которой CIA World Factbook предоставляет данные: Некоторые из беднейших стран мира имеют одни из самых высоких в мире коэффициентов Джини, в то время как многие из самых низких коэффициентов Джини встречаются в более богатых европейских странах. Однако взаимосвязь между неравенством доходов и ВВП на душу населения не является идеальной отрицательной корреляцией, и со временем эта взаимосвязь менялась.
Майкл Моатсос из Утрехтского университета и Джори Батен из Тюбингенского университета показывают, что с 1820 по 1929 год неравенство немного росло, а затем уменьшалось по мере роста ВВП на душу населения. С 1950 по 1970 год неравенство имело тенденцию снижаться по мере того, как ВВП на душу населения превышал определенный порог. С 1980 по 2000 год неравенство снижалось с ростом ВВП на душу населения, а затем резко возрастало.
И чем выше равенство в распределении доходов, тем меньше данный коэффициент.
При абсолютном равенстве он достигает нуля. Системы прогрессивного налогообложения и трансфертных платежей приближают " кривую Лоренца " к биссектрисе. Опыт развитых стран свидетельствует, что неравенство в распределении доходов со временем сокращается.
Целью создания Системы является обеспечение доступа с использованием сети Интернет государственных органов, органов местного самоуправления, юридических и физических лиц к официальной статистической информации, включая метаданные, формируемой в соответствии с федеральным планом статистических работ. ЕМИСС представляет собой государственный информационный ресурс, объединяющий официальные государственные информационные статистические ресурсы, формируемые субъектами официального статистического учета в рамках реализации федерального плана статистических работ.
В России вырос уровень доходного неравенства
Что показывает коэффициент Джини. Какие значения может принимать данный показатель и что они означают. Коэффициент Джини (индекс концентрации доходов). Есть ещё коэффициент/индекс Джини (Gini impurity), который используется в решающих деревьях при выборе расщепления. Свое название данный коэффициент получил по инициалам демографа и статиста Корадо Джини, предложившего эту статистическую модель.
Неравенство в доходах: о чем говорят кривая Лоренца и коэффициент Джини
В области машинного обучения коэффициент Джини, находясь в диапазоне от 0 до 1, показывает качество прогнозирования модели — чем ближе к единице, тем точнее прогноз в данном посте не будем касаться применения коэффициента Джини в социальной области. Какой же доверительный интервал может быть у единственного числа? И тем не менее, доверительный интервал коэффициент Джини существует. В этом посте хочу познакомить экспертов, занимающихся оценкой качества моделей, с таким малоизвестным инструментом как «доверительный интервал коэффициента Джини» Вопрос происхождения и расчета указанного показателя очень мало освещен в интернете: поисковики выдадут одну внятную англоязычную ссылку с попыткой интерпретации соответствующей формулы, которая без дополнительной информации будет недостаточно понятна. Доверительный интервал коэффициента Джини определяется на основе стандартного отклонения, которое рассчитывается с использованием значения AUC по следующей формуле: Указанная формула приведена в статье «The Meaning and Use of the Area under a Receiver Operating Characteristic ROC Curve».
Так как решение принимается исходя из большего значения по Gini test, то дополнительный фактор не будет добавлен в модель. Выбор в пользу модели без нового фактора достаточно противоречив, поэтому рассчитаем дополнительную метрику — среднюю абсолютную ошибку. Данный показатель считается, как среднее разностей между фактическими и прогнозными значениями и не противоречит логике задачи.
Для этого импортируем необходимую библиотеку и вычислим ошибку для модели с дополнительным фактором и без него. По результатам видно, что модель с дополнительным фактором предсказала с меньшей ошибкой. Сравним все полученные результаты метрик.
Иными словами, сортируем таблицу по строке «Predict» и считаем кумулятивную долю классов вместо кумулятивной доли доходов. Код на Python from scipy. Мало это или много? Насколько точен алгоритм?
Без знания точного значения коэффициента для идеального алгоритма мы не можем сказать о нашей модели ничего. Поэтому метрикой качества в машинном обучении является нормализованный коэффициент Джини, который равен отношению коэффициента обученной модели к коэффициенту идеальной модели. Далее под термином «Коэффициент Джини» будем иметь ввиду именно это. Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче. Площадь фигуры для идеального алгоритма равна: Предсказания обученных моделей не могут быть больше значения коэффициента идеального алгоритма. При равномерном распределении классов целевой переменной коэффициент Джини идеального алгоритма всегда будет равен 0. Нормализованный коэффициент Джини является метрикой качества, которую необходимо максимизировать.
Алгебраическое представление. Мы подошли к самому, пожалуй, интересному моменту — алгебраическому представлению коэффициента Джини.
Так, человек, склонный рисковать в хозяйственной деятельности, может получить больший доход, чем другие люди, которые не способны к риску. Удача также помогает получать больший доход, например, если какой-то человек найдет клад.
Таким образом, по крайней мере, в силу названных причин равенство экономических возможностей соблюдается далеко не всегда. Бедные и богатые по-прежнему существуют даже в самых благополучных высокоразвитых странах. Все эти причины действуют в разных направлениях, увеличивая или уменьшая неравенство. Для того чтобы определить степень этого неравенства, экономисты используют различные показатели.
Кривая Лоренца — это графическое изображение функции распределения. В таком представлении она есть изображение функции распределения, в котором аккумулируются доли численности и доходов населения. В прямоугольной системе координат кривая Лоренца является выпуклой вниз и проходит под диагональю единичного квадрата, расположенного в I координатной четверти. Данная кривая отражает долю дохода, приходящуюся на различные группы населения, сформированные на основании размера дохода, который они получают.
На оси абсцисс откладывается доля населения, а на оси ординат - доля доходов в обществе в процентном соотношении. Как видно из графика, в обществе всегда имеет место быть неравенство в распределении доходов, что отражает кривая OABCDE — кривая Лоренца.
предоставляет экономические и финансовые данные
- Статистика:Коэффициент Джини в России — Русский эксперт
- Неравенство в доходах: Кривая Лоренца -
- Коэффициент Джини: формула неравенства |
- Частный случай кривой Лоренца и коэффициента Джини: попарное сравнение.
- Формула расчета
Индекс Джини
Низкий показатель коэффициента Джини не означает богатства или бедности выборки в целом, а лишь низкую разницу между самыми богатыми и самыми бедными. То же самое, но с противоположной стороны, относится и к высокому показателю. По последним данным , Россия занимает примерно среднее значение по этому показателю среди стран мира.
Угольную, золотую, банковскую группы называют протоэлитами, отмечая их мощный потенциал при отсутствии постоянного внутригруппового взаимодействия и контактов. Подавляющее большинство граждан страны появление и постоянное увеличение численности долларовых миллиардеров на фоне нищеты значительной части населения воспринимают как вопиющую аномалию. При уровне ВВП на душу населения - 17 тысяч долларов за чертой бедности в России живут примерно 13 процентов человек, что, по мнению специалистов, является почти нонсенсом. Особенно, если учесть, что доля теневой экономики в нашей стране остается достаточно высокой - 25-30 процентов. Эти деньги не учитываются в ВВП, значит, его реальный уровень выше официального. При этом большая часть доходов от теневого сектора достается людям небедным, а, значит, и реальное расслоение общества выше.
Один из способов искоренения неравенства доходов предполагает поддержку со стороны государства систем здравоохранения, социального обеспечения и образования. В этом случае люди с меньшими доходами могут получить удовлетворительное физическое состояние, уверенность в завтрашнем дне и образование. Такой подход предоставляет необходимые условия для жизни всем. Другой путь борьбы с неравенством предполагает изменения в налоговой системе и, в частности, системе прогрессивного подоходного налога.
В следующем пошаговом примере показано, как рассчитать коэффициент Джини в Excel. Шаг 2: Рассчитайте площади под кривой Лоренца Затем нам нужно рассчитать отдельные площади под кривой Лоренца , которую мы используем для визуализации распределения доходов в стране. Это чрезвычайно простой пример того, как рассчитать коэффициент Джини, но вы можете использовать те же самые формулы для расчета коэффициента Джини для гораздо большего набора данных.
За два года общество сильно расслоилось: появились богатые люди и бедные. Сейчас индекс Джини в России равен 0,417 последние данные на начало 2018 года. Данные Росстата, Всемирного банка и других организаций обычно отличаются.
Вот как он изменялся: 32 Источник данных. Всемирный банк посчитал индекс Джини в России по-другому: по его данным он снижается с 1996 года и составляет 0,377 последние данные на 2015 год. Динамика коэффициента Джини, 1996-2015 года. В других странах индекс Джини такой источник : Рис. Индекс Джини в странах мира данные на 2016 год. Однако следует помнить, что низкий показатель говорит не о богатстве общества, а о равномерном распределении доходов. Экономисты считают , что коэффициент Джини не должен быть выше значения 0,3-0,4. Когда индекс больше, в стране существует высокое неравенство. Оно замедляет темп экономического развития и формирует «ловушку бедности», при которой общество становится беднее с каждым поколением. Как правило, страны пытаются снизить экономическое неравенство.
Так 50 лет назад коэффициент Джини во Франции был почти 0,5, а сейчас — 0,33. В Норвегии был чуть ниже 0,4, сейчас — 0,26. Часто это связано с несовершенством налогообложения. Так в Бразилии в процентном соотношении от дохода бедные платят налогов больше, чем богатые. Динамика индекса Джини. Например, в конце 90-х россияне в опросе «Интерфакс-АИФ» называли такие причины неравенства: 32 Спустя 20 лет изменилось немногое. Часто кажется, что бедность — это трущобы, лохмотья и похлёбка на воде. Но в действительности бедными считаются люди, уровень дохода которых позволяет только поддерживать прожиточный минимум. Различают прожиточный и минимум физического выживания.
В России выросла разница в доходах самых богатых и самых бедных. И еще 10 главных новостей ночи
Коэффициент Джини – статистический показатель, который используется для характеристики уровня экономического неравенства в стране. Коэффициент Джини показывает, насколько «кривая Лоренца» отклоняется от «линии равенства», сравнивая площади A и B на картинке. Для измерения фактического распределения доходов используют «кривую Лоренца» и «коэффициент Джини», показывающие, какая доля совокупного дохода приходится на каждую группу населения, что позволяет судить об уровне экономического неравенства в данной стране. Индекс Джини: коэффициент Джини выраженный в процентах (то есть коэффициент Джини умноженный на 100%). Коэффициент Джини показывает расстояние между распределениями целевых значений и тех, что показывает модель.
Неравенство доходов и коэффициент Джини в России: причины, последствия и пути решения
Основным преимуществом коэффициента Джини является то, что он является показателем неравенства, рассчитанного посредством анализа коэффициентов, а не переменной. Филипп Монфор показал, что использование непоследовательной или неопределенной детализации ограничивает полезность измерений коэффициента Джини. Доверительный интервал коэффициента Джини определяется на основе стандартного отклонения, которое рассчитывается с использованием значения AUC по следующей формуле.
Все новости
- Навигация по записям
- Все новости
- Вы точно человек?
- Коэффициент Джини — Рувики: Интернет-энциклопедия
- Индекс Джини: расчет и формула
- Что бы сделал Робин Гуд?