Просто о сложном_ структура Вселенной, квантовая физика, теория относительности. Как теория струн стала «теорией всего». Где-то к началу 1980-х ученые поняли, что теория струн, изначально придуманная для описания взаимодействий адронов, имеет более фундаментальный характер.
Теория струн кратко и понятно
Разным вибрационном поведением нитей в теории струн объясняется различные свойства частиц. По аналогии с гитарными струнами, разные вибрации их - порождают разное звучание музыкальных нот. Известно 4 измерения: длина, ширина, высота и время. Одна из необычных черт струнной теории состоит в том, что форма частиц определяется размером и формой дополнительных измерений. Физики, разрабатывающие теорию струн, рассматривают вселенную, имеющую более 4 пространственно-временных измерений.
Весть об этом результате распространилась по всему физическому сообществу: сотни специалистов по физике элементарных частиц прекращали работу над своими проектами, чтобы принять участие в штурме, который казался последней теоретической битвой в многовековом наступлении на глубочайшие основы мироздания. Я начал работу в аспирантуре Оксфордского университета в октябре 1984 г. Хотя я был восхищён раскрывавшимися передо мной достижениями квантовой теории поля, калибровочной теории и общей теории относительности, среди моих старших коллег-аспирантов было распространено скептическое убеждение, что бо? Была разработана стандартная модель, и замечательный успех, с которым она предсказывала результаты экспериментов, оставлял мало сомнений в том, что её полное подтверждение является делом не слишком отдалённого будущего. Выход за её пределы для включения гравитации и возможного объяснения экспериментальных данных, на которых базируется эта модель т. Однако спустя всего шесть месяцев настроения радикально изменились. Весть об успехе Грина и Шварца, в конце концов, дошла даже до аспирантов первого года обучения, и на смену прежнему унынию пришло возбуждающее ощущение причастности к поворотному моменту в истории физики. Многие из нас засиживались глубоко за полночь, штудируя увесистые фолианты по теоретической физике и абстрактной математике, знание которых необходимо для понимания теории струн. Период с 1984 по 1986 гг.
В течение этого периода физиками всего мира было написано более тысячи статей по теории струн. Эти работы окончательно продемонстрировали, что многочисленные свойства стандартной модели, открытые в течение десятилетий кропотливых исследований, естественным образом вытекают из величественной системы теории струн. Как заметил Майкл Грин, «момент, когда вы знакомитесь с теорией струн и осознаёте, что почти все основные достижения физики последнего столетия следуют — и следуют с такой элегантностью — из столь простой отправной точки, ясно демонстрирует вам всю невероятную мощь этой теории». Эти достижения убедили многих физиков, что теория струн способна выполнить свои обещания и стать окончательной объединяющей теорией. Однако на этом пути занимавшиеся теорией струн физики снова и снова натыкались на серьёзные препятствия. В теоретической физике часто приходится иметь дело с уравнениями, которые либо слишком сложны для понимания, либо с трудом поддаются решению. Обычно в такой ситуации физики не пасуют и пытаются получить приближённое решение этих уравнений. Положение дел в теории струн намного сложнее.
Для так называемой восьмимерной компактификации модели теории струн, называемой F-теорией, дополнительные измерения должны иметь форму поверхности K3. В новой работе исследователи рассматривали двойственность двух видов теории струн — F-теории и гетеротической — в восьми измерениях. Теории струн быть Команда нашла четыре уникальных способа разрезать поверхности K3 особенно полезным способом, с помощью якобианских эллиптических расслоений — комплексов из нескольких волокон, по форме напоминающих батон или бублик. Исследователи построили явные уравнения для каждого из этих расслоений и показали, что концепции теории струн в реальном физическом мире имеют право на существование. Пример К3 поверхности «Вы можете думать об этом семействе поверхностей как о буханке хлеба, а о каждой фибрации — как о «ломтике» этой буханки», пишут исследователи. Изучая последовательность «ломтиков», мы можем визуализировать и лучше понять всю буханку. По мнению авторов статьи, важной частью этого исследования является выявление определенных геометрических строительных блоков, называемых «делителями», внутри каждой поверхности K3. Часы кропотливой работы, в результате позволили математикам доказать теоремы каждого из четырех расслоений, а затем протолкнуть каждую теорему через сложные алгебраические формулы. Издание SciTechDaily приводит слова авторов исследования о том, что для последней части этого процесса ученые использовали программное обеспечение Maple и специализированный пакет дифференциальной геометрии, который оптимизировал вычислительные усилия.
Проблемы[ Возможность критического эксперимента[ ] Теория струн нуждается в экспериментальной проверке, однако ни один из вариантов теории не даёт однозначных предсказаний, которые можно было бы проверить в критическом эксперименте. Таким образом, теория струн находится пока в «зачаточной стадии»: она обладает множеством привлекательных математических особенностей и может стать чрезвычайно важной в понимании устройства Вселенной, но требуется дальнейшая разработка для того, чтобы принять её или отвергнуть. Поскольку теорию струн, скорее всего, нельзя будет проверить в обозримом будущем в силу технологических ограничений, некоторые ученые сомневаются, заслуживает ли данная теория статуса научной, поскольку, по их мнению, она не является фальсифицируемой в попперовском смысле. Разумеется, это само по себе не является основанием считать теорию суперструн неверной. Многие новые теоретические конструкции проходят стадию неопределённости, прежде чем, на основании сопоставления с результатами экспериментов, признаются или отвергаются. Поэтому и в случае теории суперструн требуется либо развитие самой теории, то есть методов расчёта и получения выводов, либо развитие экспериментальной науки для исследования ранее недоступных величин. Фальсифицируемость и проблема ландшафта[ ] В 2003 году выяснилось [3] , что существует множество способов свести 10-мерные суперструнные теории к 4-мерной эффективной теории поля. Сама теория струн не давала критерия, с помощью которого можно было бы определить, какой из возможных путей редукции предпочтителен. Каждый из вариантов редукции 10-мерной теории порождает свой 4-мерный мир, который может напоминать, а может и отличаться от наблюдаемого мира. Всю совокупность возможных реализаций низкоэнергетического мира из исходной суперструнной теории называют ландшафтом теории. Оказывается, количество таких вариантов поистине огромно. Считается, что их число составляет как минимум 10100; не исключено, что их вообще бесконечное число. В результате получается удручающая картина. Каков бы ни был наш мир, всегда найдется способ свести его к суперструнной теории. Таким образом, суперструнная теория не только не противоречит современным экспериментальным данным, но и не будет противоречить никакому эксперименту в обозримом будущем. Это означает, что теория суперструн близка к тому, чтобы потерять ключевое свойство научной теории — фальсифицируемость. В течение 2005 года неоднократно высказывались предположения [4] , что прогресс в этом направлении может быть связан с включением в эту картину антропного принципа: мы существуем именно в такой Вселенной, в которой наше существование возможно. Вычислительные проблемы[ ] С математической точки зрения, ещё одна проблема состоит в том, что, как и квантовая теория поля , большая часть теории струн всё ещё формулируется пертурбативно в терминах теории возмущений. Несмотря на то, что непертурбативные методы достигли за последнее время значительного прогресса, полной непертурбативной формулировки теории до сих пор нет. Текущие исследования[ Изучение свойств чёрных дыр[ ] В 1996 г. В этой работе Строминджеру и Вафе удалось использовать теорию струн для нахождения микроскопических компонентов определенного класса чёрных дыр , а также для точного вычисления вкладов этих компонентов в энтропию. Работа была основана на применении нового метода, частично выходящего за рамки теории возмущений , которую использовали в 1980-х и в начале 1990-х гг. Результат работы в точности совпадал с предсказаниями Бекенштейна и Хокинга, сделанными более чем за двадцать лет до этого. Реальным процессам образования чёрных дыр Строминджер и Вафа противопоставили конструктивный подход. Они изменили точку зрения на образование чёрных дыр, показав, что их можно конструировать путем кропотливой сборки в один механизм точного набора бран, открытых во время второй суперструнной революции. Имея в руках все рычаги управления микроскопической конструкцией чёрной дыры , Строминджер и Вафа смогли вычислить число перестановок микроскопических компонентов чёрной дыры, при которых общие наблюдаемые характеристики, например масса и заряд , остаются неизменными. После этого они сравнили полученное число с площадью горизонта событий чёрной дыры — энтропией , предсказанной Бекенштейном и Хокингом, — и получили идеальное согласие. По крайней мере, для класса экстремальных чёрных дыр Строминджеру и Вафе удалось найти приложение теории струн для анализа микроскопических компонентов и точного вычисления соответствующей энтропии. Проблема, стоявшая перед физиками в течение четверти века, была решена. Для многих теоретиков это открытие было важным и убедительным аргументом в поддержку теории струн. Разработка теории струн до сих пор остается слишком грубой для прямого и точного сравнения с экспериментальными результатами, например, с результатами измерений масс кварка или электрона. Теория струн, тем не менее, дает первое фундаментальное обоснование давно открытого свойства чёрных дыр, невозможность объяснения которого многие годы тормозила исследования физиков, работавших с традиционными теориями. Даже Шелдон Глэшоу, Нобелевский лауреат по физике и убеждённый противник теории струн в 1980-е гг.
Квантовая теория струн
Если учёные раньше могли лишь разводить на подобного рода вопросы руками, отвечая: « Так надо », « ПНХ », или, в худшем случае, «Так хотел Б-г», то теперь появилась реальная возможность проникнуть в глубинную структуру Вселенной. Кроме того, теория струн давала надежду на чудо — объединение ОТО и квантовой механики в рамках одной теории. При расчётах ВНЕЗАПНО выяснилось, что собственные колебания этих ваших струн способны гасить и уравновешивать квантовые флуктуации — да-да, устранять те самые возмущения на микроскопическом уровне, из-за которых ОТО и квантовая механика никак не хотели возлюбить друг друга. Но в итоге учёных ждал былинный отказ. Дальнейшие исследования и проверки теории показали: авотхуй , ничего подобного. На первый взгляд вроде всё хорошо, но при глубоком изучении выявились серьёзные противоречия следствий теории с экспериментальными данными.
Например, в теории струн обязательно присутствовала частица, тахион, квадрат массы которой был меньше нуля. Ну ты понел, да? У нее масса получалась мнимая. Суперсимметрия, все дела[ править ] Ученые нашли в уравнениях теории хэш-коды. Однако упоротые фанаты теории струн так просто не собирались сдаваться.
В 1971 году была создана обновлённая теория струн, уже под названием «теория суперструн». Обновление заключалось в том, что если первый вариант теории включал в себя описание только бозонов, то теория суперструн схавала ещё и фермионы. Тут нужно остановиться и уяснить подробнее. Демонстрация полуцелого спина на примере кофе Все элементарные частицы обладают такой характеристикой, как спин. Школьники могут вообразить это себе как скорость вращения частицы вокруг собственной оси подобно тому, как Земля вертится вокруг себя, сменяя день и ночь.
Хотя на самом деле спин показывает как бы крутилась частица, если бы крутилась, причем по расчетам скорость ее оборота превышает световую и при всем прочем создает магнитное поле. Имеется и другой вариант объяснения сути спина «на пальцах», не менее, впрочем, майндфачный в итоге: спин — это количество оборотов вокруг своей оси, которые надо сделать частице, чтобы выглядеть так же, как вначале. И если для спинов в пределах единицы все вроде понятно любому предмету неправильной формы можно приписать «спин», равный единице , то при попытке представить себе форму объекта, который надо прокрутить вокруг оси дважды, чтобы он выглядел так же, как вначале, могут произойти необратимые изменения в коре головного мозга или замещающего органа. Чтобы уменьшить градус майндфака, попробуйте повернуть на 360 градусов чашку кофе, стоящую на ладони. Получилось то же, с чего начали?
Ощущения в руке вам подскажут, что не совсем то. А вот если… впрочем, гляньте-ка лучше видео. Бозонами называются те частицы, которые имеют целочисленный спин. Фермионы — те, у кого спин полуцелый. Так вот, первая версия теории струн описывала только бозоны, что было ещё одной из причин, по которым она до сих пор стоит на морозе.
Обновлённый вариант теории струн включал в себя и фермионы, и тут все поняли, что при таком подходе проблема ненужных тахионов, как и множество других противоречий, исчезает! Но, как всегда, не обошлось без проблем. Новая теория струн не только заставила всех просветлиться, но и вбросила говна на вентилятор: по ней получалось, что для каждого бозона должен существовать соответствующий фермион, то есть между бозонами и фермионами должна существовать определённая симметрия. Такой вид симметрии предсказывался и раньше — под названием «суперсимметрия». Фейл заключался в том, что никто и никогда не наблюдал эти самые суперсимметричные фермионы.
Объяснение тому нашли простое: по расчётам, суперсимметричные фермионы должны обладать огромной для микромира массой, и потому в обычных условиях их хрен получишь. Для того, чтобы зарегистрировать их, нужны огромные энергии, которые достигаются при столкновении лёгких частиц на почти световых скоростях. Физики, осознав, в какой жопе они оказались, стали плакаться в жилетку всем, кому ни попадя, и причитать «бида-бида, канец науке». Неизвестно, кому они продали душу , но в итоге им удалось разжалобить больших дядь на серьёзные бабки для строительства Большого адронного коллайдера и пары коллайдеров поменьше. Да-да, именно так, Анон — одной из целей воздвижения этой НЁХ было именно получение суперсимметричных фермионов.
Доводы школолофизика о 9-и измерениях, часть рас часть два Итак, теорию струн заменили теорией суперструн, но легче не стало: не успели физики прийти в себя от бодуна после празднования новой теории, как во все дыры полезли новые глюки. В итоге помощь пришла оттуда, откуда совсем не ждали. Ещё в далёком 1919 году никому тогда не известный немецкий математик Калуца прислал Эйнштейну письмо, где изложил свою теорию: наша Вселенная, вполне может статься, не трехмерная, а измерений может иметься более 9000. В своих работах Калуца делал допущение, что на самом деле Вселенная может быть четырехмерной в пространстве, и в доказательство своих слов приводил свои расчёты, из которых получалось, что при таком условии ОТО замечательно согласовывается с теорией электромагнитного поля Максвелла, чего невозможно достичь в обычной трехмерной Вселенной. Эйнштейна письмо не впечатлило ещё бы, он только что придумал охуительно сложную теорию, хочется дать продохнуть мозгам, а тут ещё какой-то укуренный немец лезет со своим атсралом , и он ответил лишь « Окей ».
В 1926 году физик Оскар Клейн заинтересовался работами Калуцы и усовершенствовал его модель. По Клейну получалось, что дополнительное измерение действительно может существовать, но оно находится в «свёрнутом» и зацикленном на самом себе виде. Причём свернуто четвёртое измерение очень туго — до размеров элементарных частиц, поэтому мы его и не замечаем. Вспомнили о Калуце в восьмидесятых годах, когда теория струн в очередной раз оказалась в жопе. Воспалённые мозги физиков в попытке объяснить несоответствия теории струн с квантовой механикой докатились до того, что было выдвинуто предположение — вся хуйня в расчётах была в том, что струны в нашей теории могут колебаться всего лишь в трёх направлениях, которыми располагает наша Вселенная.
Вот если бы струны могли бы колебаться в четырёх измерениях… О, да тут же был какой-то Калуца, кстати, где он? Расчёты показали, что и в этом случае следует неиллюзорный фейл, но зато число противоречий в уравнениях вроде уменьшилось. Взбодренные физики продолжали увеличивать число измерений, пока не ввели все 9!!! И тогда физики громогласно провозгласили, что на самом деле мы живём в десятимерной Вселенной, в том числе одно измерение во времени, три знакомых нам измерения развернуты до космических размеров, а остальные шесть свернуты в микроскопических масштабах и потому незаметны. Такие дела.
Причём ни подтвердить, ни опровергнуть это на эксперименте практически никак нельзя, ибо речь идёт о таких малых масштабах струн и свернутых измерений, что современная аппаратура ничего не найдёт. Физики были счастливы, общественность охуевала и окончательно утвердилась в мысли, что физика — бесполезная наука. Рождение M-теории[ править ] Двумерная проекция трехмерной визуализации пространства Калаби-Яу Окрыленные новыми успехами, физики ринулись в бой, но скоро опять стали раздаваться возгласы: « WTF?
Струнных моделей оказывается ни сколько не меньше, чем обычных и при этом, отсутствуют критерии, позволяющие отдать какой-либо из них предпочтение. С попыткой избавиться от такого модельного многообразия связан второй сценарий Великого Объединения. Суть его состоит в попытке отождествления квантовой теории поля и струнных моделей с каким-то объединением этих моделей.
Другими словами, эти модели в рамках такого подхода отождествляются с различными фазами единой теории, в которые попадает система при определенных условиях. Следующим шагом должно быть создание динамики на этом пространстве. Есть надежда, что теория струн, по крайней мере, может предоставить принципиальную возможность реализации подобного сценария, хотя от этой возможности до ее реализации еще очень и очень далеко. И в последнюю группу задач, решаемых теорией струн можно выделить проблемы чисто математического характера, решение которых тоже носит принципиальный характер. Но на этих проблемах, в силу их достаточной математической сложности, абстрактности и специфичности останавливаться не будем. Струна, как физический объект Уважаемый читатель, если ты пробрался через общую характеристику проблем, стоящих перед теорией струн, поговорим о струнах, как физическом объекте.
Струна в самом простейшем понимании — это одномерный протяженный объект с натяжением. То есть, его энергия растет с ростом его длины. Струна музыкального инструмента, давшая имя всему предмету, пример, лежащий на поверхности. Конечно, в теории музыкальных струн нас вряд ли ожидают какие бы то ни было неожиданности, но для полноты картины не упомянуть их нельзя. Другой важный пример струны — белковые молекулы. В связи с белковыми молекулами нельзя не упомянуть, например, что даже такой знакомый всем процесс, как сокращение мышцы, хорошо моделируется процессом распространения локализованного возбуждения солитона , бегущего вдоль струны.
Вихри Абрикосова в сверхпроводниках второго рода Более интересно появление струны в роли устойчивых квазичастиц или, другими словами, локализованных возбуждений в системе, а так же при изучении нетривиальных фазовых состояний, в частности, при спонтанных нарушениях локальной внутренней симметрии. В такой ситуации струны не только не редкость, а скорее закономерность. Как бы это ни было парадоксально, но причиной появления этих образований является трехмерность нашего пространства. Бывают и более сложные, а значит и более интересные причины появления струны — динамические. Примером такой струны является простейшая модель мезона, упомянутая выше. Стоит заметить, что задача о струне с натяжением, на концах которой закреплены точечные массы, а именно так и выглядит в струнной терминологии простейшая модель мезона, до настоящего времени полностью не решена в силу возникающих при ее решении математических сложностей.
Говоря о струнах в физике, нельзя не обратиться и к несколько более спекулятивному понятию фундаментальной струны. Это понятие связано, в первую очередь, со сценариями объединения фундаментальных взаимодействий электромагнитного, слабого, сильного и гравитационного. Тут полезно будет напомнить, что три из них исключая гравитационное , удовлетворительно описываются стандартной моделью, которая объединила в себе теорию электрослабого взаимодействия Вайнберга — Салама объединение электромагнитного и слабого взаимодействий и квантовую хромодинамику теорию сильного взаимодействия. Про гравитацию на настоящий момент мы знаем только то, что есть классическая теория гравитации — Общая Теория Относительности ОТО , и что наши наблюдательные возможности не позволяют нам наблюдать ни эффектов квантовой гравитации, ни наличие каких либо поправок к предсказаниям ОТО. То есть, с точки зрения физического метода тут царит полная гармония. А именно, имеющаяся теория полностью соответствует имеющемуся эксперименту.
Тут надо ждать новых экспериментов, результаты которых разойдутся с теорией. Тогда появится необходимость эту теорию исправлять. Заметим, что это одна из надежд, по-прежнему возлагаемых по настоящий момент на Большой Адронный Коллайдер.
Чем больше становится энергия частиц при столкновении в нем, тем значительнее уменьшаются расстояния, которые мы можем на нем «прощупать». На ускорителях физики и проверяют свои умозрительные заключения. Теория струн предсказывает, что если провести эксперимент при еще более высоких энергиях намного больше, чем те огромные энергии, что реализуются на современных коллайдерах , то каждая элементарная частица будет вести себя как двумерная вселенная, которая в заданный момент времени похожа на струну или очень тонкую резинку. И только с больших расстояний такая струна выглядит, как точка. Индустрия 4. Но разные состояния теории отвечают разным типам элементарных частиц. Ситуация аналогична той, что возникает в случае с гитарной струной: если ее дернуть, возникнет стоячая волна.
Тогда первая мода когда между зажимами умещается одна полуволна может отвечать, например, фотону. А вторая когда между зажимами умещается две полуволны или целая длина волны может отвечать какой-то другой элементарной частице: например, электрону. При этом стоит подчеркнуть, что теория струн пока не подтверждена экспериментально. Как появилась теория струн Ученые наблюдали за столкновениями частиц на ускорителях и заметили, что в результате реакций возникали целые семьи частиц. Все выглядело так, будто различные разные частицы внутри одной семьи вели себя, как различные гармоники струны. Одним из первых придал этому наблюдению математическую форму итальянский физик Габриэле Венециано.
Понимаем, что вам хочется сразу получить формулировку и пойти дальше. Именно с этим запросом приходят большинство читателей, набравших в поисковике запрос: «теория струн попроще». Но, к сожалению, это довольно сложная концепция физиков-теоретиков и математиков, которую они и сами не понимают в полной мере. Одним предложением тут точно не отделаться. Разве что объяснить вам, что многообразные элементарные частицы, из которых состоит наш мир, на самом деле не точки или шарики, а тончайшие струны, колеблющиеся на разных частотах. Но это слишком упрощенно, поэтому будем рассказывать так, как полагается каналу «Наука». Приготовьте вашу голову! История озарения В 1960-е годы молодой итальянец Габриеле Венециано, работающий физиком-теоретиком в ЦЕРН в Женеве, искал способ объяснить сильное ядерное взаимодействие андронов тогда об андронах знали гораздо меньше, ведь Большой адронный коллайдер еще не изобрели. В какой-то момент случилось озарение: ученый вдруг понял, что для объяснения наблюдаемых процессов подходит так называемая бета-функция — математическая формула, придуманная еще в 1730 году Леонардом Эйлером, швейцарским математиком, который полжизни прожил в России. Вскоре обнаружилось, что эта формула позволяет описать огромное количество данных, накопленных при изучении особенностей сильного взаимодействия. Это был лишь первый кусочек пазла, который еще предстояло сложить другим. Физики Йохиро Намбу, Холгер Нильсен и Леонард Сасскинд размышляли: почему старинная формула так легко подошла и какой физический смысл таится в этой сложной математике? К 1970 году им стало ясно, что сильное взаимодействие элементарных частиц превосходно описывается с помощью бета-функции Эйлера, если представлять их в виде крошечных колеблющихся одномерных струн. Эти невидимые человеческому глазу нити ученые воображали как замкнутые — в виде колец — и как открытые.
Симфония вселенной: теория струн для начинающих
После бесчисленных докладов и конференций захватывающий прорыв, на который многие когда-то надеялись, оказался дальше, чем когда-либо. Тем не менее, шквал мыслей вокруг самой идеи теории струн оставил глубокий отпечаток как в физике, так и в математике. Нравится вам это или нет а некоторым физикам, конечно, нет , теория струн никуда не денется. Теория струн переворачивает страницу стандартного описания Вселенной, заменяя все частицы материи и силы всего одним элементом: крошечными вибрирующими струнами, которые закручиваются и поворачиваются сложными способами, которые, с нашей точки зрения, выглядят как частицы. Струна определенной длины, бьющая на определенной ноте, может приобрести свойства фотона, а другая струна, свернутая и вибрирующая с другой частотой, может играть роль кварка, и так далее. В дополнение к укрощению гравитации, теория струн была привлекательна своим потенциалом для объяснения значений так называемых фундаментальных констант, таких как масса электрона.
Основные положения одной из наиболее известных «теорий всего» сводятся к следующему: Основу мироздания составляют протяженные объекты, которые по форме напоминают струны; Этим объектам свойственно совершать различные колебания, словно на музыкальном инструменте; В результате этих колебаний образуются различные элементарные частицы кварки, электроны и т. Масса полученного объекта прямо пропорциональна амплитуде совершенного колебания; Теория помогает по-новому взглянуть на черные дыры; Также с помощью нового учения удалось раскрыть силу тяжести во взаимодействиях между фундаментальными частицами; В отличии господствующих ныне представлений о четырехмерном мире, в новой теории вводятся дополнительные измерения; В настоящее время концепция еще не принята официально в широком научном сообществе. Не известно ни одного эксперимента, который бы подтверждал эту гармоничную и выверенную на бумаге теорию. Историческая справка История данной парадигмы охватывает несколько десятилетий интенсивных исследований. Благодаря совместным усилиям физиков по всему миру, была разработана стройная теория, включающая концепции конденсированных сред, космологию и теоретическую математику. Основные этапы ее развития: 1943—1959 гг. Появилось учение Вернера Гейзенберга об s-матрице, в рамках которого предлагалось отбросить понятия пространства и времени для квантовых явлений. Гейзенберг впервые обнаружил, что участники сильных взаимодействий представляют собой протяженные объекты, а не точки; 1959—1968 гг. Были обнаружены частицы с высокими спинами моментами вращения. Итальянский физик Туллио Редже предложит группировать квантовые состояния в траектории которые были названы его именем ; 1968—1974 гг.
Может пройти некоторое время, прежде чем наш уровень понимания достигнет глубины, достаточной для достижения этой цели, хотя, как будет показано в главе 9, экспериментальные проверки могут дать сильную и всестороннюю поддержку теории струн в течение ближайшего десятилетия. Более того, в главе 13 мы увидим, что теория струн недавно позволила решить одну из центральных проблем черных дыр, связанную с так называемой энтропией Бекенштейна— Хокинга, задачу, которая более двадцати пяти лет упорно сопротивлялась решению более традиционными методами. Этот успех убедил многих в том, что теория струн дает глубочайшее понимание того, как устроена Вселенная. Используя метод проб и ошибок, можно было бы оценить мощь суперкомпьютера, но для того, чтобы достичь подлинного мастерства, потребовались бы энергичные и продолжительные усилия. Признаки мощи компьютера, как проблески способности теории струн давать объяснения, могут быть причиной очень сильной мотивации к овладению всем устройством. Замечание Виттена и схожие высказывания других специалистов в этой области указывают на то, что могут пройти десятилетия или даже столетия, прежде чем теория струн будет полностью разработана и осознана. Это вполне может оказаться правдой. В действительности математический аппарат теории струн столь сложен, что сегодня никто даже не знает точных уравнений этой теории. Вместо этого физики используют лишь приближенные варианты этих уравнений, и даже эти приближенные уравнения столь сложны, что пока поддаются только частичному решению. По всему миру физики разрабатывают новые мощные методы, далеко превосходящие использовавшиеся до сих пор многочисленные приближенные методы, коллективно собирая вместе разрозненные элементы головоломки теории струн с обнадеживающей скоростью.
Согласно науке, если постоянно увеличивать любой предмет под микроскопом, сначала можно увидеть молекулы, которые состоят из атомов, они состоят из электронов и ядер, ядра состоят из протонов и нейтронов, внутри нейтрона мы увидим кварки. Считается, что после этого больше ничего нет. Однако согласно теории струн, внутри этих кварков существуют тончайшие вибрирующие струны. Эта недоказанная теория в физике элементарных частиц объединяет квантовую механику и общую теорию относительности Эйнштейна. Некоторые физики считают, что при объединении квантовой физики и гравитации в одну именно у этой теории больше всего шансов стать "теорией всего" гипотетический фундамент, который объясняет абсолютно все физические явления. Однако есть и другие учёные, которые думают, что она является почти псевдонаукой, поскольку её практически невозможно проверить экспериментальным путём. Теория суперструн Теория суперструн — это сокращение от "суперсимметричная теория струн"; это ещё одна версия теории струн, которая для моделирования гравитации: учитывает фермионы частица с полуцелым значением спина , учитывает бозоны частица с целым значением спина , включает суперсимметрию связь между фермионами и бозонами. Теория струн — это общее название всей области.
Что такое теория струн? Простой обзор
Теория струн кратко и понятно. Видео от пользователя. Теория струн гласит, что неделимые субатомные частицы состоят из крошечных маленьких струн, вибрирующих по определенной схеме. В своей основе Теория струн отрицает теорию Большого взрыва и утверждает, что Вселенная существовала всегда. После того, как плавная и предсказуемая Общая теория относительности оказалась в неразрешимом конфликте с плутоватой квантовой механикой, лучшие умы человечества, начиная с Эйнштейна, принялись формулировать новую теорию. Не так давно физический мир облетела новость: знаменитая теория струн несовместима с существованием тёмной энергии, какой её себе представляет большинство космологов.
Мы заколебались: объясняем простым языком теорию струн
Популярно о теории струн | теория струн имеет значительное значение для понимания ранней Вселенной и происхождения нашей вселенной. |
Теория струн простым языком - | Теория струн кратко и струн — это одна из революционных и самых противоречивых теорий в физике, целью которой является объединение всех частиц и фундаментальных сил природы в единую тео. |
Что такое теория струн? Теория струн простыми словами | Так, начал вырисовываться фундаментальный физический принцип, получивший прекрасное название Теория всего или Теория струн, которая стала воплощением мечты всех физиков по объединению двух противоречащих друг другу ОТО и квантовой механики. |
Теория струн, Мультивселенная | Теория струн естественно включает в себя и гравитацию с ее гипотетическим переносчиком — гравитоном. |
Симфония вселенной: теория струн для начинающих
Стало отчетливо понятно, что эта программа на самом деле является отнюдь не содержанием теории струн, а только еще одной областью ее приложения. А теория струн может объединить эти две теории, например если сказать что световая волна это и есть струна с набором гармоник, которая и соответствует фотону. Основной проблемой теории струн является её незавершенность, то есть, нет какой-то единой теории, способной объяснить все процессы, происходящие во Вселенной, как например уравнение Эйнштейна для гравитации или уравнение Максвелла для электромагнетизма. Теория струн естественно включает в себя и гравитацию с ее гипотетическим переносчиком — гравитоном. Теория струн для чайников, предполагает объединение идей квантовой механики и теории относительности, представляя элементарные частицы, составляющие атом из ультрамикроскопических волокон, называемых струнами.
Краткая история теории струн
Гарибрэле Венециано предложил модель двойного резонанса для описания сильных взаимодействий. Есиро Намбу развил эту идею и описал ядерные силы как вибрационные одномерные струны; 1974—1994 гг. Открытие суперструн, во многом благодаря работам российского ученого Александра Полякова; 1994—2003 гг. Появление М-теории, допустила большее, чем 11, количество измерений; 2003 — н. Майкл Дуглас разработал ландшафтную теорию струн с понятием ложного вакуума.
Теория квантовых струн Ключевыми объектами в новой научной парадигме являются тончайшие объекты, которые своими колебательными движениями сообщают массу и заряд всякой элементарной частице. Основные свойства струн согласно современным представлениям: Длина их чрезвычайно мала — около 10-35 метров. В подобном масштабе становятся различимы квантовые взаимодействия; Однако в обыкновенных лабораторных условиях, которые не имеют дела с такими мелкими объектами, струна абсолютно неотличима от безразмерного точечного объекта; Важной характеристикой струнного объекта является ориентация. Струны, обладающие ей, имеют пару с противоположным направлением.
Существуют также неориентированные экземпляры.
Нильса Бора даже отговаривали заниматься физикой — мол, тут все и так ясно. Однако, в 1926 году на сцену вышел великий Вернер Гейзенберг со своим принципом неопределенности и все изменилось в одночасье. Благодаря развитию темы принципа неопределенности ученые смогли сформировать новую теорию струн. Ее парадигма подразумевает существование большого количества измерений.
Они создают деформации пространства-времени — то, что мы ощущаем как гравитацию. Стоит ли говорить, что стройная, правильная и предсказуемая Общая теория относительности находится в неразрешимом конфликте с «взбалмошной хулиганкой» — квантовой механикой, и, как следствие, макромир не может «помириться» с микромиром. Вот тут на помощь и приходит теория струн. Многие ученые уверены, что всё, от изысканного танца галактик до безумной пляски субатомных частиц, может в итоге объясняться всего одним фундаментальным физическим принципом. Может быть — даже единым законом, который объединяет все виды энергии, частиц и взаимодействий в какой-нибудь элегантной формуле. ОТО описывает одну из самых известных сил Вселенной — гравитацию. Квантовая механика описывает три других силы: сильное ядерное взаимодействие, которое склеивает протоны и нейтроны в атомах, электромагнетизм и слабое взаимодействие, которое участвует в радиоактивном распаде. Любое событие в мироздании, от ионизации атома до рождения звезды, описывается взаимодействиями материи посредством этих четырех сил. С помощью сложнейшей математики удалось показать, что электромагнитное и слабое взаимодействия имеют общую природу, объединив их в единое электрослабое. Впоследствии к ним добавилось и сильное ядерное взаимодействие — но вот гравитация к ним не присоединяется никак. Теория струн — одна из самых серьезных кандидаток на то, чтобы соединить все четыре силы, а, значит, объять все явления во Вселенной — недаром ее еще называют «Теорией Всего». А на заре ее появления она и вовсе казалась бесконечно далекой от реальности. Само ее рождение — легенда. В конце 1960-х годов молодой итальянский физик-теоретик Габриэле Венециано искал уравнения, которые смогли бы объяснить сильные ядерные взаимодействия — чрезвычайно мощный «клей», который скрепляет ядра атомов, связывая воедино протоны и нейтроны. Согласно легенде, как-то он случайно наткнулся на пыльную книгу по истории математики, в которой нашел уравнение двухсотлетней давности, впервые записанное швейцарским математиком Леонардом Эйлером. Каково же было удивление Венециано, когда он обнаружил, что уравнение Эйлера, которое долгое время считали ничем иным, как математической диковинкой, описывает это сильное взаимодействие. Как же было на самом деле? Уравнение, вероятно, стало результатом долгих лет работы Венециано, а случай лишь помог сделать первый шаг к открытию теории струн. Уравнение Эйлера, чудесным образом объяснившее сильное взаимодействие, обрело новую жизнь. Эти частицы вели себя так, что не могли быть просто точечными частицами. Сасскинд понял — формула описывает нить, которая подобна упругой резинке. Она могла не только растягиваться и сжиматься, но и колебаться, извиваться. Описав свое открытие, Сасскинд представил революционную идею струн. К сожалению, подавляющее большинство его коллег встретили теорию весьма прохладно. Стандартная модель В то время общепринятая наука представляла частицы точками, а не струнами. В течение многих лет физики исследовали поведение субатомных частиц, сталкивая их на высоких скоростях и изучая последствия этих столкновений. Выяснилось, что Вселенная намного богаче, чем это можно было себе представить. Это был настоящий «демографический взрыв» элементарных частиц. Аспиранты физических вузов бегали по коридорам с криками, что открыли новую частицу, — не хватало даже букв для их обозначения. Но, увы, в «родильном доме» новых частиц ученые так и не смогли отыскать ответ на вопрос — зачем их так много и откуда они берутся? Это подтолкнуло физиков к необычному и потрясающему предсказанию — они поняли, что силы, действующие в природе, также можно объяснить с помощью частиц. То есть существуют частицы материи, а есть частицы-переносчики взаимодействий. Таковым, например, является фотон — частица света. Ученые предсказывали, что именно этот обмен частицами-переносчиками — есть не что иное, как то, что мы воспринимаем как силу. Это подтвердилось экспериментами. Так физикам удалось приблизиться к мечте Эйнштейна по объединению сил. А если вернуться во времени еще дальше, то электрослабое взаимодействие соединилось бы с сильным в одну суммарную «суперсилу». Несмотря на то, что все это еще ждет своих доказательств, квантовая механика вдруг объяснила, как три из четырех сил взаимодействуют на субатомном уровне. Причем объяснила красиво и непротиворечиво. Эта стройная картина взаимодействий, в конечном счете, получила название Стандартной модели. Но, увы, и в этой совершенной теории была одна большая проблема — она не включала в себя самую известную силу макроуровня — гравитацию. Например, выкладки теории предсказали существование частиц, которых, как точно установили вскоре, не существует. Это так называемый тахион — частица, которая движется в вакууме быстрее света. Помимо прочего выяснилось, что теория требует целых 10 измерений. Неудивительно, что это очень смущало физиков, ведь это очевидно больше, чем то, что мы видим. К 1973 году только несколько молодых физиков все еще боролись с загадочными выкладками теории струн.
Некоторые ученые считают, что теория струн может разрешить противоречия между ними, преодолев одну из основных нерешенных проблем физики. Но после того, как теория струн получила известность в конце 1960-х и 70-х годах, ее положение в среде физиков-теоретиков было шатким. После бесчисленных докладов и конференций захватывающий прорыв, на который многие когда-то надеялись, оказался дальше, чем когда-либо. Тем не менее, шквал мыслей вокруг самой идеи теории струн оставил глубокий отпечаток как в физике, так и в математике. Нравится вам это или нет а некоторым физикам, конечно, нет , теория струн никуда не денется. Струна определенной длины, бьющая на определенной ноте, может приобрести свойства фотона, а другая струна, свернутая и вибрирующая с другой частотой, может играть роль кварка, и так далее.
Теория струн. Что это?
А теория струн может объединить эти две теории, например если сказать что световая волна это и есть струна с набором гармоник, которая и соответствует фотону. Та материя, сутью которой являются струны, составляет только 5% массы Вселенной — ее видимая часть. Понятно, что с математиче ской точки зрения с гладкими поверхностями работать гораздо лучше и плодотворнее, чем с сингулярными — в этом объяснение успехов математи ческого аппарата теории струн. Теория струн может и не станет теорией всего, но это хотя бы теория чего-то. одно из направлений теоретической физики (можно сказать - физики элементарных частиц). Вместо теории струн со всеми десятью пространственно-временными измерениями или знакомой нам Вселенной с четырьмя протяжёнными измерениями снова рассмотрим вселенную Садового шланга.
Теория струн, Мультивселенная
Теория струн, пожалуй, самая спорная большая идея во всей сегодняшней науке – Самые лучшие и интересные новости по теме: Атом, бозон Хиггса, квантовая физика на развлекательном портале 1) «Теория струн» в первоначальном виде сама по себе уже устарела и сейчас это название закрепилось не за первоначальной теорией, а за целым семейством – собственно теория струн, теория суперструн и М-теория. Важнейшее значение теории струн для физиков, если излагать кратко: она претендует на роль «теории всего», то есть может объединить в одно целое все физические аспекты существования Вселенной. Comments Off on Теория струн кратко и понятно. Если традиционно физики пытались обосновать теорию струн с помощью квантовой мезаники, Барс и Рычков исходили из того, что теория струн верна, и, исходя из постулатов этой теории, вывели принцип неопределенности. А теория струн может объединить эти две теории, например если сказать что световая волна это и есть струна с набором гармоник, которая и соответствует фотону.