В ядерном реакторе число нейтронов, участвующих в делении ядер, остается неизменным (k=1), реакция протекает стационарно и имеет управляемый характер. Они сообщили о делении атомов пяти различных элементов – алюминия, бора, натрия, бериллия и лития – и полученная энергия более чем в три раза превышала то, что затратили. Новости, полученные от Гана, были равносильны атомному взрыву в мозгу Лизы Мейтнер.
Видео-стенд "Магия Деления ядра урана" в парке "Патриот"
Getty images Ядерное деление — ключевой процесс, лежащий в основе жизни и энергетики. Давайте погрузимся в детали этого удивительного явления. Этот процесс сопровождается выделением большого количества энергии. Его противоположностью является ядерный синтез, когда два легких атома объединяются, образуя более тяжелый атом. В процессе деления выделяются нейтроны.
Что такое цепная ядерная реакция Ядерной реакцией называется процесс взаимодействия атомного ядра с элементарной частицей, вследствие которого образуется новое ядро и выделяется вторичная частица -ы , называемая гамма-квантом. Впервые её провёл Эрнест Резерфорд в 1919 году. Вследствие реакции азот 714N превращался в кислород 817O с выделением атома водорода. Протекают ядерные реакции не только с выделением, но и с поглощением энергии.
Цепная ядерная реакция — это последовательность делений атомных ядер, каждое из которых вызывается высвобожденной на предыдущем шаге процесса частицей. Протекают только в тяжёлых химических элементах, инициируется появившимися при прошлом делении ядер. Вследствие протекания самоподдерживающихся реакций продукт предыдущего взаимодействия вступает в реакцию с образовавшимся тогда же ядром. Чаще всего провоцируются нейтроны.
Причина — в сильной связи протонов и нейтронов внутри ядра.
При ядерной реакции значительная часть этой связанной энергии освобождается, и атомы движутся с огромной скоростью. В результате другие атомы не успевают захватить их и не могут продолжить цепную реакцию. Поэтому новые реакции случаются редко и с недостаточным уровнем энергии или тепла. При этом нейтроны с высокой скоростью в процессе деления высвобождают энергию. Это приводит к большим колебаниям температуры и нарушает стабильность условий внутри реактора.
Это ставит производство электричества под вопрос. Наука научилась контролировать скорость нейтронов с помощью графитовых стержней. Эти элементы используют в ядерных реакторах, чтобы управлять ядерными реакциями. Их изготавливают из графита, формы углерода, и называют замедлителями. Как водитель автомобиля регулирует скорость, чтобы избежать аварии, так и графитовые стержни управляют скоростью ядерной реакции.
Они замедляют быстрые нейтроны. Процесс начинается с прямого взаимодействия. Нейтроны из первичной атомной реакции сталкиваются с ядрами углерода в графите. Поскольку ядра углерода массивные, при столкновении нейтроны передают часть своей энергии атомам углерода. В результате этих многократных столкновений нейтроны постепенно замедляются.
Из-за понижения энергии и снижения скорости атомы успевают поймать нейтроны, что продолжает цепную ядерную реакцию. Изотопы: суперсила в медицине На российских АЭС стержни над реактором подвешивают и удерживают электромагнитами, чтобы всегда гарантировать их попадание в активную зону. Электромагниты — эффективный способ управлять графитовыми стержнями. Например, подачей электрического тока в электромагниты можно изменять магнитное поле и регулировать подвешивание и удержание стержней с высокой точностью. При нештатных ситуациях на энергоблоке электромагниты выключатся, а стержни сами опустятся в активную зону под действием силы тяжести.
Toshiba купила Westinghouse в 2006 году. Для Westinghouse и её новых хозяев продолжение работы и запуск второго модуля важны в дальнейшей перспективе. Представители Westinghouse уже заключили предварительную договорённость о строительстве до шести реакторов AP1000 в Польше. Аналогичные договорённости готовятся с властями Болгарии и Украины. Причём для украинских АЭС Westinghouse производит топливные сборки, что откроет перед ней возможность поставлять топливо на существующие атомные электростанции, построенные по советским и российским проектам. В отличие от Европы США не собираются отказываться от мирного атома и по мере сил восстанавливают пробелы, сделанные предыдущими властями в отношении поддержки атомной индустрии.
Деление атома
Спектр подразделяется на три области: инфракрасную, видимую и ультрафиолетовую. Они относятся различным диапазонам частот или длин волн. Спектры отличают способами их получения. Нагревая тела, их можно заставить испускать лучи, относящихся к различным областям излучения в зависимости от температуры нагрева. Спектры, полученные нагревом тел, называются спектрами испускания. Они бывают сплошными, линейчатыми и полосатыми. Есть другой способ получения спектра. Пропускают пары газов твердого тела через прозрачные тела. При этом прозрачное тело поглощает часть проходящего через него излучения, спектр, полученный таким способом, называется спектром поглощения. Спектры поглощения могут быть линейчатыми или полосатыми.
Энергия, выделяемая при разделении ядерных частиц, используется в качестве источника энергии с середины XX века. Хотя при производстве энергии не выделяются такие же опасные парниковые газы, как при сжигании ископаемого топлива, опасения по поводу риска расплавления , опасных отходов долговременного хранения и стоимости строительства означают, что атомное будущее, о котором многие мечтали в прошлом, может оказаться недостижимым. Как деление ядер используется для получения атомной энергии? Проведённые в 1930-х годах эксперименты по бомбардировке атомов ядерными частицами привели к созданию моделей деления, которые обещали, что из нужных изотопов тяжёлых элементов, таких как уран, может высвобождаться значительное количество энергии. Теория предсказывала, что уран-235 с гораздо большей вероятностью подвергнется делению, чем другие изотопы, особенно если нейтроны, ударяющие в его ядро, движутся с относительно низкой скоростью. Выделение дополнительных нейтронов в процессе деления может привести к тому, что другие близлежащие атомы урана-235 также начнут распадаться. Для возникновения такой цепной реакции необходима относительно высокая плотность атомов урана-235, которую называют «критической массой» материала. К концу 1930-х годов физики разработали методы замедления нейтронов, достаточные для захвата и обогащения смесей изотопов урана из природных ресурсов с образованием критической массы урана-235. Они также придумали, как контролировать цепную реакцию, чтобы экспоненциальное производство нейтронов не вышло из-под контроля, в случае чего процесс мог бы стать взрывоопасным. В течение последующего десятилетия технологические достижения в области деления ядер использовались для создания новых классов супероружия.
Только после Второй мировой войны инженеры вновь обратили внимание на возможность использования процесса деления ядер для устойчивого производства тепла, пригодного для выработки электроэнергии. Подобно тому, как пар, получаемый при сжигании ископаемого топлива в котле, вращает турбину, соединённую с электрогенератором, пар из «ядерного котла» также можно использовать для выработки электроэнергии. Градирни атомной электростанции во Франции С течением времени совершенствование технологий позволило повысить эффективность и безопасность, в некоторых случаях отказаться от замедления нейтронов, чтобы расщепляющийся материал мог захватывать более быстрые частицы. Сегодня в мире эксплуатируется около 440 атомных электростанций, из них только в США - около 100. Однако существуют издержки, которые могут ограничить возможности использования атомной энергии для спасения от климатического кризиса. В чём проблема ядерной энергетики?
Когда нейтрон попадает в ядро делящегося атома, например, урана-235, атом урана расщепляется на два более мелких атома в дополнение к увеличению количества нейтронов и энергии. Эти избыточные нейтроны, ударяясь о ядра других атомов урана-235, могут запустить цепную реакцию деления, что приводит к атомному взрыву. Атомные бомбы основаны на реакции деления ядер, однако важно отметить, что для цепной реакции деления требуется определенное количество делящегося материала, такого как уран-235, известное как сверхкритическая масса. Слияние атомов: ядерный синтез В водородных бомбах используется комбинация деления и синтеза, причем ядерный синтез усиливает реакцию деления и позволяет получить гораздо более мощный взрыв по сравнению с атомными бомбами. Процесс ядерного синтеза, по сути, противоположен процессу деления: вместо того чтобы расщеплять более тяжелые атомы на более мелкие, он происходит путем объединения двух атомов с образованием третьего нестабильного атома. Именно этот процесс является источником энергии Солнца. При ядерном синтезе в основном используются изотопы более легких элементов, например, два изотопа водорода - дейтерий и тритий. Под действием высокой температуры и давления эти два атома соединяются друг с другом, образуя крайне нестабильный изотоп гелия, при этом выделяется энергия и нейтроны. Высвобождающиеся нейтроны подпитывают реакцию деления более тяжелых атомов, таких как уран-235, создавая взрывную цепную реакцию. Сравнение атомной и водородной бомб Насколько мощными являются водородные бомбы и насколько они превосходят атомные?
Как видит глаз, почему слышит ухо, чем вода отличается от камня — вот что исстари волновало мудрецов. Еще в древней Индии и Греции некоторые пытливые умы предположили, что существует минимальная частица её еще называли «неделимой» , обладающая свойствами материала. Средневековые химики подтвердили догадку мудрецов, и современное определение атома следующее: атом — это наименьшая частица вещества, которая является носителем его свойств. Части атома Однако развитие технологии в частности, фотографии привело к тому, что атом перестал считаться наименьшей возможной частицей вещества. И хотя отдельно взятый атом электронейтрален, ученые достаточно быстро поняли: он состоит из двух частей с разными зарядами. Количество положительно заряженных частей компенсирует количество отрицательных, таким образом, атом остается нейтральным. Но однозначной модели атома не существовало. Так как в тот период все еще господствовала классическая физика, то высказывались различные предположения. Модели атома Поначалу была предложена модель «булка с изюмом». Положительный заряд как бы заполнял собой все пространство атома, и в нем, как изюм в булке, распределялись отрицательные заряды. Знаменитый опыт Резерфорда определил следующее: в центре атома расположен очень тяжелый элемент с положительным зарядом ядро , а вокруг располагаются значительно более легкие электроны. Масса ядра в сотни раз тяжелее суммы всех электронов оно составляет 99,9 процентов от массы всего атома. Таким образом, родилась планетарная модель атома Бора. Однако некоторые из её элементов противоречили принятой на тот момент классической физике. Поэтому была разработана новая, квантовая механика. С ее появлением начался неклассический период науки. Атом и радиоактивность Из всего сказанного выше становится понятно, что ядро — это тяжелая, положительно заряженная часть атома, которая составляет его основную массу. Когда квантование энергии и положений электронов на орбите атома были хорошо изучены, пришло время понять природу атомного ядра. На помощь пришла гениальная и неожиданно открытая радиоактивность. Она помогла раскрыть сущность тяжелой центральной части атома, так как источник радиоактивности — деление ядер. На рубеже девятнадцатого и двадцатого столетия, открытия сыпались одно за другим. Теоретическое решение одной задачи вызывало необходимость ставить новые опыты. Результаты экспериментов порождали теории и гипотезы, которые требовалось подтвердить или опровергнуть. Зачастую величайшие открытия появлялись просто потому, что именно таким образом формула становилась удобной для вычислений как, например, квант Макса Планка. Еще в начале эры фотографии ученые знали: урановые соли засвечивают светочувствительную пленку, но они не подозревали, что в основе этого явления лежит деление ядер. Поэтому радиоактивность изучали, чтобы понять природу распада ядра. Очевидно, что излучение порождались квантовыми переходами, но было не до конца ясно, какими именно. Чета Кюри добывала чистые радий и полоний, обрабатывая практически вручную урановую руду, чтобы получить ответ на этот вопрос. Заряд радиоактивного излучения Резерфорд много сделал для изучения строения атома и внес вклад и в исследование того, как происходит деление ядра атома. Ученый поместил излучение, выделяющееся радиоактивным элементом, в магнитное поле и получил потрясающий результат. Оказалось, что радиация состоит из трех компонентов: одна была нейтральной, а две другие — положительно и отрицательно заряженными. Изучение деления ядра началось с определения его составляющих. Было доказано, что ядро может делиться, отдавать часть своего положительного заряда. Строение ядра Позже выяснилось, что атомное ядро состоит не только из положительно заряженных частиц протонов, но и нейтральных частиц нейтронов.
ЯДЕР ДЕЛЕНИЕ
В отличие от вынужденного деления, основанного на захвате ядром нейтрона, запаздывающее деление основано на захвате электрона из собственного атома. Поэтому в ядерном реакторе, если копнуть чуть глубже есть и деления урана 8 быстрыми нейтронами, энергия которых может достигать 18МэВ. В ТЕКСТЕ ОГОВОРКА: У ГРАФИТА НЕ 6 АТОМНАЯ МАССА, А 12!Для донатов и вопросов: ДЛЯ ДОНАТОВ ИСПОЛЬЗОВАТЬ.
Физика атома и ядра. Слепцов И.А., Слепцов А.А.
Существуют два различных способа освобождения ядерной реакции: деление тяжелых ядер и термоядерные. В критическом реакторе деления нейтроны, образующиеся при делении атомов топлива, используются, чтобы вызвать еще большее количество делений. Эти нейтроны могут инициировать деление уже нескольких ядер – возникает цепная реакция. Ядерное деление-это реакция, при которой ядро атома распадается на два или более меньших ядра. В этом выпуске поговорим о том, с чего началось освоение ядерной энергии: о механизме ядерных реакций, об открытии цепных реакций деления атомных ядер и возможности. Процесс деления атомного ядра можно объяснить на основе капельной модели ядра.
Цепная ядерная реакция: что это за процесс, виды цепных ядерных реакций
Приборы впервые зафиксируют деление ядер урана, а реактор из сложной металлической конструкции превратится в полноценную атомную установку, чтобы обеспечить половину энергопотребления Петербурга и Ленинградской области. Итоговая цель проекта — снабжать электроэнергией весь северо-запад России. Реактор водо-водяного типа сейчас самый распространенный. Его конструкция напоминает тепловую станцию со своей турбиной и генератором, только вместо котла — реакторная установка. За последние два десятка лет российские энергетики запустили более 20 подобных блоков.
Один из способов сделать это заключается в том, чтобы выстрелить одним атомом изотопа по другому такому же атому. Похожее на пушку орудие с урановым сердечником выстреливало атомы 235U в мишень из таких же атомов 235U. Атомы летели достаточно быстро, чтобы выделявшиеся из них нейтроны проникали в ядра других атомов 235U и расщепляли их. При расщеплении, в свою очередь, высвобождались нейтроны, которые расщепляли следующие атомы 235U. Одиночная субатомная частица может попасть в атом 235U и расщепить его на два отдельных атома других элементов, при этом выделятся три нейтрона. Субатомные частицы можно получить из контролируемого источника например, нейтронной пушки или создать в результате столкновения ядер. Обычно используют три вида субатомных частиц.
Этот тип реакций применяется не только при создании ядерного оружия. Рассмотрим, какую ядерную реакцию называют цепной, каковы условия её возникновения, поддержания. Коснёмся темы использования явления человеком. Что такое цепная ядерная реакция Ядерной реакцией называется процесс взаимодействия атомного ядра с элементарной частицей, вследствие которого образуется новое ядро и выделяется вторичная частица -ы , называемая гамма-квантом. Впервые её провёл Эрнест Резерфорд в 1919 году. Вследствие реакции азот 714N превращался в кислород 817O с выделением атома водорода. Протекают ядерные реакции не только с выделением, но и с поглощением энергии. Цепная ядерная реакция — это последовательность делений атомных ядер, каждое из которых вызывается высвобожденной на предыдущем шаге процесса частицей.
А потом медленный тепловой нейтрон уже спокойной подлетает к ядру делит его. В реакторе ВВЭР замедлитель является водой. Это та же самая вода, что и теплоноситель, который нагревается за счет цепной реакции деления. Два в одном. Очень удобно. Возможно многое вы уже знаете, а что вы знаете об уране-238 в реакторе? Раз от него пытаются избавиться в пользу урана-235, наверное, это просто ненужный мусор? У него есть 2 функции. Первая: он все же может делиться, просто очень плохо и цепная реакция на нем не получится. Но когда он делится, появляются много не простых нейтронов, а так называемых запаздывающих. Он так называются, потому что появляются не сразу, а вылетают через время из осколка деления урана-238. И зачем это нужно? Если не вдаваться в физику, благодаря таким нейтронам мощность в реакторе возрастает медленно, а не быстрыми скачками и поэтому можно успевать регулировать скачки мощности, поддерживая критическое состояние реактора. Вторая функция урана 238: Это тоже топливо! Нет-нет, не потому что он может делиться, как и уран 235 хотя и потому тоже. Дело в том, что почти все ядра химических элементов с какой-то вероятностью не только делятся при взаимодействии с нейтронами. Они могут нейтроны поглощать! Например, у урана-238 в сумме 238 нейтронов и протонов. Когда ядерно урана-238 поглотит нейтрон, получится ядро, у которого в сумме 239 нейтронов и протонов на 1 нейтрон больше. Что это за ядро? Не рассматривая промежуточные процессы, получится ядро плутония-239. А плутоний это вполне себе ядерное топливо, которое отлично делится нейтронами. А даже если ядро плутония не поделится, а захватит нейтрон, оно станет плутонием-240, потом плутонием-241 и т. В этой цепочки какой-нибудь плутоний все равно поделится. С ураном-235 в случае поглощения происходит аналогичная ситуация. В ходе этих упрощенно описанных процессов работает ядерный реактор до тех пор, пока урана не останется мало, а осколков деления урана много. Осколки деления поглощают нейтроны, мешая работе реактора и когда их становится слишком много а их руками не вытащить , а урана в процессе выгорания мало, дальнейшая кампания реактора становится не возможной.
Деление ядер урана. Цепная ядерная реакция
Недавно в атомной энергетике произошло событие, которое можно сравнить разве что с созданием вечного двигателя: четвертый энергоблок Белоярской АЭС с реактором. В 1939 г физиками О. Фришем и Л. Мейтнером была предложена капельная модель ядра, в рамках которой был описан процесс деления ядра атома урана. Новости. Знакомства. РУВИКИ: Интернет-энциклопедия — Деление ядра — процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. Международная группа ученых выяснила, как именно вращаются атомные ядра после их деления, сообщает МедиаПоток.
Элементарно о частицах: физик Дмитрий Бузунов разложил на атомы вопросы школьников
И заряд не взорвется, как бы дальше ни развивалась история нештатного полета и падения ракеты. Похоже действуют гидроприборы, если носителем ядерного заряда является торпеда. Гидростатические приборы реагируют на заданное статическое давление морской воды, гидродинамические датчики измеряют перепад полного и статического давлений воды при движении торпеды. Есть и группы приборов, не связанных со средой, подобно скрытым в теле человека мышечным рецепторам. Это датчики линейных ускорений и инерционные включатели, которые включают или выключают электрические цепи блока автоматики при контрольных значениях перегрузки по трем осям.
Есть временные приборы, переключающие электрические цепи по истечении заданного времени. Только по мере верного прохождения этих последовательностей система предохранения и взведения постепенно повышает взрывоготовность заряда. И сразу обнуляет ее при значимых отклонениях фактических событий от планового сценария работы носителя. Кто нажмет на спусковой крючок Но вот все этапы движения носителем пройдены, он уже в непосредственной близости к цели.
Все ступени предохранения сняты, и заряд готов взорваться в любое мгновение. Кто примет решение и даст главную команду на подрыв? Пусковая система, или исполнительная система подрыва. Ее задача — выработка главной команды на подрыв заряда, которую выполнит блок автоматики и его система подрыва заряда.
Главная команда запустит процесс подрыва, поэтому система называется пусковой. Исполнительная она потому, что при выполнении главного условия подрыва — достижения цели — следует только исполнение подрыва, больше ничего Пусковая система частично находится в блоке автоматики — ее логические блоки, формирующие главную команду. Снаружи блока автоматики размещены подсистемы исполнительных датчиков — и на поверхности носителя, и внутри него. Подсистемы исполнительных датчиков имеют свою иерархию и работают на разных физических принципах.
В этом они схожи с датчиками системы предохранения и взведения. Схем и воплощений пусковых систем так же много, как и конструкций, несущих ядерный заряд. Возьмем как условный пример боеголовку баллистической ракеты. Ее цель обычно точка в пространстве на высоте 500—800 метров над земной поверхностью.
Взрыв мощностью в сотни килотонн создаст на поверхности Земли наибольшие разрушения, если произойдет на высоте, зависящей от мощности заряда. Возможен и подрыв на земле, когда нужно поразить укрепленную подземную цель. Пусковая система заряда боеголовки состоит из сегментов, основной из которых — бесконтактный инерциальный. У боеголовки есть инерциальный блок с датчиками ускорений — акселерометрами, непрерывно измеряющими ускорения по трем перпендикулярным в пространстве осям.
Интегрированием ускорений получают текущие скорости по этим осям, или пространственную скорость боеголовки. Интегрирование скоростей дает пространственные координаты боеголовки, путь и положение относительно цели. Это вычисляет бортовая инерциальная навигационная система боеголовки. Термоядерная боеголовка W76 мощностью 100 килотонн, размещенная внутри боевого блока Mk4.
Поэтому цель заменяется частью пространства вокруг целевой точки, сферой или цилиндром. Когда инерциальная система определит вход боеголовки в целевое пространство, она сообщит об этом пусковой системе, которая немедленно выдаст главную команду на подрыв заряда. В случае наземного взрыва работает контактный сегмент пусковой системы — ударные датчики, действующие на разных физических принципах. Датчики ускорения, выявляющие ударный рост перегрузки, и другие приборы.
Энергия деления широко используется в реакторах атомных электростанций, ядерных силовых установках надводных кораблей и субмарин, а также ядерных и термоядерных боеприпасах. Посмотрите стенд "Магия деления ядра урана" на нашем видео на канале в Youtube. Техническое решение, оборудование Основной задачей при оснащении экспоната «Магия деления ядра урана» было построение особой мультимедийной зеркальной комнаты с применением новейшего оборудования и технологий в соответствии с требованиями и пожеланиями, изложенными заказчиком в предоставленном общем техническом задании. В качестве технической основы обустройства стенда были использованы высокотехнологичные светодиодные панели. Каждая из стен имеет в длину 3,072 м при высоте 2,56 м. Зеркальное напольное покрытие из «золотого алюминия», создавая идеальное отражение видеоконтента, обеспечивает получение трехмерного эффекта присутствия наблюдателя в центре демонстрируемых событий, иллюстрирующих этапы деления ядра урана. При оснащении экспоната, помимо вышеназванного, было задействовано также следующее оборудование: LED лампа Модель чипа epistar; модуль Управления SD16739;.
Когда дело доходит до поиска экономически эффективных альтернатив ископаемым видам топлива с низким уровнем выбросов, мы можем добиться большего, чем ядерная энергия. Важно отметить, что мы могли бы также добиться большего успеха с технологиями возобновляемых источников энергии, такими как солнечная и ветровая энергия, которые с каждым годом становятся все дешевле. Проблемы ядерной энергетики можно разделить на три категории: отходы, риск и стоимость. Вот несколько примеров каждой из них. Напрасные затраты Одно из самых больших общественных опасений по поводу ядерной энергетики в последние десятилетия было о том, что делать с урановым топливом, когда оно настолько забито расщепляющимися продуктами, что больше не может эффективно производить энергию. Эти высокоактивные отходы содержат изотопы, для снижения радиоактивности которых до уровня, примерно соответствующего уровню радиоактивности руды, из которой они были получены, могут потребоваться тысячи лет. В настоящее время в мире хранится более четверти миллиона тонн высокорадиоактивных отходов, ожидающих захоронения или переработки. Это плохо? Хотя хранящиеся ядерные отходы не обязательно представляют непосредственную угрозу, если они хорошо локализованы, вопросы долгосрочного обращения и возможности неправильного обращения и несчастных случаев делают хранение растущей кучи ядерных отходов спорным вопросом. Углерод также является одним из видов отходов. Хотя процесс деления и преобразования ядерной энергии в электричество относительно свободен от выбросов углерода, общий бюджет углерода, связанный с добычей и переработкой руды, необходимой для деления, и строительством конкретной электростанции, не равен нулю. В течение всего срока службы новая атомная электростанция может выбрасывать в атмосферу примерно 4 г CO2 на каждый киловатт-час произведенной электроэнергии. По некоторым оценкам, этот показатель значительно выше - от 10 до 130 граммов CO2 в отдельных случаях. Таким образом, замена угольных электростанций на атомные позволит ежегодно экономить миллионы тонн СО2, не говоря уже о твердых частицах и других загрязняющих веществах. По тем же причинам экологически чистые возобновляемые источники энергии, такие как ветряные турбины и солнечные батареи, также не имеют нулевых выбросов в силу их производства и установки. Углеродный след солнечных и ветряных электростанций более или менее сопоставим с нижним пределом для атомной энергетики. В целом, атомная энергетика в лучшем случае не содержит столько же углерода, сколько солнечная и ветровая, хотя и связана с непопулярной проблемой отходов.
По его словам, кризис "активизирует корпоративное строительство и расширит сотрудничество между ведущими игроками". По прогнозу главы российского "Атомэнергопрома", в самое ближайшее время из-за высокой стоимости реакторов третьего поколения упор может быть сделан на строительство серийных энергоблоков АЭС предыдущих поколений, пишет "Российская газета". Однако не все эксперты разделяют эту точку зрения. По его мнению, здесь позиции России по-прежнему сильны. Кроме того, эксперт не считает, что из-за кризиса обстановка в ядерной энергетике революционно преобразуется. Кроме того, по мнению эксперта, они доказали свою высокую надежность и безопасность.