Плюс на минус всегда даёт минус. Нужны ОБЪЯСНЕНИЯ, ПОЧЕМУ минус умножить на минус получается плюс.
Финансовая сфера
«Враг моего врага — мой друг». Рисунок © Е.В. Проще всего ответить: «Потому что таковы правила действий над отрицательными числами». Правила, которые мы учим в школе и применяем всю жизнь. Однако учебники не объясняют, почему правила именно такие. Таким образом, минус на минус дает плюс, потому что умножение двух отрицательных чисел приводит к получению положительного результата. Ну ок, ты доказал что плюс на минус дает минус тогда и только тогда, когда существует такое некое i, которое равно корню из минус единицы. но согласно более ранним правилам, такого числа не существует. При вычитания двух чисел, в которых оба отрицательные, следует знать правило: минус на минус дает плюс.
Минус на минус дает плюс
минус на минус дает плюс (Каспийский Груз) - download in Mp3 and listen online fo free | “Плюс” на “плюс” всегда дает положительный ответ. То же самое и с двумя минусами: как при умножении, так и при делении двух чисел со знаком “-” получается положительное число. |
Когда плюс на минус дает плюс — — | Минус на мину даёт плюс. |
§ Умножение отрицательных чисел. Умножение рациональных чисел | Лента новостей Друзья Фотографии Видео Музыка Группы Подарки на МИНУС даёт ПЛЮС. |
Минус на минус даёт плюс или как крысы решили проблему | Если мы умножаем «минус» на «минус», то получим «плюс». |
Почему результат вычитания минуса из минуса может быть положительным
В этом нам поможет красивая стрелка: Два главных определения: Положительные числа — это точки координатной прямой, которые лежат правее начала отсчета нуля. Положительные числа — это те, что больше нуля, а отрицательные — меньшие. Отрицательные числа — это точки координатной прямой, которые лежат левее начала отсчета нуля. Их всегда обозначают знаком минус — «-». Нуль 0 — ни положительное, ни отрицательное число. Вот это ему повезло!
Потому что два минуса это две палочки. А плюс как раз из двух палочек и состоит. Если мы складываем два отрицательных числа то есть с двумя минусами , мы дважды перемещаемся влево и оказываемся далеко от нуля "минус на минус".
Если среди натуральных чисел и существует такое , что , то. Эта цепочка рассуждений логически безупречна, а среди натуральных только возведенное в четвертую степень равно единице, но ведь вы не будете из этого всего делать вывод, что? Выходит, что мы по-прежнему не можем быть уверены, существует ли на целых числах умножение, которое удовлетворяет арифметическим законам. Из этого затруднения можно пытаться выбраться по-разному. Способ, основанный на формальном подходе, состоит в том, чтобы правила и принять за определение произведения целых, а затем проверить, что такое определение превращает формулы в тождества. В частности, для доказательства истинности , было бы достаточно перебором всех возможных расстановок знаков у , проверить, что. Несмотря на идейную простоту формальный подход требует множества долгих и скучных выкладок, а его доказательства вряд ли сделают доказываемое более понятным, поэтому мы не будем использовать формальный подход и пойдем другим путем. Давайте попробуем поискать среди реальных или вымышленных предметов такие, что: о каждом из них мы бы могли бы сказать, что он играет роль обозначает определенное целое число: положительное, отрицательное или ноль; эти предметы можно было бы естественным образом между собой складывать, причем по тем же правилам, что и обозначаемые ими целые числа; эти предметы можно было бы естественным образом друг на друга умножать, причем перемножение происходило бы по тем же правилам, что и перемножение обозначаемых ими целых чисел. На языке математической логики множество таких объектов называлось бы моделью для арифметики целых чисел с операциями сложения и умножения.
Основные определения Вспомним, как отличить положительное число от отрицательного, что такое умножение и какие у него свойства. Начнем с того, что проведем прямую и отметим на ней начало отсчета — точку нуль 0. А теперь укажем направление движения по прямой вправо от начала координат. В этом нам поможет красивая стрелка: Два главных определения: Положительные числа — это точки координатной прямой, которые лежат правее начала отсчета нуля. Положительные числа — это те, что больше нуля, а отрицательные — меньшие. Отрицательные числа — это точки координатной прямой, которые лежат левее начала отсчета нуля.
Когда минус на минус дает плюс
И был нам дарован этот инструмент только тогда, когда люди стали понимать, как надо пользоваться данным инструментом. Как и ожидалось, “плюс на минус” дал “минус”. И наконец “минус на минус”, когда $X = (Im \ast R_k)$, а. Обдумай данную ситуацию и в спокойной обстановке прими решение. Мы сформулируем аксиомы кольца (которые, естественно, похожи на правила действий с целыми числами), а затем докажем, что в любом кольце при умножении минуса на минус получается плюс. Это первое впечатление, со временем все минусы -оказываются плюсы. Минус на минус даёт плюс.
Когда минус дает плюс
Этот пример объясняет, почему в выражении, где идут два «минуса» подряд, упомянутые знаки следует поменять на «плюс». Теперь разберемся с умножением. Аналогично можно доказать, что и в результате деления двух отрицательных чисел выйдет положительное. Общие математические правила Конечно, такое объяснение не подойдет для школьников младших классов, которые только начинают учить абстрактные отрицательные числа.
Им лучше объяснять на видимых предметах, манипулируя знакомым им термином зазеркалья. Например, придуманные, но не существующие игрушки находятся именно там. Их и можно отобразить со знаком «-».
Умножение двух зазеркальных объектов переносит их в еще один мир, который приравнивается к настоящему, то есть в результате мы имеем положительные числа. А вот умножение абстрактного отрицательного числа на положительное лишь дает знакомый всем результат. Ведь «плюс» умножить на «минус» дает «минус».
Правда, в младшем школьном возрасте дети не слишком-то пытаются вникнуть во все математические нюансы. Хотя, если смотреть правде в глаза, для многих людей даже с высшим образованием так и остаются загадкой многие правила.
Умножение и деление отрицательных и положительных чисел правило. Правила умножения и деления отрицательных и положительных чисел.
Правило умножения отрицательных и положительных чисел. Правило умножения и деления отрицательных чисел. Плюс на минус минус на плюс сложение и вычитание. Минус сложить с минусом.
Если сложить минус на минус. Минус с минусом сложить можно минус получить. Знаки перед скобками. Если перед скобками минус.
Знак минус перед скобками. Если перед скобкой знак минус. Таблица умножения отрицательных и положительных чисел. Таблица отрицательных и положительных чисел.
Положительные и отрицательные знаки. Минус минус минус. Минус сайт минусовок. Примеры на плюс и минус.
Если перед скобками стоит знак минус. Если перед скобкой стоит знак минус то. Если перед скобками минус то в скобках знаки меняются. Знак минус перед скобками правило.
Знаки при слодслоджении и выситаниии. Сложение и вычитание с минусом. Знаки при сложении и вычитании. Сложение и вычитание целых чисел.
Раскрыть скобки. Знаки в уравнениях. Раскрыть скобки знаки. Сложение и вычитание отрицательных и положительных чисел правило.
Формулы сложения отрицательных и положительных чисел. Примеры равно один. Минус один плюс минус один равно.
А значит, она надежная, и ей можно доверять.
Здесь сработает банальный принцип — если фирма тратит деньги на рекламу, следовательно, у нее они есть в достаточном количестве. А в кризис абсолютная ликвидность особо ценится. Ведь не исключено, что он попал в категорию проблемных. Вспомните случаи, когда деньги некоторых организаций по вине банка так и не доходили до контрагента, а что еще хуже — до бюджета.
Если же вы своим банком довольны и — что еще лучше — он выстоял в нелегком «кризисном поединке», то этот пункт не для вас. А вот следующий наверняка коснется всех. Отговорка проста: «Нет денег». Будьте внимательны.
Для кого-то это отличный способ придержать деньги. Придется принимать меры по истребованию задолженности. И не только в этой ситуации. Наверняка часть контрагентов не оплачивает поставки по причине действительной нехватки денег либо их отсутствия.
В любом случае отслеживайте уровень и срок «дебиторки». Оцените финансовое состояние контрагентов. Кого из них можно отнести в список надежных? А главное, помните, что организация — это в первую очередь люди, которые в ней работают.
Если мотивация персонала достигнет нужного уровня, вы сможете преодолеть любые сложности.
Мы сформулируем аксиомы кольца которые, естественно, похожи на правила действий с целыми числами , а затем докажем, что в любом кольце при умножении минуса на минус получается плюс. Кольцом называется множество с двумя бинарными операциями т. Заметим, что кольца, в самой общей конструкции , не требуют ни перестановочности умножения, ни его обратимости т. Если вводить эти аксиомы, то получаются другие алгебраические структуры, но в них будут верны все теоремы, доказанные для колец. Для этого нам потребуется установить некоторые факты. Сперва докажем, что у каждого элемента может быть только один противоположный. В самом деле, пусть у элемента A есть два противоположных: B и С. Заметим теперь, что и A, и - -A являются противоположными к одному и тому же элементу -A , поэтому они должны быть равны. Значит, это произведение равно нулю.
А то, что в кольце ровно один ноль ведь в аксиомах сказано, что такой элемент существует, но ничего не сказано про его единственность! Евгений Епифанов 1 Почему минус один умножить на минус один равно плюс один? Мы сначала постараемся понять это, исходя из истории развития арифметики, а потом ответим на этот вопрос с точки зрения современной математики. Но числа сами по себе довольно бесполезны - нужно уметь с ними обращаться. Сложение наглядно и понятно, к тому же сумма двух натуральных чисел - тоже натуральное число математик сказал бы, что множество натуральных чисел замкнуто относительно операции сложения. Умножение - это, по сути, то же сложение, если мы говорим о натуральных числах. В жизни мы часто совершаем действия, связанные с этими двумя операциями например, делая покупки, мы складываем и умножаем , и странно думать, что наши предки сталкивались с ними реже - сложение и умножение были освоены человечеством очень давно. Часто приходится и делить одни величины на другие, но здесь результат не всегда выражается натуральным числом - так появились дробные числа. Их применяли для учета долгов или в промежуточных вычислениях для упрощения решения уравнений - это был лишь инструмент для получения положительного ответа. Это недоверие сохранялось очень долго, и даже Декарт - один из «основателей» современной математики - называл их «ложными» в XVII веке!
Более того, мы можем больше не думать каждый раз об осмысленности преобразуемых величин - а это уже шаг в направлении превращения математики в абстрактную науку. Эти операции подчиняются одним и тем же законам - как в случае с числами, так и в случае с многочленами. Потом обнаружились другие совокупности математических объектов, над которыми можно производить такие операции: формальные степенные ряды, непрерывные функции... Заметим, что кольца, в самой общей конструкции, не требуют ни перестановочности умножения, ни его обратимости т. Заметим теперь, что и A , и — —A являются противоположными к одному и тому же элементу —A , поэтому они должны быть равны. Но для уровня старшекласника-первокурсника. Допустим мы идем вдоль дороги, нас обгоняет машина и начинает удаляться. Время растет - и расстояние до нее растет. Скорость такой машины будем считать положительной, она может быть например 10 метров в секунду. Кстати, а сколько это километров в час?
Наверное дорога плохая... А вот машина идущая нам навстречу не удаляется, а приближается. Поэтому и скорость ее удобно считать отрицательной. Расстояние уменьшается: 30, 20, 10 метров до встречной машины. Каждая секунда - минус 10 метров. Теперь понятно почему скорость с минусом? Вот она пролетела мимо. Какое до нее расстояние через секунду? Правильно, -10 метров, то есть "в 10 метрах позади". Вот мы получили первое утверждение.
Минус отрицательная скорость на плюс положительное время дал минус отрицательное расстояние, машина у меня за спиной. А теперь внимание - минус на минус. Где встречная машина была за секунду ДО того как проехала мимо? Так понятно, или кто-то знает пример еще проще? Ответить Да можно доказать проще! То что мы отложили в положительную часть стало отрицательным и наоборот. Ответить Думаю вы правы. Я лишь попытаюсь показать вашу точку зрения подробнее, так как вижу, что не все это поняли. Минус означает отобрать. Ведь надо же как то обозначить действие.
При этом отобранные яблоки не стали мнимыми, так как закон сохранения материи никто не отменял. Положительные яблоки просто перешли к тому, кто их отобрал. Здесь минус не компенсирует плюс, а отрицает его и становится на его место. Сначала яблоки отобрали у вас, а затем вы их отобрали у вашего обидчика. В результате все яблоки остались положительными, только отбор не состоялся, так как произошла социальная революция. Вообще говоря, то что отрицание отрицания ликвидирует отрицание и всё к чему отрицание относится детям понятно и без объяснений, так как это очевидно. Объяснить детям нужно только то, что взрослые искусственно запутали, да так, что и сами теперь не могут разобраться.
ЕГЭ не должен включать «замудренные» вопросы, считают в Госдуме
- Минус на минус дает плюс -
- Почему минус на минус - плюс? - на - будет +? Откуда? Чтобы что? Как? | Видео
- Четыре российские школьницы стали победительницами Европейской математической олимпиады
- Почему минус на минус дает плюс? |
- Четыре российские школьницы стали победительницами Европейской математической олимпиады
- Как понять, почему «плюс» на «минус» дает «минус» ?
Справедливая математика: разбираемся в тайнах операции «плюс» и «минус»
Умножение — это, по сути, то же сложение, если мы говорим о натуральных числах. В жизни мы часто совершаем действия, связанные с этими двумя операциями например, делая покупки, мы складываем и умножаем , и странно думать, что наши предки сталкивались с ними реже — сложение и умножение были освоены человечеством очень давно. Часто приходится и делить одни величины на другие, но здесь результат не всегда выражается натуральным числом — так появились дробные числа. Без вычитания, конечно, тоже не обойтись. Но на практике мы, как правило, вычитаем из большего числа меньшее, и нет нужды использовать отрицательные числа. Этим можно объяснить, почему люди долго не пользовались отрицательными числами. В индийских документах отрицательные числа фигурируют с VII века н. Их применяли для учета долгов или в промежуточных вычислениях для упрощения решения уравнений — это был лишь инструмент для получения положительного ответа.
Тот факт, что отрицательные числа, в отличие от положительных, не выражают наличие какой-либо сущности, вызывал сильное недоверие. Люди в прямом смысле слова избегали отрицательных чисел: если у задачи получался отрицательный ответ, считали, что ответа нет вовсе. Это недоверие сохранялось очень долго, и даже Декарт — один из «основателей» современной математики — называл их «ложными» в XVII веке! При таком решении нам даже не встретились отрицательные числа. Что демонстрирует этот нехитрый пример?
И получается, что минус на минус, дал плюс. Это не совсем то, но лучшее, что я мог придумать. Отправить 4 года назад 1 0 В математике это так.
И если у меня забрали -2 яблока, то это значит, что на самом деле мне их дали! Отправить 4 года назад 1 0 Минус на минус дает плюс - имеется в виду не при сложении, а при умножении. Это сложно представить, потому что умножение подразумевает количество раз ,а человеку тяжело осознать, как это 5 раз со знаком минус. А вот представим, если дали -5 раз по -5 рублей, то есть - 5 раз отобрали по 5 рублей. Вот и получается, что -5 раз отобрали это то же самое, что 5 раз дали. Отправить 4 года назад 1 0 По моему, ответ совсем простой и не стоит себе и людям лишний раз пудрить мозги. А ответ заключается в том, что таковы правила математики. А эти правила придумали люди для того, чтобы ими было удобно пользоваться.
Есть и упрощенное, шутливое объяснение этого правила: минус это одна черта, два минуса две черты, плюс как раз состоит из 2-х черточек. Поэтому то минус на минус и дает знак плюса. Отправить 4 года назад 1 0 Минус на минус дает плюс потому ,что это школьное правило. На данный момент точного ответа почему по моему нет. Это правило и оно существует уже много лет.
Математики не взяли это правило с потолка и не высосали из пальца. Его выбрали таким, чтобы оно согласовывалось с другими правилами. Когда создавалось понятие отрицательных чисел, самой естественной моделью были денежные долги. Скажем, у Корнея есть 3 рубля. То есть остался у Корнея только долг в 4 рубля.
Когда создавалось понятие отрицательных чисел, самой естественной моделью были денежные долги. Скажем, у Корнея есть 3 рубля. То есть остался у Корнея только долг в 4 рубля. Здесь важно слово "Аналогично" -- так по аналогии вводился смысл вычитания из меньшего числа большего. Иначе говоря, чтобы умножение было осмысленным, "минус на плюс" должен давать "минус".
Когда два минуса дают плюс. Как понять, почему ";плюс"; на ";минус"; дает ";минус";
Числовая прямая, под которую "заточены" все правила арифметики, имеет только один ноль, ноль, как точка отсчета, позиция наблюдателя, начало координат. И на числовой прямой минус имеет смысл другое направление отсчета никак не "меньше". Если это одинаковые числа, отложенные в разных направлениях? Вместо того, чтобы разобраться и навести порядок в арифметике, методисты и педагоги используют методику обхода острых углов и доказательств через жопу того, что объяснить не могут, в силу заложенных ошибок в основных формулировках арифметики, например, в формулировке умножения. Можно анализировать и дальше, добраться до тригонометрии. Дошло уже до того, что синус угла у нас - это проекция точки единичной окружности на ось Y.
А разделить на единицу единичный радиус забыли? Разве математика не точная наука. Если результат не меняется от того, что мы не записываем единицу, ноль или Рад, это не значит, что единицу, ноль или рад не нужно записывать. От этого меняется смысл, пропадает смысл, блокируется понимание элементарных вещей школьниками. Традиция не писать "рад" после Пи доводит до того, что многие думают, что Пи - это 180 градусов!
Но Пи - это число 3,14, а не 180 градусов.
Кроме того, для каждого C есть противоположный элемент, который можно обозначить, как -C. Выведение аксиом для отрицательных чисел Приняв приведенные выше утверждения, можно ответить на вопрос: «"Плюс" на "минус" дает какой знак? Для этого придется вначале доказать, что у каждого из элементов существует лишь один ему противоположный «собрат». Рассмотрим следующий пример доказательства. Давайте попробуем представить, что для C противоположными являются два числа - V и D. Вспоминая о переместительных законах и о свойствах числа 0, можно рассмотреть сумму всех трех чисел: C, V и D. Попробуем выяснить значение V.
Для того чтобы понять, почему все же «плюс» на «минус» дает «минус», необходимо разобраться со следующим. Так, для элемента -C противоположными являются C и - -C , то есть между собой они равны. А это значит, что прибавление произведения 0 х V никак не меняет установленную сумму. Ведь это произведение равняется нулю. Зная все эти аксиомы, можно вывести не только, сколько «плюс» на «минус» дает, но и что получается при умножении отрицательных чисел.
Вводится понятие «фонд аудиторной деятельности» ФОТаз. Его рекомендуемая величина — не менее 60 процентов. Второй момент, за счет чего уменьшается гиперзависимость от количества учеников, — это использование при расчетах показателя средней наполняемости по ступени. Другими словами, если у учителя в классе число обучающихся меньше, чем среднее по ступени например, в пятом классе 16 человек, в шестом — 18, в седьмом — четыре, в восьмом — девять, а в девятом — восемь, средняя наполняемость получается 11 , значит, учителю, работающему с тремя учениками, можно будет платить по среднему показателю, как за 11 обучающихся. Это снизит потерю в зарплате. И еще один момент, работающий на уменьшение гиперзависимости, — применение коэффициента неравномерности наполняемости классов. Если в школе все оптимизировано, то коэффициент неравномерности равен 1 — классы равномерно укомплектованы. А если складывается ситуация, когда нельзя так четко оптимизировать, тогда надо пользоваться коэффициентом неравномерности. Он позволяет сгладить разброс в зарплате учителей, обусловленный количеством учеников. Если конкретно говорить о зарплате учителя, стоит особое внимание обратить вот на что. Что делает фонд аудиторный? Оплачивает уроки.
Тот факт, что отрицательные числа, в отличие от положительных, не выражают наличие какой-либо сущности, вызывал сильное недоверие. Люди в прямом смысле слова избегали отрицательных чисел: если у задачи получался отрицательный ответ, считали, что ответа нет вовсе. Это недоверие сохранялось очень долго, и даже Декарт — один из «основателей» современной математики — называл их «ложными» в XVII веке! При таком решении нам даже не встретились отрицательные числа. Что демонстрирует этот нехитрый пример? Во-первых, становится понятна логика, которой определялись правила действий над отрицательными числами: результаты этих действий должны совпадать с ответами, которые получаются другим путем, без отрицательных чисел. Во-вторых, допуская использование отрицательных чисел, мы избавляемся от утомительного если уравнение окажется посложнее, с большим числом слагаемых поиска того пути решения, при котором все действия производятся только над натуральными числами. Более того, мы можем больше не думать каждый раз об осмысленности преобразуемых величин — а это уже шаг в направлении превращения математики в абстрактную науку. Правила действий над отрицательными числами сформировались не сразу, а стали обобщением многочисленных примеров, возникавших при решении прикладных задач. Вообще, развитие математики можно условно разбить на этапы: каждый следующий этап отличается от предыдущего новым уровнем абстракции при изучении объектов. Так, в XIX веке математики поняли, что у целых чисел и многочленов, при всей их внешней непохожести, есть много общего: и те, и другие можно складывать, вычитать и перемножать. Эти операции подчиняются одним и тем же законам — как в случае с числами, так и в случае с многочленами. А вот деление целых чисел друг на друга, чтобы в результате снова получались целые числа, возможно не всегда.
Когда минус на минус дает плюс?
Ведь здесь, если не приложить усилий и не избавиться от «минусов», никакие законы математики не помогут — сколько ни складывай, ни перемножай, а недочеты и упущения по-прежнему останутся таковыми. Обдумай данную ситуацию и в спокойной обстановке прими решение. получается две женчины,или лезбийская связь,просто ЛГБТ какое-то.А это ведь всё на подсознании остаётся у нас,вот таким,казалось бы НЕнавязчивым способом. И получается, что минус на минус, дал плюс. Лента новостей Друзья Фотографии Видео Музыка Группы Подарки на МИНУС даёт ПЛЮС.
Когда минус на минус дает плюс?
Правило минус на минус дает | Я – один минус, они – второй минус, когда наша деятельность соединяется – получается плюс во всем: в итогах репетиций, в настроении детей и их родителей. |
Почему минус на минус - плюс? - на - будет +? Откуда? Чтобы что? Как? | Видео | Плюс на минус всегда даёт минус. |
Минус на минус дает плюс - Мир финансов - | Например, 2 * (-3) = -6. В этом случае, «плюс» на «минус» дает «минус», потому что один множитель положительный, а другой отрицательный. |