Новости катод заряд

При зарядке аккумулятора литий из катода переходит в графит на аноде, в результате чего там получается соединение углерода и лития. «Сколтех» совместно с МГУ создал катод для натрий-ионных аккумуляторов на замену литию. Более того, использование органических катодов позволяет полностью отказаться от использования дорогостоящих соединений лития, заменив их на дешевые соли натрия и калия. В процессе заряда ионы Li⁺ экстрагируются из материала катода, переносятся через электролит к аноду и внедряются в его структуру. Новосибирское оборонное предприятие Катод поставило приборы ночного видения воинским подразделения из региона, участвующим в спецоперации, сообщили в.

Разработка российских ученых позволила увеличить пробег электрокаров на одной зарядке

Германскими учёными из Технологического института Карлсруэ (KIT) достигнуто повышение стабильности катодов литий-металлических аккумуляторов. Вот казалось бы, только вчера мы начали работу над проектом Заряд. Катод это электрод, имеющий отрицательный или положительный заряд в зависимости от типа прибора или процесса.

Ученые создали долговечный катод для натрий-ионных аккумуляторов

В этом случае оборудование будет поставлено в лизинг. Джизак Узбекистан начнется производство аккумуляторных батарей под маркой "Катод". Проектная мощность завода составит 1 млн АКБ в год. По словам Светланы Прусовой, на этот уровень завод планирует выйти к середине 2004 года. Ранее завод "Джизакаккумулятор" производил принципиально другие источники питания -- щелочные батареи. Для строительства на его площадях производства никель-кадмиевых аккумуляторов и было создано СП "УзЭксайд". Однако сотрудничество с Exide уперлось в финансовые проблемы.

Мы целевым образом помогаем воинским формированиям, которые дислоцируются или были созданы на территории нашего региона — это и «Ермак», и армейские подразделения, составленные из мобилизованных. Мы оказываем им различные виды помощи», — подчеркнул губернатор. Для поддержки таких предприятий в Новосибирской области есть целый ряд программ и инструментов, утверждённых Правительством региона, уточнил заместитель губернатора Сергей Сёмка.

Также Андрей Травников провёл в правительстве региона совещание по вопросам содействия и координации усилий по обеспечению поставок имущества и оказания услуг воинским подразделениям, принимающим участие в СВО. Напомним, бронежилеты «Архангел» производят для добровольцев «Веги» в Новосибирске. Районные СМИ.

Литий-ионные аккумуляторы могут давать большую мощность, обеспечивая при этом сравнительно высокие скорости разряда и заряда, а также хранят достаточно много энергии в расчете на единицу своей массы. Поэтому их применяют в качестве накопителей энергии не только в электронике и электротранспорте, но уже и в масштабах глобальных энергосетей. Например, в Австралии построят сеть огромных энергонакопителей на основе литий-ионных аккумуляторов, чтобы запасать излишки энергии, произведенной солнечными и ветровыми электростанциями. Но если литий-ионных аккумуляторов будет становиться больше, то рано или поздно закончится сырье для их производства. Похожая ситуация и с литием — на его добычу уходит так много воды, что это может стать серьезной экологической проблемой. Поэтому исследователи ищут новые энергонакопители, которые с одной стороны работают по принципу литий-ионных аккумуляторов и сохраняют их преимущества, а с другой используют более доступное сырье. Менделеева и ИПХФ РАН была использована перспективная постлитиевая технология двухионных аккумуляторов,в электрохимических процессах которых задействованы как анионы, так и катионы электролита, что в разы повышает скорости заряда батарей по сравнению с литий-ионными.

Стабильные, быстрые, ёмкие Стандартный литий-ионный аккумулятор - это ячейка объем которой заполнен литий-содержащим электролитом и разделен сепаратором на две части - в одной находится анод, а в другой катод. В заряженном состоянии большинство атомов лития встроены в кристаллическую структуру анода, а при разряде они выходят из анода и через сепаратор проникают в катодный материал. В двухионных аккумуляторах, с которыми работали российские ученые, в электрохимических процессах участвуют не только катионы электролита то есть катионы лития , но и анионы, которые то встраиваются, то выходят из структуры катодного материала. За счёт этого двухионные аккумуляторы часто могут заряжаться быстрее, чем обычные литий-ионные. Кроме того, в работе была еще одна новация. В некоторых экспериментах ученые использовали не литий-содержащие электролиты, а калий-содержащие и так получали калиевые двухионные аккумуляторы, для работы которых не нужно дорогого лития. На их основе сделали катоды, а в качестве анодов использовали металлический литий и калий - все основные характеристики таких прототипов батарей, которые называются полуячейками, определяются катодной частью и ученые собирают их, чтобы быстро оценить возможности новых катодных материалов.

Катод и анод

Тараскон и его коллеги решили обе этих проблемы. Они подобрали такие пропорции натрия, лития и марганца, которые одновременно сделали материал стабильным и энергоемким, и разработали простую методику его синтеза. Изучение структуры материала показала, что его энергоемкость достаточно высока для катодов натрий-ионных аккумуляторов. После большого количества циклов перезарядки емкость батарей на основе подобного материала почти не снизилась. Вдобавок исследователи не нашли намеков на то, что вырабатываемое ими напряжение падало, что характерно для батарей с катодами на базе других слоистых соединений лития. Это относительно много для катодных материалов натрий-ионных аккумуляторов.

Это также может оказаться революционным шагом, потому что позволит производить натрий-ионные батареи наравне с литий-ионными альтернативами.

Это значит, что даже если solid-state battery technology, как упоминалось ранее, считается лучшей альтернативой литий-ионным батареям, могут появиться компромиссные технологии — твердотельные литиевые батареи. Исследовательская группа из Мичиганского университета работает именно над этим проектом. Им удалось интегрировать твердые керамические электролиты в литий-ионные батареи и продемонстрировать заметное улучшение долговечности и срока службы, по сравнению с более традиционными литий-ионными батареями. Такой подход также позволил увеличить скорость зарядки аккумуляторов. Есть исследователи, совершившие прорыв в производстве твердотельных литиевых батарей для 3D-печати. В случае масштабирования проекта до производства, это нововведение позволит удешевить производство литий-ионных аккумуляторов, которые имеют ряд преимуществ перед другими аккумуляторами SSD например, безопасность, повышенная плотность энергии и т.

Все бы хорошо, но в новых батареях по-прежнему используются литий-ионы, которые встречаются в природе редко и не являются самыми «чистыми» материалами при добыче и обработке. Это еще одно важное различие между литий-ионными батареями и их твердотельными альтернативами — неотъемлемое влияние на окружающую среду. Литий-ионным батареям требуются такие токсичные компоненты, как кобальт и, разумеется, сам литий. Эти материалы относительно редки, дороги в добыче и переработке, их добывают на рудниках в бедных странах или регионах, где мало или вообще не уделяется внимание благополучию рабочих и окружающей среде. Если вы помните , мы рассказывали в предыдущих статьях о возможных победителях и проигравших в индустрии электромобилей, потому что добыча лития требует огромного количества воды как в процессе экстракции, так и в бассейнах испарения, которые используются для производства кристаллов, богатых литием. Добыча и переработка лития — очень опасная работа и чрезвычайно разрушительна для окружающей экосистемы.

Похожая история у кобальта, который часто добывают на так называемых «кустарных рудниках». Эти небольшие шахты часто связаны с использованием детского труда в ужасных условиях, которые выбрасывают большое количество вредных веществ, переносимых воздухом уран — в воздух, а также большое количество серы — в воду. С другой стороны, твердотельные Ssbt-батареи содержат в себе такие распространенные и менее токсичные составляющие элементы, как натрий. Экстракция натрия, в изобилии встречающаяся в соленой воде, несет гораздо меньшее вредное воздействие на окружающую среду. Это позволит конкурировать с литий-ионными батареями и по цене, и по качеству. Преимущества твердотельных Ssbt-батарей Выше мы уже коснулись некоторых ключевых преимуществ solid-state battery, но каковы другие важные преимущества этой технологии?

Более быстрая зарядка — твердотельные батареи обеспечивают гораздо более высокую скорость зарядки. В зависимости от технологии, некоторые из них могут заряжаться в шесть раз быстрее, чем литий-ионные аккумуляторные батареи. Если исследования квантовых твердотельных накопителей в конечном итоге окажутся успешными, можно будет заряжать solid-state battery практически мгновенно. Более высокая плотность энергии — еще одно потенциальное преимущество твердотельных батарей. У некоторых технологий его может быть вдвое больше, чем у литий-ионных батарей при том же объеме. Значительно увеличенный срок службы — одно из основных преимуществ твердотельных Ssbt-батарей.

Срок службы заряда-разряда-перезарядки — может быть продлен до десяти лет, по сравнению с более скромными двумя годами у традиционных альтернатив. Сниженная скорость утечки саморазряд — еще одно потенциальное преимущество твердотельных батарей. Их можно сделать меньше и дешевле теоретически твердотельные батареи могут быть гораздо меньше литий-ионных альтернатив. Безопасность — основным преимуществом твердотельных батарей является их относительная безопасность. Они не производят газообразный водород. Возможности использования твердотельных батарей и пути выхода из кризиса Ожидается, что главной движущей силой развития аккумуляторных технологий станут — электромобили.

Так, тайваньские компании, имеющие опыт в производстве аккумуляторов для компьютерного и телекоммуникационного секторов, уже начали сборку аккумуляторов для электромобилей. В частности, в этом преуспели компании Simplo, Dynapack и Celxpert. Чуть дальше пошли тайваньские компании, которые смогли наладить производство материалов для электродов литиевых аккумуляторов — анодов и катодов.

Катоды батарей электромобилей обычно изготавливают из слоистых оксидов переходных металлов, в том числе обогащенных никелем. То есть катод будет меньше, вся батарея — компактнее. Значит, заняв тот же объем, аккумулятор сможет запасти больше энергии, и пробег на одной зарядке увеличится», — заявил руководитель исследования, профессор Центра энергетических технологий Сколтеха Артем Абакумов.

Ученым удалось изменить микроструктуру материалов, получив монокристаллы сфероподобной формы.

Об этом сообщили в пресс-службе компании. Абсолютные приоритеты компании: безопасность, здоровье и забота о персонале, обеспечение непрерывного и надежного производства — и выполнение всех существующих обязательств. Производство и отгрузка углеводородов покупателям ведутся без сбоев и в соответствии с графиком, утвержденным на 2022 год», - говорится в сообщении. Об этом свидетельствуют данные лондонской биржи ICE.

Разработка российских ученых позволила увеличить пробег электрокаров на одной зарядке

Их прототип батареи также показал хорошее сохранение емкости. Хотя поиск лучшей ионной жидкости остается сложной задачей, эта идея обещает новые направления в разработке твердых литиевых батарей для практического применения. Но поскольку мы ищем лучшие решения с более высокой плотностью энергии, ученые обращаются к твердотельным литий-металлическим батареям. Литий-металлические батареи потенциально имеют гораздо более высокую плотность энергии, чем их литий-ионные аналоги. Они рассматриваются как будущее батарей, приводящих в действие транспортные средства и энергосистемы в огромных масштабах.

Однако технические проблемы не позволяют твердотельным литий-металлическим батареям найти применение в требовательных приложениях. Одним из основных является дизайн интерфейса между электродами и твердыми электролитами.

Значение нормальных потенциалов зависит от концентрации ионов и температуры. Принято считать нормальный потенциал водорода за нуль. В табл. Если в электролите имеются ионы разных металлов, то первыми на катоде выделяются ионы, имеющие меньший отрицательный нормальный потенциал медь, серебро, свинец, никель , щелочноземельные металлы выделить труднее всего. Кроме того, в водных растворах всегда имеются ионы водорода, которые будут выделяться ранее, чем все металлы, имеющие отрицательный нормальный потенциал, поэтому при электролизе последних значительная или даже большая часть энергии затрачивается на выделение водорода.

Два разнополярных электрода Два разнополярных электрода Путем специальных мер можно воспрепятствовать в известных пределах выделению водорода, однако металлы с нормальным потенциалом меньше 1 В например, магний, алюминий, щелочноземельные металлы получить электролизом из водного раствора не удается. Их получают разложением расплавленных солей этих металлов. Нормальные электродные потенциалы веществ являются минимальными, при них начинается процесс электролиза, практически требуются большие значения потенциала для развития процесса. Разность между действительным потенциалом электрода при электролизе и нормальным для него потенциалом называют перенапряжением. Оно увеличивает потери энергии при электролизе. С другой стороны, увеличивая перенапряжение для ионов водорода, можно затруднить его выделение на катоде, что позволяет получить электролизом из водных растворов ряд таких более отрицательных по сравнению с водородом металлов, как свинец, олово, никель, кобальт, хром и даже цинк. Это достигается ведением процесса при повышенных плотностях тока на электродах, а также введением в электролит некоторых веществ.

Течение катодных и анодных реакций при электролизе определяется следующими двумя законами Фарадея. В действительности масса выделившегося вещества всегда меньше указанной, что объясняется рядом побочных процессов, проходящих в ванне например, выделением водорода на катоде , утечками тока и короткими замыканиями между электродами. Выход по току существенно зависит от плотности тока на электроде. С увеличением плотности тока на электроде выход по току растет и повышается эффективность процесса. Устройство гальванической цепи. Из этой мощности только первая составляющая расходуется на проведение реакций, остальные являются тепловыми потерями процесса. Лишь при электролизе расплавленных солей часть теплоты, выделяющейся в электролите IUэ, используется полезно, так как расходуется на расплавление загружаемых в электролизер солей.

Эффективность работы электролизной ванны, может быть оценена массой вещества в граммах, выделяемого на 1 Дж затраченной электроэнергии. Эта величина носит название выхода вещества по энергии. Это «ГОСТ 15596-82. Термины и определения». Там на странице 3 можно прочесть следующее: «Отрицательный электрод химического источника тока это электрод, который при разряде источника является анодом». То же самое, «Положительный электрод химического источника тока это электрод, который при разряде источника является катодом». Термины выделены мной.

Но тексты правила и ГОСТа противоречат друг-другу. В чем же дело? А всё дело в том, что, например, деталь, опущенная в электролит для никелирования или для электрохимического полирования, может быть и анодом и катодом в зависимости от того наносится на нее другой слой металла или, наоборот, снимается.

Причем, судя по всему, для удерживания хлора лучше всего подходят микропоры размером менее 2 нанометров. Чтобы проверить эту гипотезу, авторы изготовили несколько ячеек с катодом из другого пористого материала — ketjenblack carbon black.

Этот материал имеет удельный объем пор даже больше, чем у аморфных углеродных наносфер, но большая часть его приходится на мезопоры размером от 2 до 50 нанометров. Ячейка с крупнопористым катодом из ketjenblack carbon black тоже показала обратимый разряд и заряд, но проработала всего сорок циклов, а затем ее кулоновская эффективность резко стала уменьшаться. Поэтому авторы статьи полагают, что путь к стабильным тионилхлоридным аккумуляторам лежит через поиск катодного материала с еще большим объемом микропор. Кроме того, стабилизировать батарею помогают добавки фтор-содержащих солей в электролит. На натриевом электроде тоже образуется слой хлорида натрия, и ионам натрия постепенно становится труднее проходить через него.

Фторид натрия и другие фтор-содержащие соли способствуют образованию пустот в этом слое и облегчают движение ионов натрия. Авторы также изготовили перезаряжаемый источник тока с литиевым анодом. Он показывал чуть более высокую емкость первого разряда 3250 миллиампер-час на грамм катода , но при последующих разрядах и зарядах емкость была такая же, как и у натриевого варианта.

Также KPFM даёт возможность измерить потенциалы на поверхности материала оценить величину заряда. Выяснилось, что на межзёренных границах отрицательного электрода на катоде в процессе заряда и разряда батарей с твёрдым электролитом скапливаются электроны.

При прохождении через такие скопления ионов лития что происходит в момент зарядки и разрядки аккумуляторов они захватывают электроны и восстанавливаются до металлического лития. На аноде такие процессы практически не наблюдались. Тем самым стало абсолютно понятно, что «во всём виноват катод» и исследователям необходимо более пристально изучить его для подавления процессов роста игл дендритов, которые в процессе работы аккумулятора буквально протыкают его насквозь до возникновения короткого замыкания.

Группа "Катод" усиливает заряд

Катоды и аноды: отрицательно и положительно заряженные электроды НазваниеПовышение мощности разряда и эффективности заряд-разрядного цикла водородно-ванадиевого накопителя электроэнергии за счет оптимизации катодного материала.
Как технологии твердотельных Ssbt-аккумуляторов изменят мир Что такое Анод и Катод?

Новый материал катода ускорит зарядку литий-ионных батарей

Кроме передачи электронов, отрицательный заряд катода обусловлен свойствами вещества, из которого изготавливается катод. Это заставляет катод становиться положительно заряженным (по сравнению с анодом), что, в свою очередь, притягивает к катоду больше отрицательно заряженных электронов. Вот казалось бы, только вчера мы начали работу над проектом Заряд. Отрицательный заряд катода привлекает положительные ионы и приводит к образованию нейтральных частиц. Необходимо изменить свойства как анодов, так и катодов. У первых хромает скорость заряда, а вторые не отличаются высокой ёмкостью. Известно, что многослойные катоды LMR подвержены явлению, известному как «утечка напряжения», которое влечет за собой быстрый износ катодов и потерю заряда в батарее.

Российские ученые создали эффективную замену литию в аккумуляторах

Кроме передачи электронов, отрицательный заряд катода обусловлен свойствами вещества, из которого изготавливается катод. Они показали, что такие катоды могут выдерживать до 25000 циклов работы, а также заряжаться за несколько секунд, что превосходит возможности современных литий-ионных аккумуляторов. Международный коллектив, в который вошли учёные Сколтеха и их коллеги из Франции, США и Швейцарии, обнаружил причину энергетических потерь в цикле заряда-разряда литий-ионных. Исследователи из Сколтеха разработали инновационный материал для катодов литий-ионных батарей электротранспорта, который позволит увеличить пробег электрокаров на одной зарядке.

Ионные жидкости произвели фурор в твердотельных литий-металлических батареях следующего поколения

Куда течёт ток? Анод. Катод. - YouTube Новости электроники, справочник радиолюбителя, электронные компоненты, радиодетали.
Новый эталон высокопроизводительных углеродных катодов в литий-кислородных батареях • ПРОМИА Международный коллектив, в который вошли учёные Сколтеха и их коллеги из Франции, США и Швейцарии, обнаружил причину энергетических потерь в цикле заряда-разряда литий-ионных.
Инженеры собрали кальций-металлический аккумулятор, выдерживающий 500 циклов зарядки / Хабр Натрий-ионный аккумулятор работает по аналогии с литий-ионным: когда устройство заряжается и разряжается, ионы перемещаются между катодом и анодом.
Редкий кадр: катод аккумулятора телефона под микроскопом в 3D Необходимо изменить свойства как анодов, так и катодов. У первых хромает скорость заряда, а вторые не отличаются высокой ёмкостью.
Группа "Катод" усиливает заряд Новосибирское оборонное предприятие Катод поставило приборы ночного видения воинским подразделения из региона, участвующим в спецоперации, сообщили в.

Новый эталон высокопроизводительных углеродных катодов в литий-кислородных батареях

Чтобы участники специальной военной операции были обеспечены необходимой экипировкой, сотрудники предприятия трудятся круглосуточно, без выходных. Правительство региона поддерживает предприятия субсидиями на научно-исследовательские и опытно-конструкторские работы. Помогут и с поиском сотрудников, которых в ближайшее время потребуется больше.

Многочисленные попытки модифицировать материал анода не увенчались успехом, и лишь в начале 1990-х гг. Литий «с плюсом» Функционирование литий-ионных аккумуляторов основано на способности материалов, обладающих определенной структурой так называемой «матрицей» , к обратимому внедрению ионов лития. В процессе заряда разряда аккумулятора эти ионы уходят из одной матрицы и внедряются в другую. Выходное электрическое напряжение таких систем чуть меньше, чем металлических литиевых, зато уровень безопасности существенно выше. По основным техническим характеристикам ЛИА существенно превосходят «конкурентов». Так, по сравнению с никель-металло-гидридными аналогами у ЛИА вдвое больше электрохимическая емкость и почти втрое выше плотность аккумулируемой энергии и удельная мощность. ЛИА выдерживает очень высокие токи разряда, что важно для использования в мощных переносных электроинструментах.

ЛИА в меньшей степени подвержены и так называемому эффекту памяти — их можно начать перезаряжать в любой момент, не дожидаясь полной разрядки. Электрохимия как наука, изучающая взаимосвязь электрических явлений и химических реакций, началась с опытов итальянца Л. Знаменитый соотечественник Гальвани, А. Вольта, предположил, что «гальванический» эффект обусловлен наличием контакта разнородных металлов, и в 1800 г. В этом источнике происходило непосредственное преобразование химической энергии в электрическую. В последующие два десятилетия было осуществлено электролитическое разложение воды на водород и кислород, а также электроосаждение металлов из растворов. Путем электролиза расплавленных солей выдающийся английский ученый Х. Дэви выделил в чистом виде щелочные металлы, в том числе и литий. С помощью химических источников тока был сделан ряд важнейших физических открытий, включая явление магнитного действия электрического тока Ампер, 1820 , закон пропорциональности тока и напряжения Ом,1827 , тепловыделение при прохождении тока Джоуль, 1843 , электромагнитную индукцию Фарадей, 1931.

А русский ученый Б. Якоби, еще в 1834 г. Поэтому во все бытовые аккумуляторы встраивают электронную схему, которая ограничивает напряжение заряда. Кроме того, ЛИА полностью выводятся из строя в результате глубокой разрядки, да и вообще эти аккумуляторы пока еще довольно дороги. Однако следует заметить, что литий-ионные технологии находятся только в начале пути, в то время как их «конкуренты» вплотную приблизились к своему теоретическому пределу. Будучи уже внедренными в промышленное производство, ЛИА до сих пор являются предметом интенсивного изучения, направленного на улучшение их электрохимических характеристик. Совершенствованию подвергаются все три компонента системы: электролит, катод и анод.

Это важно, чтобы исключить риск возникновения огромных внутренних напряжений и вызываемого ими разрушения активных материалов. Удачным экспериментом стало использование в роли анодного материала пентатитаната лития — Li4Ti5O12.

Но номинальный вольтаж у них составляет 2,4 В. Особенности катода В роли катода используют разные соединения лития, и от их выбора зависят характеристики аккума. Так, для получения высокотоковых ячеек используется катодный материал LiMn2O4. Для увеличения проводимости в активную массу катода включают электропроводные добавки. Оксиды кобальта обеспечивают Li-ion аккумуляторам большое напряжение 3,7 В и солидный запас емкости. Иногда для изготовления катода используют смешанные оксиды или фосфаты, которые улучшают эксплуатационные характеристики элементов питания. Ячейки с катодом из литий-железо-фосфата LiFePO4 выдерживают большие токовые нагрузки, отличаются морозоустойчивостью, химической стабильностью и ресурсом свыше 2000 циклов. Но номинальное напряжение у них ниже — 3,2—3,3 В. Кроме экспериментов с разными материалами, изучается возможность покрытия катода тонкодисперсными оксидами.

Поэтому исследователи ищут новые энергонакопители, которые с одной стороны работают по принципу литий-ионных аккумуляторов и сохраняют их преимущества, а с другой используют более доступное сырье. Менделеева и ИПХФ РАН была использована перспективная постлитиевая технология двухионных аккумуляторов,в электрохимических процессах которых задействованы как анионы, так и катионы электролита, что в разы повышает скорости заряда батарей по сравнению с литий-ионными. При этом в качестве катодов тестировались материалы на основе полимерных ароматических аминов, которые можно синтезировать из различных органических соединений. Они формируют объемные сетчатые структуры, которые обеспечивают более быструю кинетику электродных процессов. С электродами из таких материалов аккумуляторы могут еще быстрее заряжаться и разряжаться».

Стандартный литий-ионный аккумулятор - это ячейка объем которой заполнен литий-содержащим электролитом и разделен сепаратором на две части - в одной находится анод, а в другой катод. В заряженном состоянии большинство атомов лития встроены в кристаллическую структуру анода, а при разряде они выходят из анода и через сепаратор проникают в катодный материал. В двухионных аккумуляторах, с которыми работали российские ученые, в электрохимических процессах участвуют не только катионы электролита то есть катионы лития , но и анионы, которые то встраиваются, то выходят из структуры катодного материала. За счёт этого двухионные аккумуляторы часто могут заряжаться быстрее, чем обычные литий-ионные.

Новые материалы для катодов ускорят зарядку в 3-4 раза

Полученный материал был применен в качестве катода для литий-ионного аккумулятора и показал хорошую стабильность и высокую емкость. Исследователи из Токийского столичного университета разработали новый квазитвердотельный катод для твердотельных литий-металлических батарей со значительно сниженным. Катод это электрод, имеющий отрицательный или положительный заряд в зависимости от типа прибора или процесса. Исследователи из Токийского столичного университета разработали новый квазитвердотельный катод для твердотельных литий-металлических батарей со значительно сниженным. Натрий-ионный аккумулятор работает по аналогии с литий-ионным: когда устройство заряжается и разряжается, ионы перемещаются между катодом и анодом.

Новый материал для батарей поможет электрокарам ездить дольше на одном заряде

Они планировали изучить и оптимизировать вариант Li-SOCl2 системы с более доступным натрием вместо лития. Авторы изготовили плоскую ячейку с жидким электролитом и разделителем из кварцевых волокон. Анод сделали из металлического натрия, а катод — из пористых аморфных углеродных наносфер. Полученная ячейка показала довольно высокую разрядную емкость — 2800 миллиампер-час на грамм катода. После этого авторы неожиданно обнаружили, что батарею можно перезарядить и затем разрядить снова. Емкость такого цикла оказалась ниже, чем емкость первого разряда — 1200 миллиампер-час на грамм катода при токе 100 миллиампер — однако в дальнейшем емкость больше не снижалась. Батарея пережила 200 циклов заряда и разряда, сохраняя кулоновскую эффективность отношение заряда, который батарея отдает при разряде, к тому, который необходим для заряда около 99 процентов. Чтобы выяснить причины такой неожиданной стабильности, авторы аккуратно вскрыли батарею и изучили ее содержимое с помощью сканирующей электронной микроскопии, рентгеновской фотоэлектронной спектроскопии и масс-спектрометрии. Они обнаружили, что во время первого разряда образующийся NaCl в основном осел на пористом углеродном катоде, а при последующем заряде хлорид ионы из NaCl окислились до молекулярного хлора Cl2. При последующем разряде хлор снова восстанавливается до хлорид-иона Cl-.

Кобальт в составе катода можно заменить на материалы, которые намного экологичнее. Это распространенные железо, марганец и титан. Титан — лёгкий серебристо-белый металл.

Он находится на 10-м месте по распространённости в природе.

Георгий Голованов26 апреля, 18:31 Георгий Голованов26 апреля, 18:31 Органические фотоэлементы изготавливаются из недорогих, экологически чистых, простых в производстве полимерных полупроводников. Подвох в том, что они мягкие, поэтому получить из них и высокоэффективные, и долговечные элементы остается проблемой. Открытие эффективного и стабильного полимерного фотоэлемента, о котором сообщают китайские ученые, решает эту проблему и обещает стать более чистым и жизнеспособным решением для возобновляемой энергетики. Подпишитесь , чтобы быть в курсе. Команда ученых из Университета Гонконга сосредоточилась на решении этой задачи.

Последний компонент в последнее время дорожает, а также повышает пожароопасность аккумулятора. Из-за пандемии строительная отрасль Японии переживает не лучшие времена, поэтому производители цемента пытаются найти новое применение своим компетенциям. Читать далее.

Из полимеров сделали катоды для литиевых аккумуляторов

Органические материалы, составляющие катод, в котором функциональные группы в ходе реакций заряда и разряда попеременно окисляются и восстанавливаются. Он отличается беспрецедентной стабильностью работы при высоких скоростях заряда и разряда, а также имеет высокий электрохимический потенциал. Исследователи из Токийского столичного университета разработали новый квазитвердотельный катод для твердотельных литий-металлических батарей со значительно сниженным. Губернатор Андрей Травников во время выездного совещания на площадке АО «Катод» обсудил вопросы поддержки воинских подразделений, участвующих в СВО.

Похожие новости:

Оцените статью
Добавить комментарий