Новинка 2024 года молекула воды(h2o) химическая модель химия биология молекулы структура модели обучающий эксперимент инструмент – цены, отзывы и видеообзоры. Исследователи из NASA и Немецкого космического агентства DLR впервые обнаружили молекулы воды на поверхности астероидов. Новинка 2024 года молекула воды(h2o) химическая модель химия биология молекулы структура модели обучающий эксперимент инструмент – цены, отзывы и видеообзоры. Спектроскопия PHPPИ воды качественно отличается от ИК спектроскопии тем, что при возбуждении рентгеновским фотоном глубокого 1s электрона кислорода на первую незанятую молекулярную орбиту, молекула воды быстро диссоциирует.
3d модель молекулы воды H2O для печати
Вода необычной формы может быть самой распространенной во Вселенной - | Стоковая иллюстрация: модель молекулы воды, научная или медицинская справка, 3d иллюстрация. |
Water molecule (молекула воды) - Download Free 3D model by decay_dance [27d7dd1] - Sketchfab | Модель водного раствора сахарозы с массовой долей 30%, включающей 12 молекул сахарозы и 532 молекулы воды, использованная для расчётов на суперкомпьютере. |
Модель воды | 268 шт Молекулярная модель набор DLS-9268 Органическая химия молекулы структура модели наборы для школы обучения исследования 9 мм серии. |
Опровергнута общепризнанная модель поведения молекул воды: Наука: Наука и техника: | Если рассмотреть модель молекулы воды, особенности ее строения, можно сказать, что она представляет собой две единицы одновалентных ионов водорода и один двухвалентный ион кислорода, а формула выглядит так: H2О. |
Сайт заблокирован хостинг-провайдером | Каждая молекула воды является миниатюрным диполем с высоким дипольным моментом. |
3d модель молекулы воды H2O для печати
Они поместили отдельные молекулы воды, обладающие довольно большим дипольным моментом, в так называемую диэлектрическую матрицу. Учебные модели придется перерисовать после того, как группа исследователей обнаружила, что молекулы воды на поверхности соленой воды организованы иначе, чем считалось ранее. Каждая молекула воды является миниатюрным диполем с высоким дипольным моментом.
Ученые научились управлять фуллереном при помощи одной молекулы воды
Исследователи из Массачусетского технологического института сделали новое открытие: свет может испарять воду без тепла. Модель водного раствора сахарозы с массовой долей 30%, включающей 12 молекул сахарозы и 532 молекулы воды, использованная для расчётов на суперкомпьютере. РИА Новости, 26.08.2021. РИА Новости, 26.08.2021.
Опровергнута общепризнанная модель поведения молекул воды
Её роль исполняет кристаллическая решетка цеолитов, содержащая периодически распределённые поры нанометрового размера. В результате получается твердотельный образец кристалл с находящимися в этих порах практически свободными молекулами воды так называемой нанолокализованной воды. Его очень удобно исследовать при различных не только очень низких температурах, включая комнатные, а также при различных внешних воздействиях под влиянием электрических полей, давления и др. Электродипольная решётка, исследованная в данной работе, была создана на основе одного из цеолитов — кристалла кордиерита. При температуре 3 K в трёхмерной решетке нанолокализованных молекул воды учёные обнаружили все характерные признаки сегнетоэлектрического фазового перехода типа «порядок — беспорядок». Кристалл кордиерита. Нам не удалось обнаружить упорядочения молекулярных диполей в данной системе вплоть до самой низкой достигнутой нами температуры 0,3 К. Причиной тому — высокая симметрия гексагональная решётки этого кристалла и квантовомеханические явления, определяющие свойства молекул воды при столь низких температурах, — подчеркнул Михаил Белянчиков.
Для анализа и интерпретации экспериментальных результатов учёные взялись за компьютерное моделирование.
Их состав проанализировали с помощью приборов стратосферной обсерватории инфракрасной астрономии SOFIA. Молекулы воды нашли на двух из них. Данные с оставшихся камней оказались слишком «зашумленными», чтобы сделать однозначный вывод. Грунт с «астероида апокалипсиса» впервые показали вживую Смотреть Группа ученых наблюдала спектральные характеристики, которые «однозначно связаны с молекулярной водой на астероидах Ирис и Массалия». Данные по этим двум космическим телам сравнили с аналогичными сведениями, добытыми из крупнейших кратеров в южном полушарии Луны.
В данной работе используется модель, удовлетворяющая указанному условию, и в которой молекула считается жесткой, - TIP4P модель [32]. Взаимодействие между жесткими молекулами наиболее легко вводится путем определения на молекуле участков сайтов , на которые действуют силы.
Результирующая сила для двух молекул будет просто равна сумме сил, действующих между всеми парами сайтов. Чтобы рассчитать взаимодействие между парами сайтов достаточно знать расстояние между центрами масс двух молекул и их ориентацию в пространстве. Модель молекулы представлена на рисунке 2. Она основана на четырех сайтах, расположенных в одной плоскости. Два из них - обозначенные как М и О - связаны с ядром кислорода, другие два - Н - с ядрами водорода. Сайт М лежит на оси симметрии молекулы между сайтом О и линией, соединяющей Н сайты. Рисунок 2. Энергия взаимодействия между двумя молекулами и состоит из двойной суммы по всем сайтам обеих молекул.
Образование водородной связи Водородная связь намного слабее ковалентной связи, тем не менее играет очень важную роль во внутри - межмолекулярных взаимодействиях. Водородные связи во многом обусловливают аномальные физические свойства воды. Исходя из этого, следует предположить, что внутри воды должны быть пустоты, где нет молекул Н2О, то есть воде присуща особая структура. Это принципиальное открытие было сделано английским физиком Берналом. С тех пор в этой области проведено множество исследований, но полной ясности в этом вопросе еще нет. Отличительная черта водородной связи — сравнительно низкая прочность, ее энергия в 5—10 раз ниже, чем энергия химической связи. По энергии она занимает промежуточное положение между химическими связями и Ван-дер-ваальсовыми взаимодействиями, теми, что удерживают молекулы в твердой или жидкой фазе.
Поскольку каждая молекула воды имеет четыре центра образования водородной связи две неподелённые электронные пары у атома кислорода и два атома водорода , то каждая молекула воды способна образовывать водородные связи с четырьмя молекулами воды, образуя ажурный сетчатый каркас в молекуле льда. Заказать работы Рис. Каждая молекула воды способно образовывать водородные связи с четырьмя соседними молекулами В кристаллической структуре льда каждая молекула участвует в 4 водородных связях, направленных к вершинам тетраэдра. В центре этого тетраэдра находится атом кислорода, в двух вершинах — по атому водорода, электроны которых задействованы в образовании ковалентной связи с кислородом. Две оставшиеся вершины занимают пары валентных электронов кислорода, которые не участвуют в образовании внутримолекулярных связей. Водородные связи в кристаллической решётке льда В отличие от льда, в жидкой воде водородные связи легко разрушаются и быстро восстанавливаются, что делает структуру воды исключительно изменчивой. Именно благодаря этим связям в отдельных микрообъемах воды непрерывно возникают своеобразные ассоциаты воды - её структурные элементы.
Всё это приводит к неоднородности в структуре воды. Первым идею о том, что вода неоднородна по своей структуре, высказал Уайтинг в 1884 году. Когда в 20-е годы определили структуру льда, оказалось, что молекулы воды в кристаллическом состоянии образуют трёхмерную непрерывную сетку, в которой каждая молекула имеет четырёх ближайших соседей, расположенных в вершинах правильного тетраэдра. В 1933 году Дж. Бернал и П. Фаулер предположили, что подобная сетка существует и в жидкой воде. Поскольку вода плотнее льда, они считали, что молекулы в ней расположены не так, как во льду, то есть подобно атомам кремния в минерале тридимите, а так, как атомы кремния в более плотной модификации кремнезёма — кварце.
Таким образом, модель Бернала — Фаулера сохранила элемент двухструктурности, но главное их достижение — идея непрерывной тетраэдрической сетки. Тогда появился знаменитый афоризм И. Открыть мини-сайт на портале Pandia для ведения проекта. PR, контент-маркетинг, блог компании, образовательный, персональный мини-сайт. Регистрация бесплатна Только в 1951 году Дж. Попл создал модель непрерывной сетки, которая была не так конкретна, как модель Бернала — Фаулера. Попл представлял воду как случайную тетраэдрическую сетку, связи между молекулами в которой искривлены и имеют различную длину.
Модель Попла объясняет уплотнение воды при плавлении искривлением связей. Когда в 60—70-е годы появились первые определения структуры льдов II и IX, стало ясно, как искривление связей может приводить к уплотнению структуры.
Ученые испарили воду светом без использования тепла
В эксперименте Национальной ускорительной лаборатории SLAC в США ученые впервые напрямую наблюдали, как возбужденные атомы водорода в молекуле воды. Они обнаружили, что молекулы воды в жидкости с высокой плотностью образуют структуры, которые считаются «топологически сложными», такие как узел-трилистник (похоже на крендель) или связь Хопфа (напоминает звенья цепи). В результате молекулы воды отталкивают молекулы биологического вещества.
Другие новости
В большинстве моделей воды с четырьмя участками используется расстояние ОН и угол НОН, совпадающие с таковыми для свободной молекулы воды. В предыдущих работах рассматривались отдельные модельные молекулы, в настоящей работе рассмотрено движение трех молекул воды, помещенных внутрь фуллерена. До сих пор эксперименты с использованием реальных молекул воды для проверки второй критической точки «суперохлаждения» воды не могли дать однозначных доказательств его существования.
Квантово-механические свойства воды - Вода Квантовая механика Молекула » 2024
Распределение ионов на границе раздела воздуха и воды может влиять на атмосферные процессы. Однако точное понимание микроскопических реакций на этих важных границах раздела до сих пор активно обсуждается. В статье, опубликованной в журнале Nature Chemistry, исследователи из Кембриджского университета и Института исследования полимеров Макса Планка в Германии показывают, что ионы и молекулы воды на поверхности большинства растворов соленой воды, известных как растворы электролитов, организованы в совершенно иным способом, чем традиционно понимается. Это может привести к улучшению моделей химии атмосферы и другим приложениям. Исследователи задались целью изучить, как на молекулы воды влияет распределение ионов именно в той точке, где встречаются воздух и вода. Традиционно это делалось с помощью метода, называемого генерацией суммарной частоты колебаний VSFG.
Об этом написал сайт NEWS. Ранее ученые не могли наблюдать за эффектами, которые возникают при взаимодействии молекул воды со своими соседями на атомном уровне.
Она имеет возможность фотографировать малозаметные движения молекул через рассеивание мощного пучка электронов от образца.
Федеральные новости Опровергнута самая популярная теория строения воды Учёные СФУ совместно с коллегами из Королевского института технологий Швеции опровергли самую популярную ныне кластерную теорию строения воды. В ходе работы исследователи предложили новую теорию, согласующуюся с результатами их эксперимента. Работа опубликована в журнале Nature Communications. Исследования поддержаны грантом Российского научного фонда. Вода — одно из самых распространённых, но в то же время необычных веществ на Земле. Она обладает рядом нетипичных свойств, объясняемых её особой структурой, например, высокой теплоёмкостью и низкой электропроводностью. Общепринято, что вода состоит из молекул Н2О, объединённых в группы так называемыми водородными связями. Их наличие обусловлено притяжением между положительно заряженными атомами водорода и отрицательно заряженными атомами кислорода.
Свободные, не входящие в кластеры группы молекул, связанных водородными связями молекулы присутствуют лишь в небольшом количестве. Многие учёные считают, что вода — постоянно изменяющаяся смесь кластеров лёгкого и тяжёлого типов.
Они помещают отдельные молекулы воды, обладающие довольно большим дипольным моментом, в так называемую диэлектрическую матрицу. Её роль исполняет кристаллическая решетка цеолитов, содержащая периодически распределённые поры нанометрового размера. В результате получается твердотельный образец кристалл с находящимися в этих порах практически свободными молекулами воды так называемой нанолокализованной воды. Его очень удобно исследовать при различных не только очень низких температурах, включая комнатные, а также при различных внешних воздействиях под влиянием электрических полей, давления и др. Электродипольная решётка, исследованная в данной работе, была создана на основе одного из цеолитов — кристалла кордиерита.
При температуре 3 K в трёхмерной решетке нанолокализованных молекул воды учёные обнаружили все характерные признаки сегнетоэлектрического фазового перехода типа «порядок — беспорядок». Кристалл кордиерита. Нам не удалось обнаружить упорядочения молекулярных диполей в данной системе вплоть до самой низкой достигнутой нами температуры 0,3 К. Причиной тому — высокая симметрия гексагональная решётки этого кристалла и квантовомеханические явления, определяющие свойства молекул воды при столь низких температурах, — подчеркнул Михаил Белянчиков.
Ученые испарили воду светом без использования тепла
Взаимодействие между жесткими молекулами наиболее легко вводится путем определения на молекуле участков сайтов , на которые действуют силы. Результирующая сила для двух молекул будет просто равна сумме сил, действующих между всеми парами сайтов. Чтобы рассчитать взаимодействие между парами сайтов достаточно знать расстояние между центрами масс двух молекул и их ориентацию в пространстве. Модель молекулы представлена на рисунке 2. Она основана на четырех сайтах, расположенных в одной плоскости. Два из них - обозначенные как М и О - связаны с ядром кислорода, другие два - Н - с ядрами водорода. Сайт М лежит на оси симметрии молекулы между сайтом О и линией, соединяющей Н сайты.
Рисунок 2. Энергия взаимодействия между двумя молекулами и состоит из двойной суммы по всем сайтам обеих молекул. Члены с индексами и учитывают кулоновское взаимодействие между электрическими зарядами, связанными с сайтами, а также вклады ЛД типа: 2.
Оказалось, что популярные потенциалы плохо подходят для описания динамических свойств водных растворов простых сахаров, таких как сахароза и глюкоза.
Владимир Дещеня, магистрант МФТИ, сотрудник лаборатории многомасштабного моделирования в физике мягкой материи МФТИ, рассказывает: «Для исследования различных физических систем всё чаще применяются методы суперкомпьютерного моделирования. Точность достигаемых результатов при этом напрямую зависит от потенциала межатомного взаимодействия, который получается при помощи квантово-механических расчётов и экспериментов. Опираясь на последние улучшения различных потенциалов, описывающих взаимодействия атомов в жидкостях, мы подобрали подходящий для описания свойств раствора сахарозы в воде. Таким образом мы получили достоверную модель раствора».
Учёные применили свою модель для получения динамических и структурных характеристик водных растворов сахарозы, и результаты оказались близки к экспериментальным данным с достаточно высокой точностью. Одно из ключевых преимуществ модели — то, что она может быть использована для исследования не только растворов сахарозы, но и для других сахаров. Такая широкая область применимости представляет интерес для большого круга задач. Отличительной чертой работы является достоверность модели, позволяющей с приемлемой точностью прогнозировать уравнение состояния и коэффициенты переноса растворов сахаров.
Отдельные молекулы воды распадаются. Атомы кислорода формируют кубическую решетку, но атомы водорода разливаются свободно, протекая, как жидкость, через жесткую клетку кислорода. Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового. Специалисты говорят, что обнаружение суперионного льда оправдывает компьютерные прогнозы, которые могут помочь физикам-материаловедам создавать будущие вещества с индивидуальными свойствами. А обнаружение этого льда требовало сверхбыстрых измерений и точного контроля температуры и давления, что стало возможным лишь в условиях усовершенствования экспериментальных методов. Физик Ливия Бове из Национального центра научных исследований Франции считает, что поскольку молекулы воды распадаются, это не совсем новая фаза воды. Паззлы на льду Физики охотились за суперионным льдом много лет — с тех пор, как примитивная компьютерная симуляция Пьерфранко Демонтиса в 1988 году предсказала, что вода примет эту странную, почти металлическую форму, если вытолкнуть ее за пределы карты известных ледяных фаз. Моделирование показало, что под сильным давлением и теплом молекулы воды разрушаются.
Атомы кислорода заключаются в кубическую решетку, а «водород начинает прыгать из одного положение в кристалле в другое, снова и снова», говорит Милло. Эти прыжки между узлами решетки настолько быстрые, что атомы водорода — которые ионизируются, превращаясь, по сути, в положительно заряженные протоны — ведут себя как жидкость. Появилось предположение, что суперионный лед будет проводить электричество, как металл, и водород будет выполнять роль электронов. Наличие этих свободных атомов водорода также усилит беспорядочность льда, его энтропию. В свою очередь, увеличение энтропии сделает лед стабильнее, чем другие виды ледяных кристаллов , в результате чего его температура плавления вырастет. Представить это все легко, поверить в это — трудно. Первые модели использовали упрощенную физику, продираясь сквозь квантовую природу реальных молекул. Более поздние симуляции добавили больше квантовых эффектов, но все же обошли фактические уравнения, необходимые для описания взаимодействия нескольких квантовых тел, которое слишком трудно рассчитать. Вместо этого они полагались на приближения, что повышало вероятность того, что весь этот сценарий окажется миражом в симуляции.
Эксперименты, между тем, не могли создать необходимое давление и произвести достаточно тепла, чтобы расплавить это прочное вещество. И когда все уже забросили эту затею, планетологи высказали собственные подозрения, что у воды может быть суперионная фаза льда.
Однако при диаметре около 8 ангстрем силы Ван-дер-Ваальса со стороны стенок заставляют молекулы воды собираться в определенные квадратные структуры». Подобный «нанотрубный лед» может пригодиться при создании молекулярных машин или в качестве крошечных капилляров, а также для обеспечения доставки строго определенного количества молекул и растворенных в них веществ для медицинских целей, то есть в виде наномасштабного шприца. Понравился материал? Добавьте Indicator. Ru в «Мои источники» Яндекс.
Ученые США и Швеции наблюдали взаимодействие между молекулами воды на атомном уровне
Но не исключено и присутствие этих электронов в молекуле воды, так как валентные электроны атомов, вступающих в связь, могут соединяться не только с протонами соседнего атома, но и с его валентными электронами. С учетом этого структура молекулы воды может отличаться количеством электронов в ней, и возникает необходимость дать названия этим структурам. Структуру молекулы воды с полным набором электронов назовем первой моделью рис. Существуют возможности формирования молекулы воды не с десятью, а с восемью электронами рис. Такую модель назовем второй. Схема второй разряженной модели молекулы воды Главные различия между первой рис.
Когда спаренные электроны расположены только на одном конце оси атома кислорода, то такую модель назовем третьей рис.
Вязкость воды обусловлена тем, что водородные связи мешают молекулам воды двигаться с разными скоростями. Строение электронного облака молекулы воды таково, что во льду каждая молекула связана четырьмя водородными связями с ближайшими к ней молекулами, координационное число молекул в структуре льда равно четырем. Тенденция каждой молекулы воды к окружению четырьмя ближайшими молекулами и к образованию с ними водородных связей сохраняется и в жидкости, исследования показали, что в воде сохраняется ближняя упорядоченность, свойственная структуре льда. Свойственное среднее расположение ближайших молекул ведет к очень рыхлой, ажурной структуре. Именно с этим связаны аномалии воды.
Почти шарообразная молекула воды имеет заметно выраженную полярность, так как электрические заряды в ней расположены асимметрично. Каждая молекула является миниатюрным диполем с высоким дипольным моментом.
Изображение помещёно в вашу корзину покупателя. Вы можете перейти в корзину для оплаты или продолжить выбор покупок. Перейти в корзину… удалить из корзины Размеры в сантиметрах указаны для справки, и соответствуют печати с разрешением 300 dpi.
Один из инструментов, используемый учёными для исследования свойств растворов, — метод молекулярной динамики. Этот метод с применением суперкомпьютерных ресурсов помогает изучить большое количество соединений, которое в эксперименте проверить затруднительно из-за временных и финансовых затрат. Упрощается и поиск оптимальных веществ по заданным свойствам. Учёные из МФТИ построили достоверную модель, позволяющую с приемлемой точностью прогнозировать уравнение состояния и коэффициенты переноса растворов сахаров. В атомистическом моделировании многое завязано на взаимодействии между атомами системы. Для расчётов жидкостей часто применяются потенциалы межатомного взаимодействия. Создание потенциалов — отдельное искусство: при разработке авторы ориентируются на квантово-механические расчёты, потом проверяют, насколько хорошо модель воспроизводит экспериментальные данные. Оказалось, что популярные потенциалы плохо подходят для описания динамических свойств водных растворов простых сахаров, таких как сахароза и глюкоза. Владимир Дещеня, магистрант МФТИ, сотрудник лаборатории многомасштабного моделирования в физике мягкой материи МФТИ, рассказывает: «Для исследования различных физических систем всё чаще применяются методы суперкомпьютерного моделирования.
Ученые наблюдают за перемещением молекул воды вокруг Луны
Ученые обнаружили, что, в отличие от того, что считалось ранее, ионы не движутся вместе с соседними молекулами растворителя. Комплексы ион-вода колеблются медленно по сравнению с быстро движущимися молекулами воды. Ожидается, что понимание того, как ионы ведут себя в растворах, расширится в результате этого исследования, что будет полезно для накопления энергии и лечения.
Примерно в то же время, когда эта фаза была впервые предсказана, зонд «Вояджер-2» отправился во внешнюю солнечную систему и обнаружил что-то странное в магнитных полях ледяных гигантов Урана и Нептуна.
Поля вокруг других планет Солнечной системы, по-видимому, состоят из строго определенных северного и южного полюса, без особой другой структуры. Похоже на то, как будто в них находятся стержневые магниты, выровненные по осям вращения. Планетологи связывают это с «динамо»: внутренними областями, где проводящие жидкости поднимаются и вращаются по мере вращения планеты, создавая огромные магнитные поля. Напротив, магнитные поля, исходящие от Урана и Нептуна, выглядели более громоздкими и сложными, с более чем двумя полюсами.
Они также не выравнивались близко к вращению своих планет. Один из способов добиться такого состоит в том, чтобы каким-то образом ограничить проводящую жидкость, ответственную за динамо, лишь тонкой внешней оболочкой планеты, вместо того, чтобы позволить ей проникнуть внутрь ядра. Но идея о том, что эти планеты могут иметь твердые ядра, не способные генерировать динамо, не казалась реалистичной. Если бы вы пробурили эти ледяные гиганты, вы бы ожидали сперва столкнуться со слоем ионной воды, которая будет течь, проводить токи и участвовать в динамо.
Кажется, что даже более глубокий материал, даже при более высоких температурах также будет жидкостью, но это наивно. У планетологов есть шутка о том, что недра Урана и Нептуна вообще не могут быть твердыми. Но оказалось, что могут. Взрывной лед Коппари, Милло и их команда собрали кусочки головоломки вместе.
В более раннем эксперименте, опубликованном в феврале 2018 года, физики получили косвенные доказательства существования суперионного льда. Они сжимали каплю воды комнатной температуры между заостренными концами двух ограненных алмазов. Когда давление поднялось примерно до гигапаскаля, что примерно в 10 раз больше, чем на дне Марианской впадины, воды превратилась в тетрагональный кристалл, лед-VI. На 2 гигапаскалях он перешел в лед-VII, более плотную, кубическую форму, прозрачную для невооруженного глаза, которая, как недавно обнаружили ученые, также существует в крошечных карманах внутри природных алмазов.
Такая вода нам привычна. Когда лазер ударил по поверхности алмаза, он испарил материал вверх, по сути отбросив алмаз в противоположном направлении и отправив ударную волну через лед. Команда Милло обнаружила, что сверхсдавленный лед расплавился при температуре порядка 4700 градусов по Цельсию, как и ожидалось для суперионного льда, и что он проводил электричество, благодаря движению заряженных протонов.
Если же заключить ее внутрь другого вещества, то ситуация может измениться. В частности, ученые уже выяснили, что тонкие пленки воды между слоями графена превращаются в лед с необычной для этого соединения квадратной кристаллической решеткой. В новой работе исследователи из Университета Райса США смоделировали поведение воды внутри нанотрубок с использованием фундаментальных законов физики без опоры на дополнительные эмпирические данные и приближения. Оказалось, что благодаря силам Ван-дер-Ваальса между стенками трубок определенного диаметра и молекулами могут появляться необычные конфигурации воды. В результате молекулы выстраиваются в плоскости по четыре штуки, образуя структуру, напоминающую двумерный лед.
А обнаружение этого льда требовало сверхбыстрых измерений и точного контроля температуры и давления, что стало возможным лишь в условиях усовершенствования экспериментальных методов. Физик Ливия Бове из Национального центра научных исследований Франции считает, что поскольку молекулы воды распадаются, это не совсем новая фаза воды. Паззлы на льду Физики охотились за суперионным льдом много лет — с тех пор, как примитивная компьютерная симуляция Пьерфранко Демонтиса в 1988 году предсказала, что вода примет эту странную, почти металлическую форму, если вытолкнуть ее за пределы карты известных ледяных фаз. Моделирование показало, что под сильным давлением и теплом молекулы воды разрушаются. Атомы кислорода заключаются в кубическую решетку, а «водород начинает прыгать из одного положение в кристалле в другое, снова и снова», говорит Милло. Эти прыжки между узлами решетки настолько быстрые, что атомы водорода — которые ионизируются, превращаясь, по сути, в положительно заряженные протоны — ведут себя как жидкость. Появилось предположение, что суперионный лед будет проводить электричество, как металл, и водород будет выполнять роль электронов. Наличие этих свободных атомов водорода также усилит беспорядочность льда, его энтропию. В свою очередь, увеличение энтропии сделает лед стабильнее, чем другие виды ледяных кристаллов , в результате чего его температура плавления вырастет. Представить это все легко, поверить в это — трудно. Первые модели использовали упрощенную физику, продираясь сквозь квантовую природу реальных молекул. Более поздние симуляции добавили больше квантовых эффектов, но все же обошли фактические уравнения, необходимые для описания взаимодействия нескольких квантовых тел, которое слишком трудно рассчитать. Вместо этого они полагались на приближения, что повышало вероятность того, что весь этот сценарий окажется миражом в симуляции. Эксперименты, между тем, не могли создать необходимое давление и произвести достаточно тепла, чтобы расплавить это прочное вещество. И когда все уже забросили эту затею, планетологи высказали собственные подозрения, что у воды может быть суперионная фаза льда. Примерно в то же время, когда эта фаза была впервые предсказана, зонд «Вояджер-2» отправился во внешнюю солнечную систему и обнаружил что-то странное в магнитных полях ледяных гигантов Урана и Нептуна. Поля вокруг других планет Солнечной системы, по-видимому, состоят из строго определенных северного и южного полюса, без особой другой структуры. Похоже на то, как будто в них находятся стержневые магниты, выровненные по осям вращения. Планетологи связывают это с «динамо»: внутренними областями, где проводящие жидкости поднимаются и вращаются по мере вращения планеты, создавая огромные магнитные поля. Напротив, магнитные поля, исходящие от Урана и Нептуна, выглядели более громоздкими и сложными, с более чем двумя полюсами.
"Nature Chemistry": опровергнута описанная в учебниках организация молекул воды
В результате молекулы воды отталкивают молекулы биологического вещества. Учебные модели придется перерисовать после того, как группа исследователей обнаружила, что молекулы воды на поверхности соленой воды организованы иначе, чем считалось ранее. Ученые создали струи воды толщиной в 100 нанометров (примерно в 1000 раз тоньше, чем человеческий волос) и заставили молекулы вибрировать с помощью лазерного луча. Ищите и загружайте самые популярные фото Модель молекулы воды на Freepik Бесплатное коммерческое использование Качественная графика Более 62 миллионов стоковых фото.