Коэффициент Джини позволяет выявить высокие уровни неравенства доходов, которые могут стать причиной нежелательных политических и экономических последствий. На примере коэффициента Джини показано, насколько сильно различается оценка неравенства в зависимости от используемых данных и способов расчета.
Какие страны и почему отличаются высоким показателем джини география реферат
Индекс Джини: коэффициент Джини выраженный в процентах (то есть коэффициент Джини умноженный на 100%). Коэффициент Джини — это статистический показатель, характеризующий степень неравномерности распределения доходов между разными социальными группами. Коэффициент Джини для США — 0,39 — пятый по величине среди 38 стран — участниц ОЭСР. В России, Китае и США коэффициент Джини средний и примерно равен 0,4. В Бразилии и ЮАР самый высокий — 0,6. В Японии, Швеции и Словении низкий — 0,25.
Графическое представление индекса Джини
- Коэффициент Джини | Истории | Что такое коэффициент 7 июня 2021
- Коэффициент Джини | это... Что такое Коэффициент Джини?
- Коэффициент Джини. Из экономики в машинное обучение
- Коэффициент Джини, значение по странам мира и в России
- Неравенство и бедность
Коэффициент Джини: все ли равны?
Можно видеть, что над каждой группой образуется треугольник или четырехугольник — они выделены разными цветами. Рассмотрим, например, вторую группу зеленый четырехугольник. Тогда сумма всех фигур под кривой Лоренца будет равна Эту сумму, как вы помните, нужно вычесть из 0,5, чтобы получить площадь фигуры над кривой И наконец, разделив все это на площадь диагонального треугольника то есть опять же на 0,5 , получим формулу коэффициента Джини: Есть и другие формулы, расчет по одной из них приведен, например, вот тут. Мне кажется, что в ней проще запутаться, а получается ровно то же самое. Чтобы проверить себя, решите задачу. Ответ и решение под спойлерами: Задача Предположим, что в некоторой стране N проживают три группы населения: бедные, средний класс и богатые.
Это следует из доклада Росстата о социально-экономическом положении России. Чем ближе показатель к нулю, тем меньше доходное неравенство. Кандидат экономических наук, доцент кафедры корпоративных финансов и корпоративного управления Финансового университета при Правительстве РФ Ольга Борисова объяснила в беседе с «Новыми Известиями», что у усиления такого неравенства есть несколько причин. Кратковременное сокращение доходов персонала, работающего на начало 2023 г. Значительное их количество закрывало свои точки в России, отправляя персонал в отпуск или переводя на выплаты МРОТ на неопределенный срок, пока не находили фирму-покупателя в стране.
A common example here is retired people who are using their savings: they may have a very low, or even zero, income, but still have a high level of consumption. Conversely, at the top end of the distribution, consumption is typically lower than income. The gap rises with income, with households generally saving a higher share of their income the richer they are.
For both these reasons, the distribution of consumption is generally more equal than the distribution of income. There are a number of other ways in which comparability across surveys can be limited. In collating this survey data the World Bank takes a range of steps to harmonize it where possible, but comparability issues remain.
Коэффициент Джини показывает расстояние между распределениями целевых значений и тех, что показывает модель. Чем меньше значение этого показателя, тем лучше работает прогнозная модель. Коэффициент используется в скоринговых моделях и машинном обучении в таких секторах, как банковское кредитование, страхование, маркетинг. Коэффициент Джини — статистический показатель меры расслоения доходов или богатства общества.
Коэффициент Джини (распределение дохода)
Коэффициент Джини равен площади под линией совершенного равенства (0,5 по определению) минус площадь под кривой Лоренца, деленной на площадь под линией совершенного равенства. В минувшем году в России коэффициент Джини, характеризующий степень неравенства в распределении доходов внутри групп населения, вырос. Коэффициент Джини (0÷1), индекс Джини (0÷100 %) < 0.25 0.25–0.29 0.30–0.34 0.35–0.39 0.40–0.44 0.45–0.49 0.50–0.54 0.55–0.59 ≥ 0.60 нет данных Индекс Джини равен отношению закрашенной площади к площади треугольника под прямой Коэффициент Джини. Коэффициент Джини может принимать значения от нуля до единицы (0÷1), расположенные между идеальной прямой равномерного распределения и кривой Лоренца. Показатель: Коэффициент Джини (распределение дохода), Категории: Демографические и социально-экономические показатели.
Коэффициент джини в России
Обычно они по-разному сочетаются в том или ином виде. Однако, какой бы система распределения ни была, в любом обществе неизбежно неравенство доходов. Проблема неравенства доходов в обществе Рыночная система экономики, существующая на сегодняшний день лишь за малым исключением во всех странах мира, представляет собой механизм, который вознаграждает людей лишь по конечному результату эффективности их деятельности, то есть объективно задает существование неравенства в обществе. И ведь действительно, все люди очень отличаются друг от друга: трудолюбием, активностью, способностями, образованием, владением собственностью, склонностью к накоплению или, напротив, к потреблению. А это значит, что они не могут одинаково работать, значит, не могут одинаково зарабатывать и одинаково жить. Что и является причинами неравенства доходов. И что же тогда? Оставлять за чертой бедности немалую часть населения?
По принципу «пусть выживают, как могут»? Полезно ли ЭТО для общества? Очевидно, что нет. Также очевидно, что без вмешательства государства здесь не обойтись. Ведь именно государство призвано сглаживать неравенство в доходах населения, чтобы не допустить чрезмерного социального расслоения и напряжённости в обществе. Однако чрезмерное вмешательство государства в перераспределение и выравнивание доходов заметно снижает эффективность производства, поскольку растущие налоги подавляют интерес бизнесменов к предпринимательской активности, а всевозрастающая социальная помощь бедным слоям населения снижает у них тягу к поиску работы и энергичному труду.
В первой деревне все жители зарабатывают одинаково — 10 рублей в год, во второй деревне распределение дохода иное: 3 человека зарабатывают по 5 рублей, 4 человека — по 10 рублей и 3 человека по 15 рублей. И в третьей деревне 7 человек получают 1 рубль в год, 1 человек — 10 рублей, 1 человек — 33 рубля и один человек — 50 рублей. Для каждой деревни рассчитаем коэффициент Джини и построим кривую Лоренца. Представим исходные данные по деревням в виде таблицы и сразу рассчитаем и для наглядности: Код на Python import pandas as pd import numpy as np import matplotlib. Ещё один немаловажный момент. Давайте мысленно закрепим концы кривой в точках и и начнем изменять её форму. Вполне очевидно, что площадь фигуры не изменится, но тем самым мы переводим членов общества из «среднего класса» в бедные или богатые при этом не меняя соотношения доходов между классами. Возьмем для примера десять человек со следующим доходом: Теперь к человеку с доходом »20» применим метод Шарикова «Отобрать и поделить! В этом случае коэффициент Джини не изменится и останется равным 0,772, мы просто притянули «закрепленную» кривую Лоренца к оси абсцисс и изменили её форму: Давайте остановимся на ещё одном важном моменте: рассчитывая коэффициент Джини, мы никак не классифицируем людей на бедных и богатых, он никак не зависит от того, кого мы сочтем нищим или олигархом. Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых. Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению. Машинное обучение 1. Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл.
Запишу факторы в отдельный лист для удобства. Однако, в ходе анализа модели было предложено рассмотреть возможность добавления нового фактора — F18. Данный показатель является качественным, поэтому требует преобразования с помощью woe функции. Переобучили модель с учетом нового набора предикторов и посчитали Джини. По результатам видно, что на обучающей выборке качество модели лучше с дополнительным фактором, а на тестовой — без него. Так как решение принимается исходя из большего значения по Gini test, то дополнительный фактор не будет добавлен в модель.
Чем он ближе к нулю, тем более равномерное распределение доходов; чем ближе коэффициент Джини к единице, тем больше доходы концентрируются самой богатой группой граждан. Страны европейского блока, такие как Чехия, Швеция, Норвегия, Дания, Словения, имеют более низкий коэффициент Джини, в пределах 0,2 до 0,3. Сложившаяся сегодня в России модель социальной стратификации характеризует в высшей степени дифференцированное общество. В 1991 году децильный коэффициент составлял 4,5 раза; в 1992 — уже 8,0 раз; в 1994 году наблюдалась его рекордная величина за всё время реформ — 15 раз, в последние годы — в среднем 14 раз. Мировая практика подтверждает, что опасность социальных конфликтов сводится к минимуму, если разрыв между доходами богатых и бедных не превышает 10 раз. Верхний слой российского общества неоднороден, к нему относятся члены правительства, занимающиеся экономикой; министры и их заместители; руководители крупнейших государственных и полугосударственных компаний; руководители новых коммерческих структур; консультанты экономических общественных организаций; ведущие учёные и экономисты; лица, сотрудничающие или принадлежащие к криминальному миру, высококвалифицированные специалисты. Среди богатых людей более половины являются руководителями первого уровня. В дореформенный период высокое служебное положение обеспечивало возможность контроля над собственностью и право на привилегии, а на сегодняшний день — присвоение собственности и доходов. Элита от французского elite — «лучшая, отборная часть». В теории элит выделяют экономическую, политическую и духовную элиты.
Коэффициент Джини в России
- Ваш пароль
- Контактная информация
- Как построить кривую Лоренца
- Реальные зарплаты в первом полугодии выросли на 6,9% - Ведомости
Коэффициент Джини. Формула. Что показывает
Однако взаимосвязь между неравенством доходов и показывают, что с 1820 по 1929 год неравенство несколько увеличивалось, а затем постепенно уменьшалось по мере увеличения ВВП на душу населения. С 1950 по 1970 год неравенство, как правило, уменьшалось, поскольку ВВП на душу населения превышал определенный порог. С 1980 по 2000 год неравенство снизилось с ростом ВВП на душу населения, а затем резко увеличилось. Корреляция между коэффициентами Джини и ВВП на душу населения за три периода времени. Источник: Моатсос и Батен. Недостатки Хотя коэффициент Джини полезен для анализа экономического неравенства, он имеет некоторые недостатки. Точность показателя зависит от достоверных данных о ВВП и доходах.
Теневая экономика и неформальная экономическая деятельность присутствуют в каждой стране. Неформальная экономическая деятельность, как правило, составляет большую часть истинного экономического производства в развивающихся странах и находится на нижнем уровне распределения доходов внутри стран. В обоих случаях это означает, что индекс измеренных доходов Джини будет завышать истинное неравенство доходов. Получить точные данные о богатстве еще труднее из-за популярности налоговых убежищ. Коэффициент Джини Gini coefficient — метрика качества, которая часто используется при оценке предсказательных моделей в задачах бинарной классификации в условиях сильной несбалансированности классов целевой переменной. Именно она широко применяется в задачах банковского кредитования, страхования и целевом маркетинге.
Для полного понимания этой метрики нам для начала необходимо окунуться в экономику и разобраться, для чего она используется там. Экономика Коэффициент Джини изменяется от 0 до 1. Чем больше его значение отклоняется от нуля и приближается к единице, тем в большей степени доходы сконцентрированы в руках отдельных групп населения и тем выше уровень общественного неравенства в государстве, и наоборот. В экономике существует несколько способов рассчитать этот коэффициент, мы остановимся на формуле Брауна предварительно необходимо создать вариационный ряд — отранжировать население по доходам : где — число жителей, — кумулятивная доля населения, — кумулятивная доля дохода для Давайте разберем вышеописанное на игрушечном примере, чтобы интуитивно понять смысл этой статистики. Предположим, есть три деревни, в каждой из которых проживает 10 жителей. В каждой деревне суммарный годовой доход населения 100 рублей.
В первой деревне все жители зарабатывают одинаково — 10 рублей в год, во второй деревне распределение дохода иное: 3 человека зарабатывают по 5 рублей, 4 человека — по 10 рублей и 3 человека по 15 рублей. И в третьей деревне 7 человек получают 1 рубль в год, 1 человек — 10 рублей, 1 человек — 33 рубля и один человек — 50 рублей. Для каждой деревни рассчитаем коэффициент Джини и построим кривую Лоренца. Представим исходные данные по деревням в виде таблицы и сразу рассчитаем и для наглядности: Мы показали, что наряду с алгебраическими методами, одним из способов вычисления коэффициента Джини является геометрический — вычисление доли площади между кривой Лоренца и линией абсолютного равенства доходов от общей площади под прямой абсолютного равенства доходов. Давайте остановимся на ещё одном важном моменте: рассчитывая коэффициент Джини, мы никак не классифицируем людей на бедных и богатых, он никак не зависит от того, кого мы сочтем нищим или олигархом. Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых.
Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению. Машинное обучение 1. Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл. Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца. Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур. И что самое главное — не изменился алгоритм построения кривой.
Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере.
Потребление в целом продолжает поддерживаться опережающей динамикой 01 апр 2024 Ульяновская область подготовила первый выпуск народных облигаций 29 марта 2024 года начнется размещение первого выпуска народных облигаций для физических лиц Ульяновской области.
Чтобы получить бонус, нужно:Зарегистрироваться на Финуслугах;Выбрать вклад;Ввести промокод 22 марта 2024 Как мы работаем 8 марта В праздничный день, 8 марта, Финуслуги работают в обычном режиме — вы можете выбирать любые продукты, отправлять заявки в банки и страховые компании. А теперь информация отдельно по продуктам:Вклады.
Для того чтобы определить степень этого неравенства, экономисты используют различные показатели.
Кривая Лоренца — это графическое изображение функции распределения. В таком представлении она есть изображение функции распределения, в котором аккумулируются доли численности и доходов населения. В прямоугольной системе координат кривая Лоренца является выпуклой вниз и проходит под диагональю единичного квадрата, расположенного в I координатной четверти.
Данная кривая отражает долю дохода, приходящуюся на различные группы населения, сформированные на основании размера дохода, который они получают. На оси абсцисс откладывается доля населения, а на оси ординат - доля доходов в обществе в процентном соотношении. Как видно из графика, в обществе всегда имеет место быть неравенство в распределении доходов, что отражает кривая OABCDE — кривая Лоренца.
Коэффициент Джини Gini coefficient — количественный показатель, отражающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини. Индекс можно рассчитывать по величине заработной платы, по доходу от предпринимательской деятельности, по величине ВВП ВНП на душу населения, валовому доходу домашнего хозяйства и др. Этот коэффициент тесно связан с кривой Лоренца.
Мы можем его рассчитать как отношение площади фигуры, находящейся между линией абсолютного равенства и кривой Лоренца обозначим ее буквой Т , к площади треугольника OFE, образуемого между линиями абсолютного равенства и абсолютного неравенства: где величина G изменяется от нуля до единицы, т. И чем выше равенство в распределении доходов, тем меньше данный коэффициент.
Средний уровень зарплат при этом «не отражает реальной ситуации на рынке», уточнила она. Он происходит в основном за счет отдельных отраслей — таких как ИТ, строительство и недвижимость, логистика, транспорт, розничная торговля, где компании вынуждены «перекупать» специалистов. При этом макроэкономическая стабилизация возможна только при условии, что рост зарплат будет сопровождаться положительной динамикой производительности труда и цифровизацией, уточнила она. В противном случае избыток денежной массы может спровоцировать дальнейший рост инфляции. Среди ключевых причин такого низкого уровня безработицы он выделил демографическую яму 1990-х, рост количества самозанятых, увеличение количества граждан, имеющих неполную занятость. Не стоит сбрасывать со счетов и последствия пандемии, проведение специальной военной операции», — добавил он. Читайте также:В Госдуме предложили разрешить выплату зарплат при блокировке счета Не ждет снижения напряженности на рынке труда и экономист, автор Telegram-канала «Твердые цифры» Родион Латыпов.
Эксперт также отметил, что источником новых работников может стать не только снижение числа безработных, но и увеличение рабочей силы из числа тех, кто раньше ее частью не являлся это не только студенты и пенсионеры.
Вы точно человек?
Доверительный интервал коэффициента Джини определяется на основе стандартного отклонения, которое рассчитывается с использованием значения AUC по следующей формуле: Указанная формула приведена в статье «The Meaning and Use of the Area under a Receiver Operating Characteristic ROC Curve». Кратко поясню смысл приведенной формулы. Второй блок — это вероятность того, что два случайно выбранных аномальных класса будут оцениваться выше, чем случайно выбранный нормальный класс. Третий блок — вероятность того, что один случайно выбранный аномальный класс будет оценен выше, чем два случайно выбранных нормальных класса. Для наглядности визуализирую блоки на графике.
Точность показателя зависит от надежных данных о ВВП и доходах. Теневая экономика и неформальная экономическая деятельность присутствуют в каждой стране. Неформальная экономическая деятельность, как правило, представляет большую часть реального экономического производства в развивающихся странах и находится в нижней части распределения доходов внутри стран. В обоих случаях это означает, что индекс Джини измеренных доходов будет завышать истинное неравенство доходов.
Точные данные о богатстве получить еще труднее из-за популярности налоговых убежищ. Другой недостаток заключается в том, что очень разные распределения доходов могут привести к одинаковым коэффициентам Джини. Поскольку индекс Джини пытается свести двумерную область разрыв между кривой Лоренца и линией равенства к одному числу, он скрывает информацию о «форме» неравенства. В бытовом плане это было бы похоже на описание содержимого фотографии исключительно ее длиной по одному краю или простым средним значением яркости пикселей. Хотя использование кривой Лоренца в качестве дополнения может предоставить больше информации в этом отношении, она также не показывает демографические различия между подгруппами в рамках распределения, такие как распределение доходов по возрасту, расе или социальным группам. В этом смысле понимание демографии может быть важно для понимания того, что представляет собой данный коэффициент Джини. Например, большое количество пенсионеров повышает индекс Джини. В какой стране самый высокий индекс Джини?
Южная Африка с коэффициентом Джини 63,0 в настоящее время признана страной с самым высоким неравенством доходов. World Population Review объясняет это массовое неравенство расовой, гендерной и географической дискриминацией, поскольку белые мужчины и городские рабочие в Южной Африке получают гораздо более высокие зарплаты, чем все остальные.
В компании обещают устранить ошибку. Минздрав России зарегистрировал двухкомпонентную вакцину от коронавируса «Спутник V» с обновленным составом. В 16 российских регионах зафиксировали нехватку вакцин от кори.
Препараты производит компания «Нацимбио». Ее представители сообщили, что в январе 2024 года все регионы получили почти 200 тыс. В Волгограде произошел пожар на складе пиломатериалов. Площадь возгорания составила тысячу квадратных метров. Погибших и пострадавших нет.
Минюст предложил штрафовать коллекторов на 2 млн рублей за навязчивые звонки или письма.
Переобучили модель с учетом нового набора предикторов и посчитали Джини. По результатам видно, что на обучающей выборке качество модели лучше с дополнительным фактором, а на тестовой — без него. Так как решение принимается исходя из большего значения по Gini test, то дополнительный фактор не будет добавлен в модель. Выбор в пользу модели без нового фактора достаточно противоречив, поэтому рассчитаем дополнительную метрику — среднюю абсолютную ошибку. Данный показатель считается, как среднее разностей между фактическими и прогнозными значениями и не противоречит логике задачи. Для этого импортируем необходимую библиотеку и вычислим ошибку для модели с дополнительным фактором и без него.
Индекс Джини и неравенство доходов
Коэффициент Джинни показывает степень отклонения фактического объема распределения доходов населения от линии их равномерного распределения. Коэффициент Джини показывает, насколько фактическое распределение доходов населения отклоняется от показателя их равномерного распределения. Значение коэффициента Джини для этих стран стабильно удерживается в диапазоне 0,25-0,3. Коэффициент Джини, из которого проистекает индекс Джини, используемый для оценки равномерности распределения доходов в экономики, частично базируется на другом методе оценки неравенства в распределении доходов – кривой Лоуренса. Коэффициент Джини равен площади под линией совершенного равенства (0,5 по определению) минус площадь под кривой Лоренца, деленной на площадь под линией совершенного равенства. В России по итогам 2023 года вырос показатель доходного неравенства среди граждан, так называемый "коэффициент Джини".
World Development Indicators
- Income inequality: Gini coefficient - Our World in Data
- В России вырос уровень доходного неравенства | Ямал-Медиа
- Как сравнить результаты моделей с использованием индекса Джини и кривой Лоренца
- Мы в соц сетях