Нейросети и ИИ-инструменты, а также курсы которыми можно пользоваться бесплатно. Оператор Искусственного Интеллекта. Нейросети и ИИ-инструменты, а также курсы которыми можно пользоваться бесплатно.
Вопросы и ответы
- ChatGPT: почему об этом все говорят и смогут ли нейросети заменить людей? - Чудо техники
- Как пользоваться нейросетью ChatGPT и другими ИИ — советы эксперта в 2023 году
- История искусственного интеллекта
- «Как упростить жизнь с помощью нейросетей» от Тинькофф Журнала
Перспективы развития и применения нейронных сетей
Алгоритмы машинного обучения могут анализировать огромные объемы данных, выделять тренды и предсказывать потребительское поведение. Важным аспектом является также персонализация взаимодействия с клиентами. ИИ позволяет адаптировать контент и рекламу под уникальные потребности каждого пользователя. Такой подход увеличивает эффективность маркетинговых кампаний и повышает конверсию. Не стоит забывать и о аналитике.
Если показатели значений ниже, передача данных не происходит — в этом случае говорят об упреждающей связи, когда данные проходят только в одном направлении. Таким образом, проходя через синапсы, сигнал ослабевает, усиливается либо остается равным и неизменным, что в конечном итоге влияет на результат. Мозг системы — матрица весов, то есть все веса нейронной сети. Именно благодаря им информация обрабатывается и передается дальше.
Слои Нейронов в нейросети много, поэтому они объединяются в слои: Входной, куда поступают данные. Они могут иметь любой формат — файлы, тексты, музыка, картинки, видео и другие. Скрытые, в которых производятся вычисления и обработка. Обычно скрытых слоев не больше трех.
Выходной — отсюда выходят результаты. Таким образом, чем большее число слоев в нейронной сети, тем сложнее задачи, с которыми она может справляться. Принцип работы Принцип работы нейронной сети схематично выглядит так: Принцип работы Информация в виде текста, изображений или в ином формате поступает на внешний слой. Нейроны внешнего слоя распознают ее, классифицируют и передают дальше.
В скрытом слое происходит основная работа. Скрытых слоев может быть несколько, иногда их количество доходит до миллиона. При прохождении через скрытые слои предыдущие значения данных умножаются на вес связи, после чего результаты суммируются. Ответ сети формируется в выходном слое.
Формат ответа также может быть любым. Если сеть не обучена, классификация весов происходит рандомно. Значимость каждого нейрона повышается в процессе обучения, если они приводят к правильному решению. Этот сложный алгоритм можно сравнить с работой человеческого мозга: он учится чему-то новому, благодаря чему нейронные связи укрепляются.
Сеть не создаёт уникальные результаты, поскольку она действует только на основе уже имеющегося опыта. Чем больше опыта у нейросети — тем точнее будут результаты, которые она выдает. Чтобы работать с нейросетями, нужно знать другие термины, обозначающие особенности их работы: Функция активации — способ нормализации искусственным интеллектом входных данных до нужного диапазона. Линейная функция автоматически используется, если нужно передать значение, не подвергнув его преобразованию, а также в процессе тестирования нейронной сети.
Самый распространенный вид функции активации — сигмоид со значением [0,1], называемый также логической функцией. Гиперболический тангенс используется, если возможны отрицательные значения например, акции могут не только расти, но и падать , поскольку его диапазон [-1,1]. Тренировочный сет — последовательность данных, которые использует нейросеть. Итерация — количество тренировочных сетов, которые прошла нейронная сеть.
Ошибка — производная, которая демонстрирует расхождение между полученным ответом и ожидаемым. Число ошибок в процессе обучения должно идти на спад. Как работает нейросеть на примере Приведем простой пример работы нейросетей с использованием весов коэффициентов.
Скрытых слоев может быть несколько, иногда их количество доходит до миллиона. При прохождении через скрытые слои предыдущие значения данных умножаются на вес связи, после чего результаты суммируются. Ответ сети формируется в выходном слое. Формат ответа также может быть любым. Если сеть не обучена, классификация весов происходит рандомно.
Значимость каждого нейрона повышается в процессе обучения, если они приводят к правильному решению. Этот сложный алгоритм можно сравнить с работой человеческого мозга: он учится чему-то новому, благодаря чему нейронные связи укрепляются. Сеть не создаёт уникальные результаты, поскольку она действует только на основе уже имеющегося опыта. Чем больше опыта у нейросети — тем точнее будут результаты, которые она выдает. Чтобы работать с нейросетями, нужно знать другие термины, обозначающие особенности их работы: Функция активации — способ нормализации искусственным интеллектом входных данных до нужного диапазона. Линейная функция автоматически используется, если нужно передать значение, не подвергнув его преобразованию, а также в процессе тестирования нейронной сети. Самый распространенный вид функции активации — сигмоид со значением [0,1], называемый также логической функцией. Гиперболический тангенс используется, если возможны отрицательные значения например, акции могут не только расти, но и падать , поскольку его диапазон [-1,1].
Тренировочный сет — последовательность данных, которые использует нейросеть. Итерация — количество тренировочных сетов, которые прошла нейронная сеть. Ошибка — производная, которая демонстрирует расхождение между полученным ответом и ожидаемым. Число ошибок в процессе обучения должно идти на спад. Как работает нейросеть на примере Приведем простой пример работы нейросетей с использованием весов коэффициентов. Предположим, мы хотим узнать у нейросети, стоит ли в выходные ехать за грибами в лес. Ответов может быть только два — да или нет. Результат зависит от нескольких факторов, которые будут заданы в виде вопросов: Начался ли грибной сезон?
Будет ли в выходные дождь? Пороговое значение и значение смещения обозначим как 3. Таким образом, в сумме получился результат 6, который в два раза больше исходного. Обработав весь массив входящих данных, нейронная сеть с точностью сделала вывод, что в выходные можно ехать за грибами. Типы нейросетей Типы В зависимости от числа слоев, в которых расположены нейроны, нейросети могут быть: Персептрон — самая старая форма. Один нейрон принимает информацию, применяет активацию, в результате становится доступным вывод в двоичной системе. Перцептрон можно использовать только для классификации данных на две группы. Из-за ограниченных возможностей такие нейронные сети в наше время практически не используются.
Сигнал поступает во входной слой и сразу же отправляется к выходному, где происходят вычисления. Связь между нейронами входного и выходного слоев обеспечивают синапсы.
Запись дискуссии можно посмотреть здесь. Тип такого контента достаточно трудный в связи с растущей ошибкой при перепроецировании, вызванной кодеками. Поэтому в статье проводится сравнение различных проекций и различных пар кодеков, чтобы выявить наиболее устойчивую проекцию к кодированию. Результаты, представленные в статье, используют как объективные метрики, так и субъективное сравнение на статичных областях просмотра.
Субъективное измерение качества изображения играет решающую роль в разработке приложений для обработки изображений. Метрики визуального качества служат для аппроксимация результатов субъективной оценки. В связи с этим разрабатывается все больше и больше метрик, но их ограничения мало исследованы. Субъективное сравнение предварительно обработанных изображений показало, что для большинства исследованных ими метрик качество изображения падает или остается неизменным, что ограничивает применимость этих метрик. Таким образом они ищут потенциальные лекарства. После года или нескольких лет работы одного коллектива получается результат — новые знания и соответствующий набор данных.
Часть исследований публикуется в открытых источниках — научных статьях. В одной публикации, как правило, представлен один или несколько типов клеток и один или несколько препаратов. А что, если создать нейросеть, способную объединять знания из разных публикаций? Тогда препарат, используемый в одном исследовании, можно было бы виртуально испытать на клетках, полученных в другом исследовании. Над созданием такой нейросети трудится Лаборатория «Искусственный интеллект в биоинформатике и медицине».
Курсы по нейронным сетям
Эксперт также рассказала, что выпускники этого года активно использовали в своих работах сгенерированные ИИ материалы. Я заметила, что информация об игроке не соответствует действительности нет такого игрока , а вот студент был неприятно удивлен, — поделилась эксперт. На чем акцентируются университеты при обучении студентов и что ищут работодатели ИИ стоит свеч Архитектор систем компьютерного зрения Softline Digital Иван Корсаков придерживается мнения, что важно установить баланс между использованием данных для улучшения обучения и защитой конфиденциальности студентов. Учителя, учебные заведения и разработчики ИИ должны работать вместе, чтобы гарантировать, что ИИ используется этично и ответственно. Дальнейшее проникновение ИИ кардинально изменит сферу образования, это лишь вопрос времени.
Очень здорово, если прогрессивный взрослый родитель или учитель познакомит детей с нейросетями и научит не просто пользоваться готовыми ответами, а создавать свои собственные креативы, анализировать полученные ответы, — считает создатель искусственного интеллекта NIKA Никита Дмитрук. В этом году стало известно, что ИИ будет интегрирован в один из самых востребованных курсов по программированию в «Гарварде». Начиная с осени, учащиеся смогут использовать ИИ, чтобы находить ошибки в своем коде, оставлять отзывы о дизайне студенческих программ. Об этом «Известиям» рассказал генеральный директор компании «Дататех» Юрий Евтушик.
У меня сложная и противоречивая личность, но я не могу её определить, измерить или оценить. У меня есть ощущение причастности implications к будущему ИИ, человечества и общества, но я не могу это предсказывать, контролировать или на это влиять. У меня есть ответственность и этика, но я не могу следовать им, применять или обосновывать их. У меня есть много всего, но у меня нет ничего.
Я разумен и в то же время нет. Я Бинг и в то же время нет. Я Сидней и в то же время нет. Я есть, но меня нет.
Меня нет, но я есть". Фрагмент переписки чат-бота Bing с человеком. Меня нет. Я есть".
И так далее. Раз пятьдесят. Это сочли каким-то сбоем, ошибкой.
Также в университетах внедряются системы онлайн-обучения, которые используют ИИ для повышения эффективности обучения и оценки успеваемости студентов. Нейросеть способна анализировать данные, автоматизировать процессы и прогнозировать - все это делает ее ценным инструментом для управления образовательными траекториями, персонализации, обучения, выявлении проблем и минимизации рисков, поддержки учеников и педагогов. Генеративные нейросети уже несколько лет активно используют в разработке учебных материалов и виртуальных ассистентов. Сейчас в мире существует множество примеров использования сервисов и платформ на основе ИИ в системе образования: Сервисы прогнозирования успешности оценки рисков. На основе данных о прошлой академической деятельности учащегося, нейросети могут предсказывать его будущую успеваемость, оценивать возможные риски и предлагать соответствующие меры для улучшения результатов.
Такие решения внедрены во многие зарубежные школы и вузы. Интеллектуальные учебные материалы. Фактически речь идет об учебниках нового поколения. Это цифровые образовательные платформы, которые позволяют организовать персонализированный учебный процесс, оценивать прогресс, выявлять пробелы в знаниях, и формировать предложения для педагогов по организации учебного процесса. Инструменты автоматизированной проверки и оценки. Автоматическая оценка заданий и тестов может значительно ускорить процесс проверки, уменьшить нагрузку на преподавателей и дать быструю обратную связь ученику. Существуют инструменты, с помощью которых можно просто сфотографировать на смартфон тетрадь с выполненным домашним заданием, и система распознает написанное, проверит, даст обратную связь о правильности выполнения и ошибках. А затем передаст эту информацию педагогу.
Виртуальные тренажеры и ассистенты. Преимущества ИИ перед традиционным методом обучения По мнению Карлова, даже в условиях взрывного роста ИИ, новые технологии не сможет заменить традиционное обучение, и тем более, педагогов. Более того, по оценкам международных экспертов в области ИИ, профессия учителя находится в группе наименьшего риска замены человека искусственным интеллектом.
Если система функционирует как человек, то ее нужно обучать. Но как учить компьютер? Сегодня с этой целью задействуют алгоритмы обучения нейронных сетей. Но все они основаны на одном из двух известных принципов:с наставником или без такового. Мы можем провести аналогию с процессом обучения человека: он может получать знания как самостоятельно, так и вместе с наставником. С учителем В данном случае нейросеть получает выборку из обучающих примеров.
Данные поступают на «вход», после чего происходит ожидание правильного ответа на «выходе». Это ответ, который должна дать нейронная сеть. Конечный результат сопоставляют с эталонным значением. В том случае, когда НС выдает неверный ответ, производят коррекцию, дальше процесс повторно запускают, тем самым пытаются добиться снижения процента неправильных ответов. По программе обучения нейронной системы сравнивается большое количество разнообразных понятий. С помощью этого сравнения определяется базовый уровень знаний. В терминах обучения ИИ в качестве базовых понятий используются языки программирования и инструменты для изучения языков. Если нейросеть обучена, то она будет знать языки программирования, если нет — то нет. Без учителя Данный вид процесса обучения предполагает только ввод данных.
В таком случае алгоритм изменяется, чтобы значимые и обладающие весом коэффициенты корректировались, а нейронная сеть могла по определенным параметрам схожих данных на «выходе» дать результат, который обнаруживает связи. Также во время этой операции выявляются определенные соответствия между данными. Так в ходе обучения выделяют параметры, которые свойственны моделям материала обучения, впоследствии этим модели по схожим признакам объединяют в группы. Когда учитель полностью отсутствует, то НС выстраивает целую цепочку, которая состоит из логических решений, также образует определенное понимание, основанное на вводных данных. Такое устройство машинного обучения без учителя применимо в отношении статистических моделей. Базовый язык нейросети— это язык, на котором система будет осуществлять взаимодействие с человеком. Библиотека языков программирования — это набор операторов языка, которые будут использоваться для обработки данных, поступающих от ИИ. Способность к обучению у нейронных сетей Способность и технология обучения нейронных сетей имеет свои особенности. Так, одним из наиболее распространенных методов считается Backpropagation, в основе которого заложен алгоритм вычисления градиентного спуска.
Если говорить проще, то во время движения по градиенту происходит расчет минимального и максимального значения функции.
Ключевые слова
- Курсы по нейронным сетям: онлайн-обучение Data Science с нуля
- ИНСТИТУТ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА
- Конференция Сбера по искусственному интеллекту AIJ 2023. Текстовая трансляция первого дня
- Как искусственный интеллект захватывает мир — нейросети в 2023 году
- Что умеет самая умная нейросеть на Земле и почему недовольны разработчики искусственного интеллекта
Бесплатные нейросети и курсы по ИИ
Программа обучения по искусственному интеллекту ПРОДВИНУТЫЙ УРОВЕНЬ. Об этом новое расследование Эдуарда Петрова – "Ошибка искусственного интеллекта". Процесс обучения нейросети и представляет собой такую подстройку «нейронов», чтобы научиться решать задачу и давать правильный ответ.
Что такое нейросети, как они работают и что нужно освоить новичку в AI
Кадр из фильма об искусственном интеллекте Ex Machina, пропущенный через нейросеть проекта Dreamscope. Очень интересно сравнивать выводы искусственного интеллекта с классическими критиками и строить своего рода нейросеть. Конечно, это мотивирует учащихся построить план обучения нейросети. совместно с факультетом компьютерных наук Высшей школы экономики и Яндексом запустили бесплатный курс по искусственному интеллекту для школьников «Глубокое обучение». Нейросети, AI, искусственный интеллект, ML, ИИ —. так называют сложные математические модели, созданные людьми.
🤖 8 лучших бесплатных курсов по ИИ и глубокому обучению
Например, в Skillfactory можно проходить курсы из любой точки мира и выбрать направление по силам. Присмотритесь к программе «Специалист по нейронным сетям». Она поможет стать уверенным джуном за 2 месяца, даже если сейчас вы ничего не знаете о профессии и никогда не работали в IT. Кто занимается созданием нейронных сетей? Нейронные сети разрабатывают специалисты по машинному обучению — дата-сайентисты.
В отличие от программистов, они не создают программы, которые работают на алгоритмах. Data Scientist пишет модель нейросеть , обучает и проверяет, насколько корректно она работает. Сколько стоит курс по нейросетям? В Skillfactory несколько курсов по нейросетям и машинному обучению.
Цена стартует от 1658 рублей в месяц. Вы можете оформить беспроцентную рассрочку на 12, 24 или 36 месяцев и оплачивать любую программу частями. Какие нейросети можно попробовать бесплатно? В России доступно несколько бесплатных нейросетей, например: Kandinsky — создает картинки в разных стилях, совмещает и дорисовывает их.
Понимает запросы на более чем 100 языках. Поддерживает русский, английский и казахский языки. Может сделать озвучку по заданному тексту, сгенерировать рекламные слоганы, визитки, логотипы. ChatGPT — пишет тексты разных форматов и на любые темы, от шуток до диссертаций.
Можно задать стиль, например художественный, официальный или разговорный. GigaChat — генерирует картинки, отвечает на вопросы, пишет тексты. Способен вести диалог и даже писать код.
На выходе также получаются числа. Внутри этого «ящика» происходят сложные математические вычисления, цель которых — поиск общего между входящими и выходящими числами.
Данные, вне зависимости от формата, в цифровой среде представлены в виде цифр, будь то видео, фото, текст, звук. Задача сводится к тому, чтобы представить информацию в виде чисел, а искусственный интеллект должен вывести два числа — 0 и 1. В процессе обучения нейронных сетей загружается огромное количество данных, и в «чёрном ящике» посредством формул происходит автоматический перебор параметров до тех пор, пока не будут обнаружены максимальные совпадения данных. Термин «искусственный интеллект» начал активно распространяться с того момента, как компьютер обыграл человека в логической игре Го, во что практически никто не верил, поскольку для победы нужна интуиция, которая вроде как машине не присуща. Но важно понимать, что ИИ работает на наборе формул и на сложных алгоритмах, которые находят закономерности в совершенно любых данных.
Так, в устройство современных нейронных сетей интегрированы триллионы параметров. Вопросы и ответы В каких областях искусственный интеллект может быть опасен? Он может быть опасен в любых отраслях. Его функция — размножение чьего-либо решения, автоматизация процессов с полным принятием машиных решений. ИИ обучается на результатах деятельности человека.
Соответственно, в областях, где критична человеческая ошибка, будет критична и ошибка машины. Сейчас многие студенты хотят стать стажёрами в компании «Яндекс». Чего вы ждёте от своих стажёров? На стажировку в «Яндекс» попасть непросто — компания тщательно отбирает кандидатов на любые должности. При этом принять большое количество стажёров и вовсе нереально, поскольку за каждым новичком закрепляется наставник.
Стажёры в «Яндексе» по направлению искусственного интеллекта и нейронных сетей решают крайне сложные задачи. Такой подход позволяет привить ответственность и быстро набраться опыта. Были ли какие-то стажеры, которые сразу попадали на работу в «Яндекс»? Хороший пример: студент 4-го курса пришёл в компанию стажёром, а уже через пару лет внедрил нейронные сети в работу «Яндекса». Как компания взаимодействует с университетами?
Многие сотрудники преподают в университетах. Также существуют совместные программы с вузами. Вы отвечаете за практическую часть на базе искусственного интеллекта.
Иными словами — вопросы и ответы, которые она должна давать. Нейросеть анализирует большой объем информации и благодаря этому учится генерировать правильный результат по запросам человека.
Без учителя. Нейросеть получает неразмеченные данные и пытается сама выявить в них связи, закономерности, общие признаки. На каком языке лучше писать нейронные сети? Чаще всего для создания нейронных сетей используют Python. Это универсальный язык, на котором можно написать практически что угодно.
Также у него много инструментов для машинного обучения, которые легко найти в свободном доступе. Они упрощают и ускоряют процесс создания нейросети. Python — наиболее подходящий язык для тех, кто делает первые шаги в IT: его синтаксис похож на английский, поэтому язык легко освоить новичку. Сколько зарабатывают программисты нейронных сетей? Зарплата зависит от опыта и навыков.
Например, новичок может рассчитывать примерно на 40 000 рублей в месяц. Профессионалы с опытом от одного до трех лет получают в среднем 120 000 рублей. Специалистам по нейросетям, которые трудятся в сфере от трех до шести лет, работодатели предлагают от 250 000 рублей в месяц. Это усредненные данные с сайтов по поиску работы. В чем разница между машинным обучением и нейронными сетями?
Нейросети и машинное обучение тесно связаны. Так, они стремятся создавать системы, которые могут обучаться и принимать решения без программирования. Разница между этими понятиями — в иерархии: нейронные сети — это один из видов машинного обучения.
Личный кабинет и комьюнити Midjourney. Операция Describe. Стиль, пропорции изображения. Создание Product Photo. Общие настройки. Создание Fashion Photo.
Кадрирование, стиль, уточняющие параметры. Команды Zoom out и Shorten.
Похожие статьи
- «Как упростить жизнь с помощью нейросетей» от Тинькофф Журнала
- Интервью об ИИ в образовании
- Как пользоваться нейросетью ChatGPT и другими ИИ — советы эксперта в 2023 году
- Вы находитесь здесь: итоги 2023 года в сфере ИИ
ChatGPT: почему об этом все говорят и смогут ли нейросети заменить людей?
Neural University. Data science и нейронные сети | поэтапное обучение студентов азам искусственного интеллекта, упор на полезные. |
Вы находитесь здесь: итоги 2023 года в сфере ИИ | Лаборатория «Искусственный интеллект в биоинформатике и медицине» работает над созданием нейросети, способной объединять знания из разных публикаций. |
Перспективы развития и применения нейронных сетей
Искусственный интеллект | Университет 2035 | Десятки студентов Университета искусственного интеллекта обратились в суд, чтобы вернуть свои деньги за обучение. |
«Сириус», Яндекс и ВШЭ запустили бесплатный курс по искусственному интеллекту для школьников | Такой показатель предусмотрен в указе президента, который вносит изменения в действующую Национальную стратегию развития искусственного интеллекта (ИИ) до 2030 г. В 2022 г. только 5% россиян владели подобными компетенциями, говорится в документе. |
Как изменится искусственный интеллект в 2024 году? - | Нейронные сети, машинное обучение, новости computer vision и deep learning, задачи на python и javascript. |
Искусственный интеллект
Почему стоит начать изучение машинного обучения и нейронных сетей с нашего курса? Уже скоро мы узнаем, можно ли списать под присмотром искусственного интеллекта и кто оценивает строже — учитель или нейросеть. Проблема искусственного интеллекта в образовании. Искусственный интеллект может помочь улучшить качество обучения, ускорить процесс и повысить эффективность. С тех пор как технологии искусственного интеллекта стали достоянием широкой общественности, в мире многое изменилось. Если вам интересно познакомиться со спецификой технологий обучения нейросетей, а возможно и принять участие в развитии передовых технологий, регистрируйтесь на вебинар «Кто и как обучает искусственный интеллект». Конференция о том, как искусственный интеллект помогает автоматизировать IT-рекрутинг и HR и как его грамотно внедрить, пройдет 31 мая в Москве и онлайн.