Презентация для школьников 5 класса содержит задачи по теме «Обыкновенные дроби». История обыкновенных дробей Подготовила: учитель математики МКОУ «Чебаклинская СОШ» Сиканкина А.И. Научитесь находить дробь от числа и решите с учителем несколько примеров. Смотрите видео на тему «Как Решать Любые Дроби» в TikTok. Правильными дробями называют дроби у которых числитель меньше знаменателя, неправильными — у которых числитель больше или равен знаменателю.
Презентация Дроби, 6 класс
Уже несколько тысячелетий человечество пользуется дробными числами, а вот записывать их удобными десятичными знаками оно додумалось значительно позже. Сегодня мы пользуемся десятичными дробями естественно и свободно. В Западной Европе 16 в. Понадобился светлый ум нидерландского математика Симона Стевина, чтобы привести запись и целых, и дробных чисел в единую систему. По-видимому, толчком создания десятичных дробей послужили составленные им таблицы сложных процентов.
В 1585 г. С начала XVII века начинается интенсивное проникновение десятичных дробей в науку и практику. В Англии в качестве знака, отделяющего целую часть от дробной, была введена точка. Запятая, как и точка, в качестве разделительного знака была предложена в 1617 году математиком Непером.
Развитие промышленности и торговли, науки и техники требовали все более громоздких вычислений, которые с помощью десятичных дробей легче было выполнять. Широкое применение десятичные дроби получили в XIX веке после введения тесно связанной с ними метрической системы мер и весов. Например, в нашей стране в сельском хозяйстве и промышленности десятичные дроби и их частный вид — проценты — применяются намного чаще, чем обыкновенные дроби. Также наши догадки были потвержденны так как В Древнем мире дроби в разных частях света отличались друг от друга.
Эти отличия были связаны с типом работы , которой занималось местное население. Наука,1967г Г.
Лишь значительно позже греки, а затем индусы стали использовать в вычислениях и другие дроби. Слайд 3 Описание слайда: Запись дробей с помощью числителя и знаменателя Запись дробей с помощью числителя и знаменателя появилась в Древней Греции, только греки знаменатель записывали сверху, а числитель — снизу. В привычном для нас виде дроби впервые стали записываться в Древней Индии около 1500 лет назад, но при этом индусы обходились без черты между числителем и знаменателем.
А черта дроби стала употребляться только с 16 века. Слайд 4 Описание слайда: Понятие «дробь» произошло Понятие «дробь» произошло от глаголов «раздроблять», «разбивать», «ломать».
Если требуется один стакан — это литра. Это, несомненно, меньше 1 литра. Два стакана тоже меньше 1. При этом два стакана — это литра.
Дроби 9 вычитание десятичных дробей. Математика правила десятичных дробей. Деление десятичных дробей на натуральное число 5 класс. Деление десятичных дробей примеры.
Математика деление десятичных дробей. Деление десятичных дробей примеры для решения. Сложение и вычитание десятичных дробей. Правила сложения умножения и деления десятичных дробей. Правило вычисление десятичных дробей. Как составить десятичную дробь. Обобщающий урок это какой. Обобщающий урок по литре 4 класс с ответами. Уравнения с десятичными дробями 5 класс. Игра десятичные дроби.
Игра на тему действия с десятичными дробями. Действия с десятинчцми дробям. Десятичные дроби действия с десятичными дробями. Действия с десятичными дробями 5. Деление десятичной дроби на десятичную дробь 6. Деление десятичной дроби на десятичную дробь 6 класс. Деление десятичных дробей на десятичную 5 класс. Деление дробных десятичных чисел 6 класс. Действия с десятичными дробями 6. Действия с десятичными дробями 6 класс.
Действия с десятичными дробями презентация. Действия с десятичными дробями правило. Алгоритм деления десятичных дробей 5 класс. Как делить число на десятичную дробь 6 класс. Правило деления десятичных дробей на десятичную. Деление десятичных дробей 5 кл алгоритм. Действия с десятичными дробями дробями. Правила всех действий с десятичными дробями. Арифметические действия с десятичными. Тема дроби 5 класс.
Десятичная дробь. Деление десятичных дробей 5 класс. Все действия. Действия с десятичными дробями примеры. Десятичные дроби 5 класс примеры. Сравнение десятичных дробей. Десятичные дроби 5 класс презентация. Задачи с десятичными дробями 5 класс. Задачи на тему десятичные дроби. Физминутка 5 класс десятичные дроби.
Вычисления с десятичными дробями 5 класс. Примеры на действия с десятичными дробями 5. Примеры на действия с десятичными дробями 6 класс. ВПР 5 класс действия с десятичными дробями т.
Картинки дроби для презентации
Любое смешанное число можно представить в виде неправильной дроби и наоборот. При сложении дробей числители складываются, а знаменатель остается прежним. Если у уменьшаемого нет дробной части, то можно, заняв единицу у целой части, представить эту единицу в виде неправильной дроби с нужным знаменателем. При умножении дробей числитель умножается на числитель, а знаменатель — на знаменатель. Единственным отличием будет то, что прежде чем перемножить дроби необходимо «перевернуть» дробь, которая стоит справа от знака деления.
Преобразование обыкновенной дроби, используя основное её свойство, то есть деление и числителя, и знаменателя на их общий делитель, отличный от единицы, называют сокращением дроби. Слайд 5 Правильные и неправильные дроби. Дробь, в которой числитель меньше знаменателя, называют правильной дробью.
Дробь, в которой числитель больше знаменателя или равен ему, называют неправильной дробью. Число, состоящее из целой и дробной частей, называют смешанным числом. Неправильную дробь можно записать в виде смешанного числа. Для этого надо: 1. Слайд 6 Приведение обыкновенных дробей к наименьшему общему знаменателю Число, которое может быть знаменателем для всех дробей, называют общим знаменателем. Наименьшим общим знаменателем данных несократимых дробей является наименьшее общее кратное знаменателей этих дробей. Число, на которое нужно умножить и числитель и знаменатель дроби, чтобы привести дроби к общему знаменателю, называют дополнительным множителем.
Чтобы найти дополнительный множитель, надо общий знаменатель разделить на знаменатель данной дроби. Полученное частное является дополнительным множителем этой дроби. Чтобы привести дроби к наименьшему общему знаменателю, надо: 1 найти наименьшее общее кратное знаменателей данных дробей, оно и будет их наименьшим общим знаменателем; 2 разделить наименьший общий знаменатель на знаменатели данных дробей, то есть найти для каждой дроби дополнительный множитель; 3 умножить числитель и знаменатель каждой дроби на её дополнительный множитель. При этом получим дроби с одинаковыми знаменателями. Слайд 7 Сравнивание обыкновенных дробей Если дроби имеют разные знаменатели, то прежде чем их сравнивать, их надо привести к общему знаменателю. Из двух дробей с одинаковыми знаменателями меньше та дробь, числитель которой меньше; больше та дробь, числитель которой больше. На числовом луче меньшая дробь изображается левее большей дроби, большая дробь располагается правее меньшей дроби.
Из двух дробей с одинаковыми числителями неравными нулю меньше та дроь, знаменатель которой больше; больше та дробь, знаменатель которой меньше. Слайд 8 Сложение обыкновенных чисел При сложении дробей с одинаковыми знаменателями числители складывают, а знаменатель оставляют тот же. Если слагаемые дроби имеют разные знаменатели, то надо: 1.
Целевая аудитория: Школьники, студенты, преподаватели, специалисты в различных областях Задачи проекта: 1. Исследовать различные сферы жизни, в которых используются обыкновенные дроби. Проанализировать методы решения задач с использованием дробей. Выявить практическое значение дробей в работе различных профессий. Роли в проекте: Исследователь, математик, преподаватель, специалист в области образования Ресурсы: Информационные ресурсы, материальные и временные ресурсы для проведения исследований, презентационные и образовательные материалы Продукт: Исследование с обзором практического применения обыкновенных дробей, презентация с примерами, методические рекомендации по работе с дробями, видеоуроки.
Введение Описание темы работы, актуальности, целей, задач, тем содержашихся внутри работы. Контент доступен только автору оплаченного проекта Математические основы обыкновенных дробей Раздел посвящен основным математическим понятиям и правилам, лежащим в основе обыкновенных дробей, их свойствам и операциям.
Подписка Получайте новости и уведомления о новых публикациях на нашем портале. Подписаться Перепечатка материалов и использование их в любой форме, в том числе и в электронных СМИ, возможны только с письменного разрешения администрации сайта. При этом ссылка на сайт www. Если вы обнаружили, что на нашем сайте незаконно используются материалы, сообщите администратору — материалы будут удалены.
Презентация к уроку математики в 5 классе "Дроби
Научитесь находить дробь от числа и решите с учителем несколько примеров. Презентация знакомит учащихся с десятичными дробями. Презентация на тему Дроби к уроку по математике.
Презентация по теме "Обыкновенные дроби. 5 класс"
Это свойство называют основным свойством дроби. Преобразование обыкновенной дроби, используя основное её свойство, то есть деление и числителя, и знаменателя на их общий делитель, отличный от единицы, называют сокращением дроби. Слайд 5 Правильные и неправильные дроби. Дробь, в которой числитель меньше знаменателя, называют правильной дробью. Дробь, в которой числитель больше знаменателя или равен ему, называют неправильной дробью.
Число, состоящее из целой и дробной частей, называют смешанным числом. Неправильную дробь можно записать в виде смешанного числа. Для этого надо: 1. Слайд 6 Приведение обыкновенных дробей к наименьшему общему знаменателю Число, которое может быть знаменателем для всех дробей, называют общим знаменателем.
Наименьшим общим знаменателем данных несократимых дробей является наименьшее общее кратное знаменателей этих дробей. Число, на которое нужно умножить и числитель и знаменатель дроби, чтобы привести дроби к общему знаменателю, называют дополнительным множителем. Чтобы найти дополнительный множитель, надо общий знаменатель разделить на знаменатель данной дроби. Полученное частное является дополнительным множителем этой дроби.
Чтобы привести дроби к наименьшему общему знаменателю, надо: 1 найти наименьшее общее кратное знаменателей данных дробей, оно и будет их наименьшим общим знаменателем; 2 разделить наименьший общий знаменатель на знаменатели данных дробей, то есть найти для каждой дроби дополнительный множитель; 3 умножить числитель и знаменатель каждой дроби на её дополнительный множитель. При этом получим дроби с одинаковыми знаменателями. Слайд 7 Сравнивание обыкновенных дробей Если дроби имеют разные знаменатели, то прежде чем их сравнивать, их надо привести к общему знаменателю. Из двух дробей с одинаковыми знаменателями меньше та дробь, числитель которой меньше; больше та дробь, числитель которой больше.
На числовом луче меньшая дробь изображается левее большей дроби, большая дробь располагается правее меньшей дроби. Из двух дробей с одинаковыми числителями неравными нулю меньше та дроь, знаменатель которой больше; больше та дробь, знаменатель которой меньше. Слайд 8 Сложение обыкновенных чисел При сложении дробей с одинаковыми знаменателями числители складывают, а знаменатель оставляют тот же.
Слайд 14 Интересная система дробей была в Древнем Риме. Она основывалась на делении на 12 долей единицы веса, которая называлась асс.
Двенадцатую долю асса называли унцией. А путь, время и другие величины сравнивали с наглядной вещью - весом. Например, римлянин мог сказать, что он прошел семь унций пути или прочел пять унций книги. При этом, конечно, речь шла не о взвешивании пути или книги. А для дробей, получающихся сокращением дробей со знаменателем 12 или раздроблением двенадцатых долей на более мелкие, были особые названия.
Всего применялось 18 различных названий дробей. Чтобы работать с дробями, надо было помнить для этих дробей таблицу сложения и таблицу умножения. Для облегчения работы составлялись специальные таблицы, некоторые из которых дошли до нас. При делении 1001 асса на 100 один римский математик сначала получил 10 ассов, потом раздробил асе на унции и т. Но от остатка он не избавился.
Чтобы не иметь дела с такими вычислениями, римляне стали использовать проценты. Так как слова "на сто" звучали по-латыни "про центум", то сотую часть и стали называть процентом. Слайд 17 Дроби в других государствах древности В русских рукописных арифметиках XVII века дроби называли долями, позднее «ломаными числами».
Если вы обнаружили, что на нашем сайте незаконно используются материалы, сообщите администратору — материалы будут удалены. Мнение редакции может не совпадать с точкой зрения автора. Учредитель: Ковалев Денис Сергеевич. Главный редактор: Ковалев Д.
Чтобы вычесть дроби с разными знаменателями, надо: 1. Сложить полученные результаты. Слайд 12 Взаимное вычитание натуральных чисел, правильных дробей и смешанных чисел Чтобы вычесть из натурального числа смешанное число, надо написать натуральное число в виде смешанного числа и вычесть из одного смешанного числа второе. При вычитании из смешанного числа натурального числа надо из целой части смешанного числа вычесть натуральное число и к полученному числу приписать дробную часть смешанного числа. Если числитель смешанного числа меньше числителя вычитаемой дроби, то, уменьшив целую часть смешанного числа на единицу, надо превратить его в смешанное число, дробная часть которого является неправильной дробью, и далее выполнить вычитание. Слайд 13 Умножение дробей. Произведение двух дробей есть дробь, числитель которой равен произведению числителей данных дробей, а знаменатель — произведению их знаменателей. Чтобы умножить дробь на натуральное число, надо натуральное число представить в виде дроби со знаменателем 1 и выполнить умножение дробей. Чтобы умножить дробь н натуральное число, надо её числитель умножить на это число, а знаменатель оставить без изменения. Два числа, произведение которых равно 1, называют взаимно обратными числами. Слайд 14 Переместительное, сочетательное и распределительное свойства умножения дробей. От перестановки множителей произведение не меняется. Чтобы произведение двух дробей умножить на третью дробь, можно первую дробь умножить на произведение второй и третьей дроби или произведение первой и третьей дробей умножить на вторую дробь. Чтобы умножить сумму разность дробей на дробь, можно умножить на эту дробь каждое слагаемое и сложить вычесть полученное произведение. Чтобы умножить смешанное число на натуральное число, можно: умножить целую часть на натуральное число; умножить дробную часть на натуральное число; сложить полученные результаты. Слайд 15 Чтобы найти дробь от числа, нужно умножить число на эту дробь. Слайд 16 Деление обыкновенных дробей Чтобы разделить одну дробь на другую, надо делимое умножить на дробь, обратную делителю. Если среди данных чисел имеются смешанные числа, то нужно сначала смешанное число превратить в неправильную дробь, только потом нужно выполнить деление. Если делимое и делитель — натуральное число, то нужно натуральное число записать в виде дроби со знаменателем 1, затем приступить к выполнению деления. Слайд 17 Нахождение числа по его дроби Чтобы найти число по данному значению его дроби, надо это значение разделить на дробь.
Действия с десятичными дробями 5 класс презентация
Скачать презентацию на тему: "Дроби" с количеством слайдов в размере 6 страниц. Презентация разработана учителями математики: Садиковой Н.А.(ГБОУ СОШ № 420). ВСЁ по обыкновенным дробям. 9.9.17 Сложение и вычитание смешанных чисел ЧТОБЫ СЛОЖИТЬ (или вычесть) СМЕШАННЫЕ ЧИСЛА, НАДО: ПРИВЕСТИ ДРОБНЫЕ ЧАСТИ ЭТИХ. Cкачать презентацию: Презентация на тему "Одежда" 7 https. Теоретические уроки, тесты и задания по предмету Обыкновенные дроби, 5 класс, Математика. Вы можете ознакомиться и скачать презентацию на тему Обыкновенные дроби.
Презентация «Все действия с обыкновенными дробями»
Презентация к уроку "Понятие о дроби. Обыкновенная дробь" - математика, презентации | Задание 6. Подготовьте электронную презентацию по теме «Десятичные дроби и действия с ними». |
Презентация по математике на тему "Дроби вокруг нас" ( 5 класс, математика) | Презентация для школьников 5 класса содержит задачи по теме «Обыкновенные дроби». |
Презентация: Обыкновенные дроби | Цель: Обобщить знания по теме «Действия с обыкновенными дробями». Закрепить и усовершенствовать навыки выполнения действий с обыкновенными дробями. |
Дроби презентация | Учить математики представляет презентацию для поведения открытого урока в шестом классе на тему «Арифметические действия с дробями». |
Понятие обыкновенной дроби. Видеоурок 20. Математика 5 класс | Тренажёр для отработки навыков деления десятичной дроби на натуральное число содержит материал для закрепления умений делить десятичную дробь на натуральное число. |
Презентация к уроку "Понятие о дроби. Обыкновенная дробь"
Презентация для внеурочного занятия по математике в 6 – 7 классах по теме «Аликвотные дроби». презентацию по теме Закрепление по теме Дроби. (Математика 4 класс, автор Петерсон Л.Г.) построила в виде испытаний, где закрепляются и повторяются знания в игровой. Презентация про дроби обыкновенные дроби. Публикую презентацию для 6 класса (урок № 2) по теме "Повторение. Обыкновенные дроби". Презентация к уроку поможет актуализировать знания учащихся по теме "Отношения и пропорции", поможет составить алгоритм для решения задач с прямой и обратной.
Дроби презентация в формате PowerPoint - скачать бесплатно
Презентация «Основные понятия дроби» рассказывает о самых важных определениях дроби, учит находить значения и область допустимых значений для дроби. Презентация для школьников 5 класса содержит задачи по теме «Обыкновенные дроби». Сформировать понятие доли, обыкновенная дробь, числитель, знаменатель обыкновенной дроби, действия с дробями, применять знания о них в повседневных жизненны. Числитель стоит ___ чертой дроби и означает, сколько равных частей _____ от целого взяли.