GINI — индекс Джини. >100k — доля взрослых (в процентах), состояние которых не менее $100 тыс. страна.
Коэффициент Джини
Страны с неравномерным распределением богатства | Latest numbers for economic inequality, which is the difference in how assets, wealth, or income are distributed among individuals and/or populations. It is also described as the gap between rich and poor, income inequality, wealth disparity, wealth and income differences, or the wealth gap. |
Как оценивается социальное неравенство | Индекс Джини высчитывается от 0 до 1. Чем выше. |
Yahoo Finance
The two concepts are nevertheless closely related: the income of a household equals their consumption plus any saving, or minus any borrowing or spending out of savings. One important difference is that, while zero consumption is not a feasible value — people must consume something to survive — a zero income is a feasible value. A common example here is retired people who are using their savings: they may have a very low, or even zero, income, but still have a high level of consumption. Conversely, at the top end of the distribution, consumption is typically lower than income. The gap rises with income, with households generally saving a higher share of their income the richer they are. For both these reasons, the distribution of consumption is generally more equal than the distribution of income.
The Gini coefficient, a measure used by economists, offers a numerical representation of this distribution. The Gini coefficient, thus, forms a comprehensive tool to understand, compare and consequently challenge economic disparities globally. As per the latest data, the United States had a Gini coefficient of 41. Key findings from the data include: South Africa had the highest Gini coefficient at 63. Countries in Sub-Saharan Africa and South America, such as Brazil and Botswana, feature prominently among the nations with the highest wealth and income inequality.
This country-level sustainability context provided by the GGEI will become increasingly important in the 2020s, for three main reasons: opportunity, risk, and activism: Opportunity Markets with rapid progress in key sectors or technologies around sustainability are often prospective investment targets. The GGEI emphasis on measuring progress across our 18 indicators illuminates for investors where this momentum and investment opportunity is. Risk Countries with sluggish progress towards global sustainability targets may face abrupt regulation from domestic policymakers. The GGEI emphasis on measuring the distance of each country from global targets illuminates where this risk may be highest and how to prepare for it. Activism Reputational risk to market actors will continue to expand in proportion to the associated climate risks of investment and business activity. The GGEI framework provides tracking and insight for our clients to stay one step ahead of these developments. These data subscriptions are fully customizable : some partners are only interested in the full GGEI data while others are more interested in receiving an interpretation of the results for countries, regions, or topics central to their inquiry. Our goal is always to create partnerships and GGEI datasets tailored to these unique needs. Given our experience creating the GGEI and advising other organizations on index development, we also help clients create bespoke sustainability measurement frameworks. These engagements empower clients to define the key topics driving their sustainability strategy, locate the right data sets to measure them, and integrate them into an appropriate measurement framework for the desired target audience. In addition to supporting clients on the structure and methodology, we can also advise on data selection and strategies for addressing the ever-present challenge of missing data or lack of availability. He is a frequent speaker at conferences, participant in private workshops, and leader of online and live meetings globally.
Для её построения необходимо иметь частотное распределение единиц исследуемой совокупности и взаимосвязанное с ним частотное распределение изучаемого признака. Так, например, в практике статистики при изучении дифференциации населения по доходам выделяют пять групп по степени их увеличения: первая — с наименьшими доходами, пятая — с наибольшими. Кривая Лоренца строится в прямоугольной системе координат. На оси абсцисс откладываются накопленные частоты объёма совокупности, а на оси ординат — накопленные частоты объёма признака.
Gini Coefficient
Получить точные данные о богатстве еще труднее из-за популярности налоговых убежищ. Коэффициент Джини Gini coefficient — метрика качества, которая часто используется при оценке предсказательных моделей в задачах бинарной классификации в условиях сильной несбалансированности классов целевой переменной. Именно она широко применяется в задачах банковского кредитования, страхования и целевом маркетинге. Для полного понимания этой метрики нам для начала необходимо окунуться в экономику и разобраться, для чего она используется там. Экономика Коэффициент Джини изменяется от 0 до 1. Чем больше его значение отклоняется от нуля и приближается к единице, тем в большей степени доходы сконцентрированы в руках отдельных групп населения и тем выше уровень общественного неравенства в государстве, и наоборот. В экономике существует несколько способов рассчитать этот коэффициент, мы остановимся на формуле Брауна предварительно необходимо создать вариационный ряд — отранжировать население по доходам : где — число жителей, — кумулятивная доля населения, — кумулятивная доля дохода для Давайте разберем вышеописанное на игрушечном примере, чтобы интуитивно понять смысл этой статистики. Предположим, есть три деревни, в каждой из которых проживает 10 жителей. В каждой деревне суммарный годовой доход населения 100 рублей.
В первой деревне все жители зарабатывают одинаково — 10 рублей в год, во второй деревне распределение дохода иное: 3 человека зарабатывают по 5 рублей, 4 человека — по 10 рублей и 3 человека по 15 рублей. И в третьей деревне 7 человек получают 1 рубль в год, 1 человек — 10 рублей, 1 человек — 33 рубля и один человек — 50 рублей. Для каждой деревни рассчитаем коэффициент Джини и построим кривую Лоренца. Представим исходные данные по деревням в виде таблицы и сразу рассчитаем и для наглядности: Мы показали, что наряду с алгебраическими методами, одним из способов вычисления коэффициента Джини является геометрический — вычисление доли площади между кривой Лоренца и линией абсолютного равенства доходов от общей площади под прямой абсолютного равенства доходов. Давайте остановимся на ещё одном важном моменте: рассчитывая коэффициент Джини, мы никак не классифицируем людей на бедных и богатых, он никак не зависит от того, кого мы сочтем нищим или олигархом. Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых. Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению. Машинное обучение 1.
Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл. Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца. Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур. И что самое главное — не изменился алгоритм построения кривой. Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Предположим, мы решаем задачу бинарной классификации для 15 объектов и у нас следующее распределение классов: Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче.
Площадь фигуры для идеального алгоритма равна: 2. Алгебраическое представление. Как рассчитать эту метрику? Она не равна своему родственнику из экономики. Известно, что коэффициент можно вычислить по следующей формуле: Прекрасно видно, что из графического представления метрик связь уловить невозможно, поэтому докажем равенство алгебраически. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем. Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate.
Предлагаю вспомнить, как они рассчитываются. Допустим, необходимо спрогнозировать кредитную благонадежность заемщика. Благонадежный заемщик будет относиться к классу 1, неблагонадежный — к классу 0. Тогда существует четыре вида исхода прогнозирования: 1 True Positives - благонадежный заемщик спрогнозирован верно; 2 False Positives - благонадежный заемщик спрогнозирован неверно; 3 True Negatives — неблагонадежный заемщик спрогнозирован верно; 4 False Negatives — неблагонадежный заемщик спрогнозирован неверно. При этом, чем лучше один показатель, тем хуже другой.
Поэтому вводится порог срабатывания, выше которого прогнозные значения будут относиться к классу 1, ниже — к классу 0 соответственно. Но для бизнеса мало посчитать показатели. Необходимо принимать решения, математически и статистически обоснованные. То есть, строится график отсортированных прогнозных target-значений рис. Затем рассчитывается площадь под кривой — площадь фигуры под линией прогнозных значений.
Так мы узнаем качество работы нашего алгоритма. Данный показатель прост в расчёте и легко интерпретируем, а значит популярен и часто используется в моделях банковского скоринга.
Как страны мира справляются с неравенством Страны принимают разные подходы к борьбе с неравенством, в зависимости от своих социально-экономических и политических условий. Некоторые страны активно осуществляют политику социальной защиты, направленную на уменьшение неравенства и повышение благополучия населения. Другие страны сосредотачивают свои усилия на развитии экономического роста, считая его основным фактором для снижения неравенства. Однако независимо от конкретных методов и подходов, важно помнить о необходимости поддержки всех слоев населения и создания равных возможностей для всех. Организации по всему миру также играют важную роль в борьбе с неравенством путем проведения исследований, разработки программ социальной помощи и активного воздействия на формирование политики.
Как распределена неравенность по странам мира Распределение неравенства может зависеть от многих факторов, включая экономическую политику государства, социальные и культурные причины, уровень развития и другие факторы. Поэтому место страны в рейтинге по индексу Джини может служить показателем того, насколько равномерным и справедливым является распределение дохода в этой стране. Международные организации, такие как Всемирный банк и Организация экономического сотрудничества и развития, регулярно публикуют данные о распределении неравенства по странам мира. Это позволяет проводить сравнительный анализ и вычислять индекс Джини для различных стран и регионов.
В развитых странах с крупной прослойкой среднего класса экономическое неравенство, как правило, ниже. Такая ситуация характерна, например, для Европы.
Ниже представлено распределение доходов и богатства между слоями населения в евро по паритету покупательной способности ППС. Паритет означает, что данные между странами соотносятся, отталкиваясь от цены одинаковой потребительской корзины. Более подробно о ППС я писал в статье про индекс бигмака.
Какое социальное неравенство и расслоение в России и мире
See the complete list of world stock indexes with points and percentage change, volume, intraday highs and lows, 52 week range, and day charts. Индекс Джини высчитывается от 0 до 1. Чем выше. Индекс Джини численно равен отношению площади фигуры, образованной кривой Лоренца и кривой равенства (залитая область на рис.), к площади треугольника ABC. About In the News Newsletter API. Индекс Джини широко используется в статистике, чтобы показать экономическое неравенство по странам и регионам. Индекс Джини, равный 0%, выражает полное равенство, а индекс 100% выражает максимальное неравенство.
Позорный скачок: Россия «впереди планеты всей»
Human Development Insights | Ниже этого уровня индекс Джини в России был только в 2005 году (0,409). |
Статистика:Коэффициент Джини в России — Русский эксперт | Коэффициент Джини (индекс концентрации доходов, индекс неравенства). |
Коэффициент Джини — индекс концентрации доходов, справедливости и неравенства
If the Gini coefficient, also known as the GINI index or Gini ratio, is high, the difference between the wealthiest and poorest individuals in a nation. Индекс Джини • Отражает степень неравномерности распределения статей в журнале. Индекс Джини Хорошим показателем считается Индекс Джини, не превышающий 35%.
Размер богатства и имущественного неравенства по странам мира — UBS, 2023
Таким образом, когда индекс Джини равен 0, это означает полное равенство, в то время как показатель 100 означает абсолютное неравенство. Коэффициент Джини индекс.
В бытовом плане это было бы похоже на описание содержимого фотографии исключительно ее длиной по одному краю или простым средним значением яркости пикселей. Хотя использование кривой Лоренца в качестве дополнения может предоставить больше информации в этом отношении, она также не показывает демографические различия между подгруппами в рамках распределения, такие как распределение доходов по возрасту, расе или социальным группам. В этом смысле понимание демографии может быть важно для понимания того, что представляет собой данный коэффициент Джини. Например, большое количество пенсионеров повышает индекс Джини.
В какой стране самый высокий индекс Джини? Южная Африка с коэффициентом Джини 63,0 в настоящее время признана страной с самым высоким неравенством доходов. World Population Review объясняет это массовое неравенство расовой, гендерной и географической дискриминацией, поскольку белые мужчины и городские рабочие в Южной Африке получают гораздо более высокие зарплаты, чем все остальные. Что означает индекс Джини, равный 50? Джини в 50 — это половина пути, и в целом его можно воспринимать как место, где доходы распределяются несправедливо: только в 15 странах мира индекс Джини составляет 50 и более.
Коэффициент Джини в США высокий или низкий? В США коэффициент Джини равен 41,1, что является высоким показателем для такой развитой экономики. Экономисты возлагают вину за растущее неравенство доходов в США на такие факторы, как технологические изменения, глобализация, упадок профсоюзов и снижение минимальной заработной платы. Особенности Индекс Джини — это показатель распределения доходов среди населения. Из-за данных и других ограничений индекс Джини может завышать неравенство доходов и скрывать важную информацию о распределении доходов.
Коэффициент Джини может принимать значения от нуля до единицы 0-1 , расположенные между идеальной прямой равномерного распределения и кривой Лоренца. Коэффициент Джини можно определить как макроэкономический показатель, характеризующий дифференциацию денежных доходов населения в виде степени отклонения фактического распределения доходов от абсолютно равного их распределения между жителями страны.
Страна К: Десятое место в рейтинге принадлежит стране К. Здесь проблемы с неравенством обусловлены высокой концентрацией богатства в руках узкого круга людей, а также ограниченными возможностями для социальной защиты и развития. Топ-10 стран с самым высоким уровнем неравенства Индекс Джини, измеряющий уровень неравенства в обществе, помогает определить, насколько справедлива распределение доходов и богатства в различных странах мира. В 2023 году следующие страны заняли первые позиции в рейтинге, показывая высокий уровень неравенства: Сьерра-Леоне: с индексом Джини 63. Нарастающая бедность и недостаток доступа к образованию, здравоохранению и другим основным услугам являются главными факторами, способствующими неравенству в этой стране. Лесото: индекс Джини 62. Неравномерное распределение доходов, недоступность образования и высокая степень безработицы являются основными причинами неравенства в этой стране. Намибия: со значением индекса Джини 61.
Здесь наблюдается широкая пропасть между богатыми и бедными слоями населения, а также недостаток доступа к услугам здравоохранения и образованию. Бразилия: с индексом Джини 59. Высокая неравенство в доходах и бедность в некоторых регионах страны являются основными проблемами, способствующими неравенству. Ботсвана: со значением индекса Джини 59. Несмотря на высокий уровень экономического развития, страна страдает от неравенства в распределении богатства и доступности основных услуг. Нигерия: с индексом Джини 58. Низкий уровень экономического развития, высокая степень бедности и несправедливое распределение ресурсов являются главными факторами неравенства в этой стране. Суринам: индекс Джини 58. Недостаток доступа к образованию и здравоохранению, а также проблемы с неравномерным распределением богатства способствуют неравенству в этой стране. Эсватини: с индексом Джини 57.
Уровень жизни. Динамические ряды
Пенза А.С. 8 (495) 568-00-42 (доб. 99729). ca_PenzaAS@ Коэффициент Джини (индекс концентрации доходов) по субъектам Российской Федерации. Ещё в 1980-м году индекс Джини в Китае был около 30. В Германии «индекс Джини» растёт с 1998 года, хотя в 2000-х годах он немного снизился, однако с 2013 года вернулся к устойчивому росту, в то же время не превысив 32% по итогам 2016 года, что в 1,29 раз меньше, чем в США. Оптимальным показателем индекса Джини для стран является значение от 0,25 до 0,26. В Германии «индекс Джини» растёт с 1998 года, хотя в 2000-х годах он немного снизился, однако с 2013 года вернулся к устойчивому росту, в то же время не превысив 32% по итогам 2016 года, что в 1,29 раз меньше, чем в США.
Коэффициент Джини. Формула. Что показывает
Чем выше значение индекса Джини — тем выше уровень социального неравенства в государстве. Коэффициент Джини показателен не только в абсолютном значении, но и в динамике: если он растет — уровень социального неравенства растет, если падает — соответственно, падает. Коэффициент Джини по странам мира и в России На следующей инфографике представлены значения индекса Джини, расчитанные аналитиками Всемирного банка по состоянию на 2023 год, а также десятка стран с наибольшим значением коэффициента.
There are a number of other ways in which comparability across surveys can be limited. In collating this survey data the World Bank takes a range of steps to harmonize it where possible, but comparability issues remain. The PIP Methodology Handbook provides a good summary of the comparability and data quality issues affecting this data and how it tries to address them. The surveys underlying the data within a given spell for a particular country are considered by World Bank researchers to be more comparable.
The breaks between these comparable spells are shown in the chart below for the share of population living in extreme poverty. You can select to see these breaks for any indicator in our Data Explorer of the World Bank data.
По РФ: в 2018 г. По данным Росстата на 2019 г. Оценка уровня жизни производится также по потребительским тратам, а также по тратам на продукты питания. Между тем состоятельные граждане тратят больше на питание, чем бедные, раз в пять. Но чем меньше денег идет на питание, тем больше остается денег на остальные нужды, на образование, открытие бизнеса и др. По данным Росстата потребительские траты богатых выше в 3 раза, чем у средних слоев населения. А у бедных — в 5 раз меньше, чем у средних. Естественно, из расчета на одного человека.
Далее, если рассматривать эти общие расходы по-отдельности, то получится следующее. Богатые, по сравнению с бедными, тратят больше в 5 раз на питание, в 12 раз — на одежду, 20 раз — на медицину. Возможно ли из бедного превратится в богатого Если исходить из статистики, то можно заметить некоторые неутешительные тенденции. Бедные становятся еще беднее, им труднее зарабатывать и приумножать свой капитал, чем богатым. Между тем количество миллиардеров растет и это тоже факт. У богатых денег больше, соответственно, и возможностей больше. Они увеличивают свое состояние быстрее. Поэтому даже при равных условиях в более выгодном положении остается тот, у кого средств оказалось больше.
Он не беднеет, но и богаче тоже не становится. При этом не стоит забывать, что ему по жизни намного проще, чем тем же Васе и Пете. Ему легче, чем им начать откладывать деньги, инвестировать и получать процент с собственных доходов. Однако тут есть один нюанс. Несмотря на то, что начать инвестировать Коле проще, чем представителям низшего класса, ему также легче, чем Олегу, а тем более Саше, потерять всё и попасть в ситуацию, в которой находятся Вася и Петя. В случае с богатыми и бедными ключевую роль играет размер капитала и наличие долгов. Чтобы человек не делал, финансовое положение определяет его стратегию поведения и диктует свои условия. В случае с середняками, которые живут от зарплаты до зарплаты, все зависит от их намерений. Индекс Джини Это главный коэффициент, который отражает неравенство. Его можно применить к любой группе людей, начиная с семьи, компании друзей, города и заканчивая целой страной или всем миром. Индекс был придуман в 1912 году в Италии демографом и статистиком Коррадо Джини, в честь которого и получил свое название. Коэффициент строится на основе Кривой Лоренца и представляет собой производную от площади построенной фигуры. В свою очередь кривая отражает график распределения доходов в обществе. Её можно построить следующим образом: Нарисуйте ось координат. На оси Х отмерьте процент населения. Обычно эту шкалу делят на 5 частей, которые называются квинтилями. На оси Y отобразите размер доходов. Эти значения также лучше разделить на 5 частей для удобства подсчетов и построения фигуры. Точками отметьте процент от общего дохода, который приходится на каждого квинтиля. Процент населения откладывайте по оси Х, а размер дохода по оси Y. Соедините точки и постройте линию.