Применение белка теплового шока вместе с определенным антигеном для лечения злокачественных опухолей и инфекционных заболеваний также описано в публикации РСТ WO97/06821, датированной 27 февраля 1997. Открытие белков теплового шока в начале 1960-х годов объясняет на молекулярно-биологическом уровне, почему люди обратились к термальной терапии, чтобы очистить тело, очистить разум и найти связь с более высокой силой во времени и странах (1). Стимулируя выработку белков теплового шока, этот метод формирует устойчивость нейронов к стрессу и в свою очередь стимулирует клетки-предшественники, которые восполняют и замещают погибшие нервные клетки. Наличие антител класса G к белку теплового шока Chlamydia trachomatis (cHSP60) характеризует персистирующее течение хламидиоза.
Что такое белки теплового шока
хламидии Ig A и IgG отрицательные,а белок теплового шока хламидии пришел ПОЛОЖИТЕЛЬНЫЙ!!!!Как так. Вопрос гинекологу: Здравствуйте, пол года назад были обнаружены белки теплового шока к хламидиям, КП 11,69, мазок чистый, иные антитела были отрицательные. Шаперонная функция белков теплового шока осуществляется не только в процессе биогенеза других белков, но и при иммунном ответе на антигены.
Как российские ученые работали над новым методом лечения болезни Альцгеймера?
Причиной многих проблем являются нарушения фундаментального процесса фолдинга белков. Нарушения работы «ОТК», представленного белками теплового шока и шаперонами, приводят к появлению и накоплению ошибок. Эти ошибки нарушают работу молекулярных механизмов, что может приводить к развитию различных заболеваний. Возникновение таких ошибок в нейронах чревато поистине ужасными последствиями, проявляющимися развитием таких нейродегенеративных заболеваний, как рассеянный склероз, а также болезней Гентингтона, Паркинсона и Альцгеймера. Открытая в 1962 году Феруччио Ритосса Ferruccio Ritossa реакция теплового шока описана как индуцированное повышением температуры изменение организации плотно упакованных хромосом в клетках слюнных желез мух-дрозофил, ведущее к образованию так называемых «вздутий». Такие вздутия, выглядящие под микроскопом как хлопковые шарики, зажатые между плотно упакованными участками хромосом, появляются также при воздействии динитрофенола, этанола и солей салициловой кислоты. Оказалось, что вздутия хромосом являются новыми регионами транскрипции, начинающими синтез новых информационных РНК в течение нескольких минут после своего возникновения. Белковые продукты этого процесса в настоящее время широко известны как белки теплового шока, наиболее изученными из которых являются Hsp90 и Hsp70. Белки этого семейства регулируют сворачивание аминокислотных цепочек и предотвращают появление неправильно сформированных белковых молекул в клетках всех живых организмов. В конце 1970-х и в начале 1980-х годов с помощью оригинального приема клеточной биохимии, позволяющего увеличить количество информационных РНК, кодирующих последовательности соответствующих белков, ученым удалось клонировать первые гены теплового шока мухи-дрозофилы. На тот момент специалисты придерживались мнения, что реакция теплового шока характерна исключительно для организма дрозофил.
На этом этапе Ричард Моримото и сделал своей первый вклад в изучение белков теплового шока. Он собрал обширную коллекцию ДНК многоклеточных организмов и с помощью метода саузерн-блоттинга продемонстрировал, что все они содержат практически идентичные по структуре аналоги гена Hsp70. Результатом дальнейшего детального изучения этого вопроса стало понимание того, что гены теплового шока в практически неизменившимся в ходе эволюции виде представлены в геномах представителей всех пяти царств живого мира. Следующим достижением в цепи последовавших за этим событий стала идентификация семейства факторов транскрипции, управляющих запуском первого этапа реакции теплового шока. В этой работе приняло участие несколько исследовательских групп из разных университетов, в том числе и группа Моримото. Ученые продемонстрировали, что повышение температуры клетки вызывает изменение формы этих факторов транскрипции, что способствует их связыванию с промоторами генов теплового шока, инициирующими синтез белков теплового шока. Более того, оказалось, что в отличие от дрожжей, мух-дрозофил и нематод Caenorhabditis elegans, имеющих только один фактор транскрипции генов теплового шока, в клетках человека имеется целых три таких фактора. Такая сложная схема регуляции экспрессии исследуемых генов навела ученых на мысль об их многофункциональности, требующей дополнительного изучения.
Чрезвычайное усиление экспрессии генов, кодирующих белки теплового шока является частью клеточного ответа на тепловой шок и вызывается в основном фактором теплового шока HSFангл. Белки теплового шока обнаружены в клетках практически всех живых организмов, отбактерийдочеловека. Высокие уровни белков теплового шока в клетке наблюдают после воздействия различныхстрессирующихфакторов — приинфекциях,воспалительных процессах, внешних воздействияхтоксинов этанол,мышьяк,тяжелые металлы , приультрафиолетовомоблучении,голодании,гипоксии, недостаткеазота у растений или нехватке воды. Белки теплового шока называют белками стресса, так как повышение экспрессии соответствующих генов часто наблюдается при ответе на стресс. Точный механизм, по которому тепловой шок активирует экспрессию генов белков теплового шока, не выяснен. Однако, некоторые исследования свидетельствуют о том, что активация белков теплового шока происходит неправильно сложеннымиили поврежденными белками. Белки теплового шока действуют как внутриклеточныешапероныв отношении других белков. Белки теплового шока играют важную роль в белок-белковых взаимодействиях, например, прифолдингеи сборке сложных белков, препятствуют нежелательной агрегации белков. Белки теплового шока стабилизируют частично свернутые белки и облегчают их транспорт через мембраны внутри клетки.
Но теперь его актуальность вызывает споры, поскольку большинство типов DC не экспрессируют CD91 в соответствующих количествах, а способность связывания многих HSP не доказана. Стимуляция некоторых рецепторов-скавенджеров может даже привести к иммуносупрессии, как в случае SRA. LOX-1 связывает в основном hsp60 и hsp70. В настоящее время считается, что SRECI является общим рецептором белка теплового шока, поскольку он связывает hsp60 , hsp70 , hsp90 , hsp110, gp96 и GRP170. Актуальность для этого типа перекрестной презентации высока, особенно при иммунном надзоре за опухолью. Благодаря HSP связанный пептид защищен от деградации в компартментах дендритных клеток, и эффективность перекрестной презентации выше. Также интернализация комплекса HSP-пептид более эффективна, чем интернализация растворимых антигенов. Опухолевые клетки обычно экспрессируют только несколько неоантигенов, на которые может воздействовать иммунная система, а также не все опухолевые клетки их экспрессируют. Из-за этого количество опухолевых антигенов ограничено, и для создания сильного иммунного ответа необходима высокая эффективность перекрестной презентации. Hsp70 и hsp90 также участвуют внутриклеточно в цитозольном пути перекрестной презентации, где они помогают антигенам попасть из эндосомы в цитозоль. Белки теплового шока также могут передавать сигналы через рецепторы скавенджеров , которые могут либо связываться с TLR, либо активировать pro - воспалительные внутриклеточные пути, такие как MAPK или NF- kB. За исключением SRA, который подавляет иммунный ответ. Как белки теплового шока попадают во внеклеточное пространство Белки теплового шока могут секретироваться иммунными клетками или опухолевыми клетками не- канонический путь секреции или путь без лидера, потому что они не имеют лидерного пептида, который направляет белки в эндоплазматический ретикулум. Неканоническая секреция может быть аналогична секреции, которая возникает для IL1 b , и вызывается стрессовыми условиями. Во время особых типов апоптотической гибели клеток например, вызванной некоторыми химиотерапевтическими препаратами HSP также могут появляться на внеклеточной стороне плазматической мембраны. Есть споры о том, как долго HSP может удерживать свой пептид во внеклеточном пространстве, по крайней мере, для hsp70 комплекс с пептидом достаточно стабилен. Роль внеклеточных HSP может быть различной. Во многом от контекста ткани зависит, будут ли HSP стимулировать иммунную систему или подавлять иммунитет. Клиническая значимость Фактор теплового шока 1 HSF1 представляет собой фактор транскрипции, который участвует в общем поддержании и повышении экспрессии белка Hsp70. Недавно было обнаружено, что HSF1 является мощным многогранным модификатором канцерогенеза. Мыши с нокаутом HSF1 демонстрируют значительное снижение частоты опухолей кожи после местного применения DMBA 7,12- dimэтил b enz a нтрацен , мутаген. Кроме того, некоторые исследователи предполагают, что HSP могут быть вовлечены в связывание фрагментов белка из мертвых злокачественных клеток и представление их иммунной системе. Следовательно, HSP могут быть полезны для повышения эффективности противораковых вакцин. Также выделенные HSP из опухолевых клеток могут сами по себе действовать как специфическая противоопухолевая вакцина. Опухолевые клетки экспрессируют много HSP, потому что они должны сопровождать мутировавшие и сверхэкспрессированные онкогены , опухолевые клетки также находятся в постоянном стрессе.
Он относится к классу белков-шаперонов, чья задача — помогать другим белкам сохранять правильную пространственную конфигурацию. Как известно, любой белок — это длинная цепочка связанных друг с другом аминокислот, но цепочка не простая, а очень замысловато скрученная в пространстве. И, собственно, функция белка зависит именно от такой вот его трехмерной пространственной структуры. Однако бывает так, что по каким-то причинам — например, во время клеточного стресса — белку становится трудно «сохранять лицо»: его пространственная структура расшатывается, разворачивается, становится неправильной. И в таких случаях очень к месту оказываются белки-шапероны, которые в буквальном смысле приводят в чувство другие белковые молекулы, которые готовы утратить или уже утратили нормальную пространственную конфигурацию. БТШ70, как мы сказали, как раз и относится к числу таких шаперонов. Он играет большую роль при стрессах самого разного происхождения — при повышении температуры, при ишемии, при травмах, высокой физической нагрузке, ультрафиолетовом облучении, бактериальной инфекции, воспалении. Исследователи из Института биофизики клетки Российской академии наук РАН , Института молекулярной биологии РАН, Института теоретической и экспериментальной биофизики РАН и больницы Пущинского научного центра предположили, что БТШ70 можно использовать для защиты клеток и организма в целом от действия бактериальных патогенов.
Новый подход в борьбе с деменцией: как белки теплового шока могут помочь
Предполагают, что sHsp каким-то образом активируют или стабилизируют глюкозо-6-фосфат дегидрогеназу — фермент, продуктом которого является NADPH [7]. NADPH используется глутатионредуктазой для поддержания нормального уровня восстановленной формы глутатиона, используемого глутатионпероксидазой для разрушения гидроперекисей. Все эти данные указывают на то, что функциональные эффекты шаперонов связаны с тиоловыми системами, через которые обеспечивается их антиоксидантное и другое действие. Ранее нами была высказана гипотеза посттрансляционной трансформации нормальных клеточных прионов РrРC в аномальные РrРSс прионы [3]. Причиной появления РrРSс является не копирование конформации с ранее поврежденного приона, а связано с нарушением функции шаперонов контролирующих фолдинг полипетидных цепей нормальных прионов и сохранение их нативной структуры.
В частности, аномальные РrРSс за счет гидрофобного взаимодействия с гидрофобными радикалами активного центра тиоредоксинредуктазы и глутатионредуктазы, ингибируют эффекты этих ферментов, необходимых для восстановления тиоредоксина и глутатиона. Эти тиоловые соединения необходимы для как для антиоксидантной защиты, так и для правильной укладки полипептидной цепи белковых молекул, а их недостаток блокирует функцию шаперонов, контролирующих формирование вторичной и третичной структуры нормальных клеточных прионов. С учетом вышеуказанных позиций, о функциональной связи белков теплового шока с активностью тиоловых систем, нами была поставлена задача, в сравнительном плане изучить состояние глутатиновой редокс-системы и глутатионпероксидазы при перегревании и при охлаждении организма животных, как экспериментальной модели стресса, при которой возможна индукция синтеза стрессорных белков — шаперонов. Материалы и методы исследования Исследования проведены на беспородных белых крысах в возрасте 3-3.
Чулковой, описанной С. Травиной [4]. Власовой и соавтор [1]. Результаты исследования проанализированы при помощи t-критерия Стьюдента.
Результаты исследования и их обсуждение В табл.
Образовавшийся тромб может оторваться от стенки сосуда и циркулировать по венозной системе, где он в виде эмбола может закупорить более мелкие сосуды: наиболее опасно это в легочной артерии. При этом известно, что некоторые млекопитающие, такие как бурые медведи Ursus arctos , впадают в зимнюю спячку, где на протяжении многих месяцев могут практически не двигаться. При этом венозных тромбозов и тромбоэмболий у них не возникает.
Ученые из Мюнхенского университета имени Людвига и Максимилиана под руководством Тобиаса Петцольда Tobias Petzold решили разобраться, как медведям и другим млекопитающим удается избежать образования тромбов во время длительной спячки. Для этого они исследовали бурых медведей во время их активной жизнедеятельности и во время спячки. Во время спячки ученые не обнаружили у медведей эхокардиографических признаков тромбоэмболии легочной артерии, а уровень D-димера у них был значительно ниже по сравнению с бодрствующим медведями. При этом у некоторых медведей во время бодрствования случались венозные тромбозы по механизму, схожему с человеческим.
Чтобы выявить факторы, которые непосредственно участвуют в естественном механизме защиты от тромбозов во время зимней спячки, ученые отловили 13 молодых бурых медведей, за которыми они следили зимой во время спячки и в теплое время года во время бодрствования в Швеции. Сначала зоологи провели оценку гематологических показателей медведей. По повышенным уровням гемоглобина и гематокрита ученые выявили обезвоживание у медведей во время спячки. При оценке свертывающей функции крови ученые обнаружили, что во время спячки время образования сгустка при активации внутреннего пути свертывания увеличивается по сравнению с бодрствующими особями.
Упругость сгустка была незначительно снижена в зимнее время.
Примечательно то, что впервые произвести кристалл БТШ удалось лишь в условиях невесомости. Эксперимент на орбите состоялся в 2015 году.
За шесть месяцев полета в трубочках сформировались идеальные кристаллы. Они были спущены на землю и проанализированы в России и Японии там есть сверхмощное оборудование для рентгеноструктурного анализа », — рассказал профессор. Андрей Симбирцев подчеркнул, что препарат позволил полностью излечить мышей и крыс от меланом и сарком даже на последних стадиях, а так как никакой специфичности у БТШ нет, «на другие виды опухолей препарат будет действовать благодаря этой универсальности».
По его словам, космический эксперимент подтвердил, что ученые на правильном пути. Собственно, мы уже изготавливаем препарат на производственных участках НИИ. Он представляет собой раствор белка, который можно вводить пациентам.
Мышам мы вводим его внутривенно.
Наименее безграмотный выпуск новостей из федеральных телеканалов был на «России К» правда, длится он всего минуту. Сладкая ложь о белках теплового шока или даже «удара», льющаяся с экранов и мониторов, вызвала шок и у самих специалистов по этим белкам. Александр Сапожников, доктор биологических наук, руководитель лаборатории клеточных взаимодействий в Институте биоорганической химии РАН, изучающий белки теплового шока, даже признался, что не без опасений выходил на улицу гулять с собакой: его преследовали не журналисты, а собственные соседи, взбудораженные радужными обещаниями СМИ. Он рассказал корреспондентам Indicator.
Ru, о каком белке речь идет на самом деле. Оказалось, изучением препарата на доклинической стадии занимался его друг и коллега из Института цитологии РАН, доктор биологических наук Борис Маргулис, которому и принадлежит идея использовать чистый белок HSP70 в терапии некоторых конкретных разновидностей рака. Борис Маргулис со своей супругой и соавтором Ириной Гужовой, заведующей лабораторией защитных механизмов клетки Института цитологии РАН в Санкт-Петербурге, изначально были разработчиками этого препарата, хотя в данный момент отошли от исследования и изучают другие свойства HSP70. Но, когда я поискала первоисточники, откуда ноги росли, оказалось, что вина не на представителях научного сообщества, а на журналистах, — заявила Ирина Гужова. А правда заключается в том, что белок теплового шока существует в двух ипостасях: есть внутриклеточный белок, а есть также и внеклеточный HSP70.
Его функции совсем другие, и он участвует в активации иммунной системы. И на этом пути еще много всего предстоит исследовать». Четыре человека и двуличный белок Тому мнению, что белок теплового шока массой 70 килодальтон существует и вне клетки, мы обязаны четырем людям. Открыл БТШ вне клеток Майкл Тайтелл он нашел их в гигантских аксонах кальмара , а через три года этот эффект подтвердил Ларри Хайтауэр на фибробластах крысы. Потом в дело вступила Габи Мультхофф.
Она показала, что БТШ в опухолевых клетках способен выходить на поверхность, и клетка как бы сигнализирует клеткам, так называемым натуральным киллерам: "Съешь меня". Потом подключился Прамуд Сривастава — человек, который поставил все на коммерческие рельсы. Он создал вакцины на основе БТШ, которыми сейчас лечат от рака преимущественно от рака почки. Однако он предполагает, что его модели могли быть неудачными. Но это его не постоянное состояние, с поверхности он уходит в экзосомах маленьких клеточных пузырьках, выделяемых наружу и тоже влияет на иммунную систему.
Кроме того, этот белок может выходить и в свободном состоянии, но, по мнению Прамода Сриваставы, он выходит связанный с опухолевыми пептидами, которые он «шаперонил» в тот момент, когда случилось выталкивание. И среди этих пептидов могут оказаться те, которые характерны для данного типа опухоли и которые умеет узнавать иммунная система. Они поступают в антиген-презентующие клетки, которые показывают их клеткам-киллерам, и таким образом развивается линия специфического иммунитета. Тогда активируется программа уничтожения клеток опухоли: их убивают либо натуральные киллеры NK-клетки , узнавая антигены, которые находятся на поверхности опухоли, либо Т-лимфоциты по специфическому механизму». Александр Сапожников не согласен с таким теоретическим обоснованием механизма действия лекарства.
По его словам, HSP70 может работать по другой схеме, которую только предстоит изучить, однако факт остается фактом — на клеточных культурах и ряде опухолей в двух линиях крыс, которым были привиты «человеческие» опухолевые клетки, белок действительно показывает активность. Это касается и действия экзогенного неклеточного белка теплового шока внутри организма. Мы вводили его в животное и пытались смотреть, что с белком происходит дальше. В течение 40 минут мы видели следы HSP70 в крови, а потом он пропал. Есть мнение, что белок распадается, но мы так не думаем».
Впечатляющие результаты в ожидании проверки Ирина Гужова рассказала и о дальнейших испытаниях препарата: «Мы испытывали этот механизм на мышиной меланоме B16, которая растет подкожно, и использовали в виде геля, наносимого на поверхность кожи. Результат получился впечатляющий: выживаемость мышей была гораздо выше, чем у контрольной группы, которую лечили гелем без действующего вещества или не лечили вообще. Разница была примерно в десять дней.
Первых кроликов-продуцентов человеческого белка теплового шока планируют получить в 2022 году
Белки теплового шока также синтезируются у D. melanogaster во время восстановления после длительного воздействия холода в отсутствие теплового шока. Ученые хотят убедиться в том, что при регулярной повышенной продукции белков теплового шока развитие нейродегенетивных заболеваний. Шаперонная функция белков теплового шока осуществляется не только в процессе биогенеза других белков, но и при иммунном ответе на антигены.
«Это не то лекарство, которое поднимет Лазаря»: правда о разработке «от всех видов рака»
Основная функция HSPs — защита биологических систем от повреждающих стрессорных воздействий. В процессе эволюции эукариот некоторые HSPs приобрели функции, позволившие им интегрироваться в систему иммунитета. Белки теплового шока обеспечивают важные жизненные функции и представлены у всех живых организмов. Продукты генов, наименованные белками теплового шока или белками клеточного стресса, вырабатываемые в условиях гипертермии, изначально были идентифицированы как молекулы, вырабатываемые в ответ на присутствие в клетках белков с нарушенной конформацией. Затем было установлено, что HSPs играют роль шаперонов в нековалентной сборке и демонтаже других макромолекулярных структур, хотя сами не являются перманентными компонентами этих структур при выполнении своих биологических функций. Реакция белков теплового шока зафиксирована не только в условиях гипертермии, но также при оксидативном стрессе, ацидозе, ишемии, гипоксии-гипероксии, энергетическом истощении клеток и т п. В этих условиях HSPs высвобождаются из некротизированных клеток при разрушении ткани или лизисе инфицированных клеток.
Благодаря особенности распознавания гидрофобных аминокислотных последовательностей на поверхности белков, как предупредительного сигнала о конформационной их нестабильности, HSPs способны осуществлять такие жизненно важные функции, как участие в обеспечении пространственной организации белковых молекул фолдинге , их стабилизации, коррекции конформационных изменений рефолдинге , транслокации белков через мембраны внутриклеточных органелл, предотвращении белковой агрегации и деградации нестабильных белков. Наряду с этим, HSPs проявляют антиапоптотическую активность.
Во-вторых, повышение внутриклеточного синтеза БТШ происходит отнюдь не только на тепловой шок, но и на любое стрессовое воздействие: внешнее УФ, тепловой шок, тяжелые металлы, аминокислоты , патологическое вирусные, бактериальные и паразитарные инфекции, лихорадка, воспаление, злокачественная трансформация, аутоиммунные реакции или даже физиологическое ростовые факторы, клеточная дифференциация, гормональная стимуляция, тканевый рост. Синтез БТШ является универсальным неспецифическим ответом клетки на стресс, и, по современным данным, нет такого вида клеточного стресса, при котором не происходило бы синтеза БТШ. Несмотря на общую задачу всех этих белков обеспечение выживания клетки в условиях стресса , функции и тканеспецифичность БТШ варьируют от группы к группе как в нормальных условиях, так и при стрессе.
В статье, опубликованной в Nature Neuroscience, ученые из США и Великобритании описали самое масштабное генетическое исследование больных БАС: было секвенировано 3 864 экзома пациентов и 7 839 экзомов индивидов из контрольной группы. Исследователи дополнили выборку данными об аллельных частотах мутаций из больших общедоступных баз данных экзомного секвенирования: DiscovEHR более 50 000 образцов и ExAC более 45 000 образцов. Авторы проанализировали результаты секвенирования и обнаружили повышенное количество редких генных вариантов, ассоциированных с производством укороченных форм белков protein-truncating variants, PTV у пациентов с БАС. Причем эти варианты встречались в генах, находящихся под сильным давлением очищающего отбора и потому наименее подверженных вредным мутациям.
PMID 12491239. Protein and peptide letters 12 3 : 257—61. PMID 15777275. Circulation research 83 2 : 117—32. PMID 9686751. Clinical hemorheology and microcirculation 37 1-2 : 19—35. PMID 17641392. Journal of the American College of Surgeons 201 1 : 30—6. PMID 15978441. Circulation 111 14 : 1792—9. PMID 15809372. PMID 18579210.
ПОДПИСАТЬСЯ НА РАССЫЛКУ
- Что такое белки теплового шока
- Genes: тяжесть инсульта зависит от типа белка теплового шока
- Первых кроликов-продуцентов человеческого белка теплового шока планируют получить в 2022 году
- СВЯЗАТЬСЯ С РЕДАКЦИЕЙ
- Белки теплового шока — Википедия с видео // WIKI 2
Как клетки выбирают путь спасения при стрессе
Ему предшествовало огромное количество исследований. Дело в том, что белки теплового шока, с которыми мы работаем, это белки шапироны, которые выполняют роль белков, защищающих организм от разрушения белковых структур, и, помимо этого, белки теплового шока ускоряют процессы трансформации, утилизации вот таких патологических изменений. В связи с этим есть вероятность, что эти белки теплового шока и их повышенное введение в организм какими-то либо способами вызовет не только замедление процессов нейродегенерации, но и сведет их образование и развитие к минимальным значениям, что нивелирует полностью клинику нейродегенеративных заболеваний», — заявил эксперт. Геннадий Пьявченко рассказал, что в распоряжение им были предоставлены мыши, у которых развивается к определенному времени жизни та или иная нейродегенеративная патология.
Специалисты МГМУ впервые в России предложили использовать белки теплового шока для борьбы с нейродегенерацией, что может привести к остановке развития таких заболеваний, как болезнь Альцгеймера, болезнь Паркинсона и боковой амиотрофический склероз Эти белки, образующиеся в организме под воздействием повышенной температуры, играют ключевую роль в защите клеток от стресса.
Недавние исследования показали, что увеличение производства таких белков способно оказать защитное воздействие на нервные клетки и замедлить процессы нейродегенерации. Источник фото: Фото редакции Ученые провели эксперименты на трансгенных мышах, специально спроектированных для изучения влияния белков теплового шока на развитие нейродегенеративных заболеваний.
Как отметил Михаил Владимирович, все подготовительные работы были успешно выполнены в 2021 году. Это позволило перейти к намеченному на 2022 год этапу — созданию конструкции трансгенной зиготы для внедрения в матку кролика, — прокомментировал профессор Покровский. Учёный пояснил, что сама конструкция состоит из человеческого белка теплового шока, который встраивается в геном животного — в область молочного промотора. Её конструкцию разрабатывают учёные Национального медицинского исследовательского центра кардиологии совместно с коллегами из Института молекулярной биологии им. Энгельгардта на базе Института биологии гена.
Финальный этап конструирования выполнит компания-партнёр «Евроген».
Белки теплового шока утилизируют старые белки в составепротеасомыи помогат корректно свернуться заново синтезированным белкам. Сердечно-сосудистая система.
По-видимому, белки теплового шока играют важную роль в сердечно-сосудистой системе. Для белков теплового шока hsp90, hsp84, hsp70, hsp27, hsp20, и альфа-B-кристаллин показана роль деятельности сердечно-сосудистой системы. Hsp90 связываетэндотелиальнуюсинтетазуоксида азотаигуанилатциклазу, которые в свою очередь участвуют в расслаблениисосудов.
В системе передачи сигнала при помощи оксида азота далеепротеинкиназа Gфосфорилирует малый белок теплового шока,hsp20, который принимает участие в расслаблении гладких мышц. Hsp20 по-видимому, играет важную роль в развитии гладких мышц и предотвращаетагрегациютромбоцитов, предотвращаетапоптозпослеишемического инсульта, а также имеет значение в функционированиискелетных мышци ответе мышц наинсулин. Hsp27 является главным фосфопротеином при мышечном сокращении.
Внеклеточные и связанные сплазматической мембраной, белки теплового шока, и особенноHsp70, участвуют в связывании ипрезентации антигенов.
Первых кроликов-продуцентов человеческого белка теплового шока планируют получить в 2022 году
Повышение экспрессии генов, кодирующих белки теплового шока, регулируется на этапе транскрипции. Использование белков теплового шока (БТШ70) открывает большие перспективы в лечении онкологии. Антитела к белку теплового шока хламидии (HSP60) являются маркером хламидийной инфекции любой формы (от острой до персистирующей). После выполнения процедуры вспомогательного лазерного хетчинга с использованием фемтосекундного лазера клетки эмбрионов сохраняли жизнеспособность, а уровни экспрессии генов, кодирующих белки теплового шока. Исследование финских ученых показало, что снижение экспрессии белка теплового шока 90 (Hsp90) через дестабилизацию циклинзависимой киназы Cdc28 приводит к задержке митоза и длительному поляризованному росту клеток. лено белкам теплового шока семейств а HSP70 и малым шаперонам sHSPs, высту.
Российский физиологический журнал им. И.М. Сеченова, 2019, T. 105, № 12, стр. 1465-1485
Белки теплового шока (БТШ), называемые также шапероны, являются ответом опухолевых клеток на условия стресса. Белки теплового шока называют белками стресса, так как повышение экспрессии соответствующих генов часто наблюдается при ответе на стресс. В связи с этим есть вероятность, что эти белки теплового шока и их повышенное введение в организм какими-то либо способами вызовет не только замедление процессов нейродегенерации, но и сведет их образование и развитие к минимальным значениям. Повышение экспрессии генов, кодирующих белки теплового шока, регулируется на этапе транскрипции. лено белкам теплового шока семейств а HSP70 и малым шаперонам sHSPs, высту. При сепсисе и других воспалительных заболеваниях происходит увеличение синтеза и секреции белков теплового шока (HSP70).
Малые белки теплового шока и убиквитин-протеасомная система при злокачественных опухолях
Клетки, в которых запущена аутофагия, не окрашены равномерно. LC3 собирается на поверхности аутофагосом, поэтому клетка выглядит пятнистой. И снова, если в голодающих клетках увеличена экспрессия белка HSP70, аутофагия в них развивается медленнее. Таким образом, белок HSP70 ингибирует аутофагию в культуре клеток. Аутофагия может быть вызвана не только голоданием, но и ингибированием белка mTOR. В зависимости от условий он запускает процессы запасания или расходования энергии. Если mTOR активен, то аутофагия не запускается. HSP70 является только одним звеном в развитии ответа на тепловой шок. Точнее, он — непосредственный исполнитель, который участвует в стабилизации структуры других белков и ее исправлении.
Чтобы проверить, участвует ли он в развитии аутофагии в условиях стресса, исследователи подавили экспрессию HSF-1 при помощи миРНК короткой молекулы РНК — около 20 нуклеотидов, комплементарной участку мРНК определенного гена в данном случае, HSF-1 , и способной вызывать «выключение» конкретного гена рис. Это само по себе вызвало развитие аутофагии, что было показано по увеличившемуся количеству модифицированного белка LC3. Повышение экспрессии HSP70 в таких условиях предотвращало развитие аутофагии. Следовательно, можно сделать вывод, что именно HSP70 является промежуточным звеном между HSF-1 и предотвращением развития аутофагии. При этом важна именно каталитическая активность HSP70 — мутация в той его части, которая ответственна за проявление активности, приводит к развитию аутофагии в стрессовых условиях. Клетки помещали в нормальные условия белые столбики или в среду с недостатком питательных веществ EBSS, черные столбики. Рисунок из обсуждаемой статьи в Journal of Biological Chemistry Все описанные эксперименты были проведены на культуре клеток. Это хорошая модель, однако организм — более сложная система.
И проверка полученных результатов на уровне организма необходима. Авторы исследования не остановились на модельных экспериментах и изучили аутофагию у людей рис. Простейшим способом вызвать стресс является выполнение упражнений. Было показано, что у людей после физической нагрузки интенсивность аутофагии в мононуклеарных клетках крови лимфоциты , моноциты , макрофаги увеличивается рис. Но как доказать, что в этом процессе участвует HSP70? В культуре клеток всё просто — надо выключить его и посмотреть, как изменится ответ. Если вы работаете с мышами, то можно вывести животных с дефицитом интересующего белка — такназываемых нокаутных животных подробнее про нокаутных животных см. Но если в эксперименте принимают участие люди, то остается надеяться только на физиологические способы изменения активности белков.
В случае HSP70 известно, что его активность увеличивается при добавлении глутамина в пищу. Исследователи использовали такой подход: одна группа добровольцев в течение недели три раза в день выпивала раствор глутамина, а вторая группа — раствор, не содержащий глутамина плацебо. На восьмой день проводили тест с физической нагрузкой. После него у добровольцев брали кровь, выделяли из нее мононуклеарные клетки и уже в них анализировали интенсивность протекания аутофагии и количество HSP70. Оказалось, что прием глутамина значительно снижает проявление аутофагии, что согласовывалось с повышением количества HSP70. Сам по себе этот факт — только интересная корреляция. Однако вместе с экспериментами на культуре клеток он говорит о том, что аутофагия непосредственно связана с белками теплового шока. Показатели для добровольцев, принимавших глутамин, показаны черными столбиками, для принимавших плацебо — белыми.
По оси абсцисс показано время после физической нагрузки.
Пептидные фрагменты расщепляющихся белковых молекул перехватываются HSPs и, в конечном итоге, претерпевая процессинг в АПК, индуцируют реакции адаптивного иммунитета. Таким образом, через активацию АПК и участие в процессинге антигена белки теплового шока интегрируют реакции врожденного и приобретенного адаптивного иммунитета. Иммуностимулирующие свойства проявляют HSP про- и эукаритического происхождения. Шаперонная функция белков теплового шока осуществляется не только в процессе биогенеза других белков, но и при иммунном ответе на антигены. Изменение окружающей среды при инфицировании создает стрессорную ситуацию как для вторгшегося патогена, так и для клеток хозяина, что проявляется в обоюдной интенсификации синтеза и функциональной активности белков теплового шока. Молекулярные шапероны бактерий выступают в роли лигандов для рецепторов на поверхности клеток хозяина.
При взаимодействии TLR7 с HSP70, активно секретируемым, так и освобождаемым при некротической гибели клеток млекопитающих, усиливается фагоцитарная функция макрофагов. Данный эффект проявляется за несколько минут и выражается не только в стимуляции фагоцитоза, но также и функции представления антигена Т-клеткам через сигнальные пути, опосредуемые фосфоинозитид 3-киназой и р38 МАР-киназой. На сегодняшний день многие рецепторы, распознающие паттерны известных PAMPs прокариотов, грибков, вирусов, простейших патогенов остаются еще не охарактеризованными.
Поскольку речь идёт о получении белка для особого класса нейропротекторных препаратов, учёные рассчитали, что достаточно ограничиться его получением от кролика. В этом объёме может содержаться от 1,5 до 3 граммов белка на литр, соответственно до 15 граммов с кролика. В случае масштабирования такого биореактора мы можем выйти на достаточное количество белка для индустриального партнёра на кроличьем стаде в несколько сотен голов.
А проект предполагает создание экспериментального стада в 20 голов, на котором мы можем показать эффективность технологии, — констатировал Алексей Васильевич. Немаловажным при выборе животного стал и тот факт, что индустриальный партнёр научно-образовательного центра «Инновационные решения в АПК» — опытно-экспериментальный завод «ВладМиВа» — за два года сотрудничества с НОЦ освоил полный цикл переработки кроличьего молока, включая процесс дойки, и, как заявил технический директор АО «ОЭЗ «ВладМиВа» Андрей Бузов, в случае достойной разработки и эффективного результата предприятие готово принять материал на своей площадке. Подводя итоги, руководитель НПП «Селекционно-генетические исследования, клеточные технологии и генная инженерия» Ирина Донник, опираясь на собственный опыт по геномному редактированию крупного рогатого скота, рекомендовала команде разработчиков учесть все риски и пересмотреть заявленные сроки реализации второго этапа проекта в сторону увеличения по времени.
В этом контексте она функционирует как важный защитный механизм, который может активироваться с помощью различных сигналов стресса [98].
Основными игроками тут являются белки-рецепторы макроаутофагии. Они специфично распознают жертву и крепко «привязывают» ее к зарождающемуся фагофору рис. В клетках человека неплохо изучен белковый рецептор макроаутофагии секвестосома-1 SQSTM1 , распознающая полиубиквитинированные белки и их агрегаты [99]. Критическая роль рецепторов макроаутофагии подчеркивается в недавних исследованиях.
Было обнаружено большое число их мутантных форм при некоторых нейродегенеративных заболеваниях [100] , [101]. Этот тип селективной аутофагии белков до сих пор идентифицируют только в клетках млекопитающих [102]. Чтобы шаперон-опосредованная аутофагия заработала, цитозольный белок-мишень должен содержать особую пептидную последовательность из пяти аминокислот — мотив KFERQ. HSPA8 связывает жертву и направляет ее к лизосоме.
Необычно то, как белок-жертва попадает внутрь лизосомы. Это происходит при участии особых белков LAMP-2A, которые пронизывают мембрану лизосомы и вместе могут формировать сквозной канал рис. Рисунок 22. Шаперон-опосредованная аутофагия.
Когда белок теряет нативную конформацию, содержащаяся в нем аминокислотная последовательность KFERQ становится видимой 1. Эту последовательность узнает белок HSPA8 2. Связав клиента, HSPA8 тащит его к лизосоме. В середине этого комплекса формируется канал, через который развернутый белок протаскивается в полость лизосомы 4.
В лизосоме этот белок расщепляется протеазами. Это позволяет расщеплять неважные в данный момент белки и направлять их аминокислоты для синтеза жизненно необходимых компонентов [103]. Другая важная функция CMA — контроль качества белка посредством избирательной деградации. CMA активируется в ответ на стрессовые факторы, которые вызывают разворачивание белка [104—106].
Однако при определенных патологических состояниях, например в результате генетических мутаций, могут накапливаться неправильно свернутые белки. В таком случае, даже самые отчаянные попытки предотвратить, перестроить или разрушить бракованные белки могут потерпеть неудачу. Тогда, в качестве последней защитной меры, клетка идет на компромисс, позволяя неправильно свернутым белкам делать то, что они так хотят — агрегировать. Однако происходит это под чутким контролем самой клетки, в результате чего получаются менее токсичные агрегаты [107].
Агрегация также изолирует потенциально опасные ненужные белки, так что в этом аспекте она является защитной и облегчает последующие действия по контролю протеостаза [108]. При делении клеток такие агрегаты асимметрично распределяются в одну из дочерних клеток, в результате чего другая дочерняя клетка освобождается от накопленного балласта [109] , [110]. Открытие и изучение этих агрегатов стало возможным благодаря развитию технологии визуализации живых клеток [111]. Она позволила отслеживать крупные молекулы в пространстве и времени в их естественной клеточной среде.
При грамотном подходе, такой метод дает много информации о динамике и стадиях биологических процессов. Для визуализации используются хорошо видимые светящиеся флуоресцентные белки, которые сшивают с интересующим белком при помощи генной инженерии. Благодаря пришитому ярлыку, с помощью флуоресцентного микроскопа можно следить за белком внутри клетки [112] , [113]. Далее открывается пространство для научного творчества.
Исследователь может всячески воздействовать на клетку например, вызывать накопление неправильно свернутых белков , а затем анализировать изменение свойств меченого объекта. Можно распознать изменение уровня синтеза белка по уровню флуоресценции или смену локализации белка, например, переброску из цитозоля в ядро. Также можно учитывать растворимость или взаимодействие с внутриклеточной средой. В самом конце XX века в клетках млекопитающих идентифицировали агресомы [114].
Это нерастворимые белковые агрегаты, образующиеся путем АТФ-зависимой транспортировки белков вдоль микротрубочек в область микротрубочкового организатора. В перемещении участвуют моторные белки динеины. Образование агресомы происходит с участием особого белка виментина, из которого формируется своеобразная клетка, заковывающая ядро из агрегированного белка рис 23. Рисунок 23.
Фотографии клеток, полученные с помощью флуоресцентного микроскопа. Ядра окрашиваются бибензимидом — флуоресцентным красителем, который связывается с ДНК. Виментин окрашен с помощью флуоресцентно меченных антител. Агрегирующий белок был сшит в одну молекулу с зеленым флуоресцирующим белком GFP.
На фото 1 можно наблюдать ядро и организацию виментина. Фото 2 отражает перестройку сетей виментина в кольцевые и сферические формы в ответ на агрегацию белка. Фото 3 и 4 показывают совместную локализацию виментина и белковых агрегатов. Также ненативные белки могут быть напрямую нацелены на агресому через кошаперон BAG3, который переносит их с Hsp70 прямиком на динеин [115].
Агресома накапливает и задерживает в себе потенциально цитотоксичные молекулы и в конечном итоге нацеливается на аутофагическую деградацию. Это приводит к тому, что агресомы образуют тельца включения при болезни Паркинсона их называют тельцами Леви , которые ведут к нарушению работы клетки. С 2008 года описано еще несколько типов агрегатных структур в клетках млекопитающих и дрожжей S. Формирование этих белковых агрегатов зависит от нескольких компонентов сети протеостаза, включая шапероны [121] , [122].
Недавние исследования на культурах клеток млекопитающих раскрывают неожиданную протеостазную значимость таких удивительных компонентов как ядрышки [123]. Ядрышки — это немембранные структуры внутри ядра, которые обособляются от жидкой среды ядра благодаря фазовому разделению [124] , [125]. В этом смысле они схожи с каплями масла, плавающими в супе. Только вот состоят ядрышки не из масла, а из белков и РНК, и выполняют очень важную функцию — производство рибосом.
И вот оказывается, жидкий периферический слой ядрышек гранулярный компонент служит в качестве депо для неправильно свернутых белков в условиях клеточного стресса. Эта нетривиальная роль ядрышек особенно важна ввиду того, что ядерный протеом обогащен белками, содержащими неструктурированные домены [126]. В итоге, текущие успехи в области белковых агрегатов убедительно доказали, что агрегация белка в клетке не случайна и иногда хорошо контролируется. Постепенное изучение пространственного протеостаза заставляет по-новому взглянуть на то, как клетка управляет различными видами неправильно свернутых белков.
Однако, несмотря на неоспоримые достижения, молекулярные детали всех этих процессов пока что носят статус «всё сложно». Свистать всех наверх! Для того чтобы грамотно реагировать на эти катаклизмы, клетки организовали многочисленные сигнальные пути. Благодаря им, появляется возможность регулировать внутриклеточные биохимические процессы, приспосабливаясь к окружающей обстановке: влиять на экспрессию генов, увеличивать или уменьшать продукцию необходимых компонентов, модулировать активность ферментов и т.
Такой принцип работает и в сети протеостаза. При благоприятных конформационных условиях необходимость в контроле качества белка снижается, соответственно сеть протеостаза может отдохнуть. Напротив, в условиях конформационного стресса возникает нужда в быстрой мобилизации многих компонентов сети. Специально для этого в клеточной программе прописан путь стресс-ответной реакции на несвернутые белки unfolded protein response, UPR.
Ассортимент реализующих стресс-реакцию компонентов определяется местом, в котором она развивается. Например, в цитоплазме UPR главным образом протекает через белок Hsf1. Когда в белковой жизни все спокойно, Hsf1 находится в спящем состоянии из-за связывания с шаперонами [127]. При конформационном стрессе шапероны идут на работу с ненативными белками и освобождают Hsf1, позволяя ему начать свою работу рис.
Свободный Hsf1 идет в ядро и стимулирует работу широкого спектра генов, кодирующих компоненты сети протеостаза. В результате увеличивается количество шаперонов, участников протеасомных путей и т. Когда ситуация стабилизируется, Hsf1 снова «засыпает» в объятиях шаперонов [128]. Рисунок 24.
Hsf1 в покое и на работе. При благоприятных условиях Hsf1 находится в неактивном состоянии в компании шаперонов 1. Когда случается белковый стресс, шапероны мобилизуются на обработку ненативных белков 2 , а освободившийся Hsf1 проникает в ядро и там связывается с определенными участками на ДНК 3. Таким образом, он работает в качестве транскрипционного фактора, стимулируя транскрипцию генов, важных для PN 4.
И хотя сами компоненты стресс-ответа в разных местах отличаются, цели этих реакций схожи: повышение качества компонентов сети протеостаза и уменьшение количества бракованных белков. То, как протекает стресс-ответ на развернутые белки в ЭПР, очень хорошо изучено [129] , [130]. Он состоит, по крайней мере, из трех ветвей, которые регулируют работу многочисленных генов, тем самым поддерживая протеостаз или, в крайнем случае, активируя апоптоз. Эта часть сигнальной системы очень важна ввиду того, что подавляющее большинство белков, которые клетка экспортирует наружу или выводит на клеточную поверхность, сначала попадают в ЭПР.
Здесь они принимают рабочую конформацию и всячески модифицируются. Кроме того, ЭПР обширен, что позволяет ему взаимодействовать с другими мембранными структурами клетки [131]. Таким образом, ЭПР имеет хорошие возможности для определения клеточных возмущений и корректировки сигнальных путей. Митохондриальный ответ на развернутые белки UPRmt был описан гораздо позже, и многие нюансы тут пока не ясны [132].
Длительный стресс После восстановления протеостаза сигнальные UPR-пути подавляются, чтобы клетки могли должным образом реагировать на будущий стресс. Поэтому пути реагирования разработаны так, чтобы временно активироваться до нужной величины, соответствующей уровню нарушений и позволяющей эффективно восстановить протеостаз. Но сигнальная система может сбиться под действием длительного стресса или частых активаций в течение долгого времени. Исследования обращают внимание на непредсказуемость длительной активации белкового стресса [133].
При старении или некоторых заболеваниях UPR успешно активируется, но очиститься от неправильно свернутых и агрегированных белков у клеток не получается. Стрессовая сигнализация продолжает бить тревогу, и из-за этого «шума» клетки становятся менее чувствительными к дополнительным стрессорам. Кроме того, долговременное воздействие белкового стресса может пагубно сказываться на самой работе UPR [134] , [135]. Воздействия, усиливающие стресс-ответные реакции, могут иметь прикладное терапевтическое значение, благодаря уменьшению клеточных повреждений, накапливающихся при старении и конформационных заболеваниях [136].
Однако чтобы использовать такой подход, нам необходимо научиться предсказывать пока мало понятные последствия длительной активации стресс-ответных реакций. Более серьезно о токсичности агрегатов Различные состояния белков сосуществуют в сложном равновесии рис. Склонение чаши весов в такой системе будет определяться многими параметрами, например аминокислотной последовательностью конкретного белка, взаимодействиями с молекулярными шаперонами, процессами деградации и другими механизмами управления белковой жизнью. Рисунок 25.
Многообразие функциональных форм белков и их агрегатов [5] , рисунок адаптирован Хотя белки и их биологическая среда совместно эволюционировали, чтобы поддерживать здоровое состояние, всё же белки не утратили свою конформационную хрупкость. Поэтому они сохраняют способность терять нативную структуру и собираться в трудноизлечимые агрегаты, в том числе прочные нитевидные амилоиды. Мы помним, что энергетически это очень выгодно для белка, но физиологически очень неприятно для клетки. С химической точки зрения для поддержания стабильных растворенных белков важно не превышать их предельную концентрацию.
Иначе процесс агрегации и образования амилоидов усиливается [137]. Ученые продолжают идентифицировать наиболее склонные к агрегации белки, чьи клеточные концентрации высоки по сравнению с их растворимостью. Такие белки называют «перенасыщенными». Оказалось, что они активно участвуют в патологической агрегации во время стресса и старения, и чрезмерно представлены в биохимических процессах, связанных с нейродегенерацией.
Так, агрегация перенасыщенных белков приводит к образованию нерастворимых отложений при болезнях Альцгеймера, Паркинсона, Хантингтона и боковом амиотрофическом склерозе ALS [138—140]. К перенасыщенным относят много РНК-связывающих белков, которые содержат неструктурированные и слабоструктурированные последовательности. Такие белки часто способны подвергаться фазовым переходам жидкость-жидкость, благодаря чему образуют каплеобразные скопления в цитозоле и ядре [125]. Клетке нужны такие белки для метаболизма РНК, биогенеза рибосом, передачи сигналов и других процессов [141].
Тем не менее их динамическое поведение очень чувствительно к изменениям физико-химической среды клеток. Во время агрегации сначала появляются белковые скопления из относительно небольшого числа молекул, которые сохраняют структурную память о своих здоровых состояниях. Эти ранние агрегаты довольно нестабильны, поскольку успевают наладиться только слабые межмолекулярные взаимодействия. Однако по мере усугубления ситуации такие агрегаты могут подвергаться внутренней перестройке с образованием более стабильных скоплений.
При этом получаются пластинчатые структуры, поддерживаемые большим числом взаимодействий. Эти структурированные олигомеры могут расти дальше за счет самоассоциации или за счет добавления мономеров, часто с дальнейшими структурными перестройками. В итоге могут образоваться четкие фибриллы с пластинчатой структурой, похожие на стопки монет. На сегодняшний день отмечено около 40 белков, склонных к формированию крупных агрегатов при различных заболеваниях человека [5].
Другим уязвимым белкам например актину, фибронектину и лактоферрину свойственна четкая нативная структура. По факту, между патологическими белками нет очевидного сходства в последовательности, структуре или функции. Бывает и так, что неупорядоченные или нативные агрегаты разрастаются без каких-либо серьезных преобразований и, в конце концов, просто дают большие аморфные отложения, сохраняющие структуру исходных олигомеров. Такие образования, включая амилоидные, аморфные или нативные агрегаты, накапливаются при определенных патологических состояниях.
Если они располагаются в центральной нервной системе, то это ассоциируется с нейродегенеративными состояниями, например болезнями Альцгеймера и Паркинсона. В других тканях наблюдаются многочисленные амилоидозы и дистрофии. Больше половины таких заболеваний носит случайный характер, хотя встречаются и наследственные формы, например болезнь Хантингтона. Данные заболевания имеют относительно поздний возраст начала, что позволяет предположить, что агрегации белков происходят в основном из-за прогрессирующей потери регуляторного контроля с возрастом.
Примечательно, что наличие крупных агрегатов не всегда соотносится с тяжестью заболевания [142]. Исследования последних лет показали, что наиболее токсичными белковыми агрегатами могут быть растворимые олигомеры и мелкие нерастворимые скопления [143]. Опасность таких агрегатов состоит в том, что они активно выставляют наружу гидрофобные остатки и химически активные участки. Это сильно повышает их способность вступать во взаимодействия с другими белками, особенно с компонентами сети протеостаза рис.
Точная природа наиболее токсичных агрегатов остается горячим предметом изучения. Рисунок 26. Порочные круги протеостаза. Ненативный белок может накапливаться по разным причинам 1.
В ответ на это происходит мобилизация сети протеостаза, которая пытается защитить клетку 2.