Курс ПРОФИЛЬ 2022 от Абеля / Математика ЕГЭ. § 1. Аксиомы стереометрии и следствия из них. Курс ПРОФИЛЬ 2022 от Абеля / Математика ЕГЭ. Стереометрия 11 класс формулы ЕГЭ. Формулы для стереометрии ЕГЭ математика профиль.
Теория по математике на тему "Формулы стереометрии"
- Шпаргалки и формулы по стереометрии
- Объемы фигур (ЕГЭ 2022)
- Вся геометрия для егэ профиль
- Формулы по стереометрии для ЕГЭ - Шпаргалка по стереометрии для ЕГЭ
- 5 задание Формулы стереометрии -2 - Курс ПРОФИЛЬ 2022 от Абеля / Математика ЕГЭ — ЭкзаменТВ
Егэ математика стереометрия
Вы ищете теорию и формулы для ЕГЭ по математике? Образовательный проект «Школково» предлагает вам заглянуть в раздел «Теоретическая справка». Здесь представлено пособие по подготовке к ЕГЭ по математике, которое фактически является авторским. Оно разработано в соответствии с программой школьного курса и включает такие разделы, как арифметика, алгебра, начала анализа и геометрия планиметрия и стереометрия.
Каждое теоретическое положение, содержащееся в пособии по подготовке к ЕГЭ по математике, сопровождается методически подобранными задачами с подробными разъяснениями. Таким образом, вы не только приобретете определенные знания. Полный справочник для ЕГЭ по математике поможет вам научиться логически и нестандартно мыслить, выполнять самые разнообразные задачи и грамотно объяснять свои решения.
А это уже половина успеха при сдаче единого государственного экзамена. После того, как вы нашли необходимые формулы и теорию для ЕГЭ по математике, рекомендуем вам перейти в раздел «Каталоги» и закрепить полученные знания на практике.
Другие кроме ортогональной проекции прямой на плоскость можно построить если прямая определяющая направление проецирования будет не перпендикулярна плоскости. Однако, именно ортогональную проекцию прямой на плоскость в будущем мы будем встречать в задачах.
А называть ортогональную проекцию будем просто проекцией как на чертеже. Теорема: Угол между прямой и плоскостью является наименьшим из всех углов, которые данная прямая образует с прямыми, лежащими в данной плоскости и проходящими через точку пересечения прямой и плоскости. Определения: Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой и частью пространства, для которой эти полуплоскости служат границей. Линейным углом двугранного угла называется угол, сторонами которого являются лучи с общим началом на ребре двугранного угла, которые проведены в его гранях перпендикулярно ребру.
Таким образом, линейный угол двугранного угла — это угол, образованный пересечением двугранного угла плоскостью, перпендикулярной его ребру. Все линейные углы двугранного угла равны между собой. Градусной мерой двугранного угла называется градусная мера его линейного угла. В дальнейшем, при решении задач по стереометрии, под двугранным углом будем понимать всегда тот линейный угол, градусная мера которого удовлетворяет условию: Определения: Двугранным углом при ребре многогранника называется двугранный угол, ребро которого содержит ребро многогранника, а грани двугранного угла содержат грани многогранника, которые пересекаются по данному ребру многогранника.
Углом между пересекающимися плоскостями называется угол между прямыми, проведенными соответственно в данных плоскостях перпендикулярно их линии пересечения через некоторую ее точку. Теоремы: Теорема 1 признак перпендикулярности плоскостей. Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны. Прямая, лежащая в одной из двух перпендикулярных плоскостей и перпендикулярная прямой, по которой они пересекаются, перпендикулярна другой плоскости.
Точки M и M 1 называются симметричными относительно прямой l , если прямая l MM 1 и перпендикулярна ему. Выпуклый многогранник называется правильным , если все его грани — равные между собой правильные многоугольники и в каждой вершине сходится одно и то же число ребер. Призма Определения: Призма — многогранник, две грани которого являются равными многоугольниками, лежащими в параллельных плоскостях, а остальные грани — параллелограммами, имеющими общие стороны с этими многоугольниками. Основания — это две грани, являющиеся равными многоугольниками, лежащими в параллельных плоскостях.
Боковые грани — все грани, кроме оснований. Каждая боковая грань обязательно является параллелограммом. Боковая поверхность — объединение боковых граней. Полная поверхность — объединение оснований и боковой поверхности.
Боковые ребра — общие стороны боковых граней. Высота — отрезок, соединяющий основания призмы и перпендикулярный им. На чертеже это, например, KR. Диагональ — отрезок, соединяющий две вершины призмы, не принадлежащие одной грани.
На чертеже это, например, BP. Диагональная плоскость — плоскость, проходящая через боковое ребро призмы и диагональ основания. Другое определение: диагональная плоскость — плоскость, проходящая через два боковых ребра призмы, не принадлежащих одной грани. Диагональное сечение — пересечение призмы и диагональной плоскости.
В сечении образуется параллелограмм, в том числе, иногда, его частные случаи — ромб, прямоугольник, квадрат. На чертеже это, например, EBLP. Перпендикулярное ортогональное сечение — пересечение призмы и плоскости, перпендикулярной ее боковому ребру. Свойства и формулы для призмы: Основания призмы являются равными многоугольниками.
Боковые грани призмы являются параллелограммами. Боковые ребра призмы параллельны и равны. Объём призмы равен произведению её высоты на площадь основания: где: S осн — площадь основания на чертеже это, например, ABCDE , h — высота на чертеже это MN. Площадь полной поверхности призмы равна сумме площади её боковой поверхности и удвоенной площади основания: Перпендикулярное сечение перпендикулярно ко всем боковым рёбрам призмы на чертеже ниже перпендикулярное сечение это A 2 B 2 C 2 D 2 E 2.
Углы перпендикулярного сечения — это линейные углы двугранных углов при соответствующих боковых рёбрах. Перпендикулярное ортогональное сечение перпендикулярно ко всем боковым граням. Объем наклонной призмы равен произведению площади перпендикулярного сечения на длину бокового ребра: где: S сеч — площадь перпендикулярного сечения, l — длина бокового ребра на чертеже ниже это, например, AA 1 или BB 1 и так далее. Площадь боковой поверхности произвольной призмы равна произведению периметра перпендикулярного сечения на длину бокового ребра: где: P сеч — периметр перпендикулярного сечения, l — длина бокового ребра.
Виды призм в стереометрии: Если боковые ребра не перпендикулярны основанию, то такая призма называется наклонной изображены выше. Основания такой призмы, как обычно, расположены в параллельных плоскостях, боковые рёбра не перпендикулярны этим плоскостям, но параллельны между собой. Боковые грани — параллелограммы. В прямой призме боковые ребра являются высотами.
Боковые грани прямой призмы - прямоугольники. А площадь и периметр основания равны соответственно площади и периметру перпендикулярного сечения у прямой призмы, вообще говоря, перпендикулярное сечение целиком является такой же фигурой, как и основания. Поэтому, площадь боковой поверхности прямой призмы равна произведению периметра основания на длину бокового ребра или, в данном случае, высоту призмы : где: P осн — периметр основания прямой призмы, l — длина бокового ребра, равная в прямой призме высоте h. Правильная призма — призма в основании которой лежит правильный многоугольник то есть такой, у которого все стороны и все углы равны между собой , а боковые ребра перпендикулярны плоскостям основания.
Примеры правильных призм: Свойства правильной призмы: Основания правильной призмы являются правильными многоугольниками. Боковые грани правильной призмы являются равными прямоугольниками. Боковые ребра правильной призмы равны между собой. Правильная призма является прямой.
Определение: Параллелепипед — это призма, основания которой параллелограммы. В этом определении ключевым словом является «призма». Таким образом, параллелепипед — это частный случай призмы, которая отличается от общего случая только тем, что в основании у нее не произвольный многоугольник, а именно параллелограмм. Поэтому все приведенные выше свойства, формулы и определения касающиеся призмы остаются актуальными и для параллелепипеда.
Однако, можно выделить несколько дополнительных свойств характерных для параллелепипеда. Другие свойства и определения: Две грани параллелепипеда, не имеющие общего ребра, называются противолежащими , а имеющие общее ребро — смежными. Две вершины параллелепипеда, не принадлежащие одной грани, называются противолежащими. Отрезок, соединяющий противолежащие вершины, называется диагональю параллелепипеда.
Параллелепипед имеет шесть граней и все они — параллелограммы. Противоположные грани параллелепипеда попарно равны и параллельны. У параллелепипеда четыре диагонали; они все пересекаются в одной точке, и каждая из них делится этой точкой пополам. Если четыре боковые грани параллелепипеда — прямоугольники а основания — произвольные параллелограммы , то он называется прямым в этом случае, как и у прямой призмы, все боковые ребра перпендикулярны основаниям.
Все свойства и формулы для прямой призмы актуальны для прямого параллелепипеда. Параллелепипед называется наклонным , если не все его боковые грани являются прямоугольниками. Прямой параллелепипед, у которого все шесть граней — прямоугольники то есть кроме боковых граней еще и основания являются прямоугольниками , называется прямоугольным. Из общей формулы для объема призмы можно получить следующую формулу для объема прямоугольного параллелепипеда : Прямоугольный параллелепипед, все грани которого являются равными квадратами, называется кубом.
Помимо прочего, куб является правильной четырехугольной призмой, и вообще правильным многогранником. Для куба справедливы все свойства прямоугольного параллелепипеда и свойства правильных призм, а также: Абсолютно все рёбра куба равны между собой. Диагональ куба d и длина его ребра a связаны соотношением: Из формулы для объема прямоугольного параллелепипеда можно получить следующую формулу для объема куба : Пирамида Определения: Пирамида — многогранник, основание которого — многоугольник, а остальные грани — треугольники, имеющие общую вершину. По числу углов основания различают пирамиды треугольные, четырёхугольные и так далее.
На рисунке приведены примеры: четырёхугольная и шестиугольная пирамиды. Основание — многоугольник, которому не принадлежит вершина пирамиды. На чертеже основание это BCDE. Грани, отличные от основания, называются боковыми.
Общая вершина боковых граней называется вершиной пирамиды именно вершиной всей пирамиды, а не просто вершиной, как все остальные вершины. На чертеже это A. Ребра, соединяющие вершину пирамиды с вершинами основания, называются боковыми. Обозначая пирамиду, сначала называют ее вершину, а затем — вершины основания.
Высотой пирамиды называется перпендикуляр, проведенный из вершины пирамиды на ее основание. Длина этого перпендикуляра обозначается буквой H. На чертеже высота это AG. Обратите внимание: только в случае если пирамида является правильной четырехугольной пирамидой как на чертеже высота пирамиды попадает на диагональ основания.
В остальных случаях это не так. В общем случае у произвольной пирамиды, точка пересечения высоты и основания может оказаться где угодно. Апофема — высота боковой грани правильной пирамиды, проведенная из ее вершины. На чертеже это, например, AF.
Диагональное сечение пирамиды — сечение пирамиды, проходящее через вершину пирамиды и диагональ основания. На чертеже это, например, ACE. Еще один стереометрический чертеж с обозначениями для лучшего запоминания на рисунке правильная треугольная пирамида : Если все боковые ребра SA , SB , SC , SD на чертеже ниже пирамиды равны, то: Около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр точка O. Иными словами, высота отрезок SO , опущенная из вершины такой пирамиды на основание ABCD , попадает в центр описанной вокруг основания окружности, то есть в точку пересечения посерединных перпендикуляров основания.
Важно: Также верно и обратное, то есть если боковые ребра образуют с плоскостью основания равные углы или если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые ребра пирамиды равны. Если боковые грани наклонены к плоскости основания под одним углом углы DMN , DKN , DLN на чертеже ниже равны , то: В основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр точка N. Иными словами, высота отрезок DN , опущенная из вершины такой пирамиды на основание, попадает в центр вписанной в основание окружности, то есть в точку пересечения биссектрис основания. Высоты боковых граней апофемы равны.
Площадь боковой поверхности такой пирамиды равна половине произведения периметра основания на высоту боковой грани апофему. Важно: Также верно и обратное, то есть если в основание пирамиды можно вписать окружность, причем вершина пирамиды проецируется в её центр, то все боковые грани наклонены к плоскости основания под одним углом и высоты боковых граней апофемы равны. Правильная пирамида Определение: Пирамида называется правильной , если её основанием является правильный многоугольник, а вершина проецируется в центр основания. Тогда она обладает такими свойствами: Все боковые ребра правильной пирамиды равны.
Все боковые грани правильной пирамиды наклонены к плоскости основания под одним углом. Важное замечание: Как видим правильные пирамиды являются одними из тех пирамид к которым относятся свойства, изложенные чуть выше. Действительно, если основание правильной пирамиды — это правильный многоугольник, то центр его вписанной и описанной окружностей совпадают, а вершина правильной пирамиды проецируется именно в этот центр по определению. Однако важно понимать, что не только правильные пирамиды могут обладать свойствами, о которых говорилось выше.
В правильной пирамиде все боковые грани — равные равнобедренные треугольники. В любую правильную пирамиду можно как вписать сферу, так и описать около неё сферу. Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.
Равные наклонные имеют равные проекции на плоскости. Большей наклонной соответствует большая проекция на плоскости. Скрещивающиеся прямые Если одна из двух прямых лежит на плоскости, а другая прямая пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещиваются. Через две скрещивающиеся прямые проходит единственная пара параллельных плоскостей.
В базовой математике ЕГЭ формулы на объем и площадь представлены в справочных материалах. Тем, кто сдает профильную, придется выучить их. Рассмотрим основную теорию. Площадь — величина, которая есть у плоских фигур.
Формулы справочника для ЕГЭ
А сейчас я покажу вам как практически ничего не делая получить ещё 2. Мы будем выводить формулы понижения степени из формул двойного угла. Сейчас вообще ничего удивительного не будет. Что еще пригодится вам для тригонометрии на ЕГЭ Скажу по секрету, что это далеко не все формулы тригонометрии, которые существуют. Есть и другие: некоторые можно вывести из вышеуказанных, некоторые можно обобщить и вместо огромного количества формул использовать короткое правило. Но мне кажется, что пока этого и так много! Советую сначала хорошо отработать формулы, которые я перечислила в этой статье, и только потом браться за другие. Так вы не загрузите свою память и будете быстрее решать сложные задания по тригонометрии из ЕГЭ.
Это, кстати, касается любой темы на экзамене по математике: а в ЕГЭ их очень много.
Формулы площадей стереометрия. Формулы объема стереометрия. Объемы и площади стереометрия. Формулы площадей фигур стереометрия.
Формулы площадей всех фигур для ЕГЭ. Основные формулы стереометрии. Формулы площадей стереометрия ЕГЭ. Площади фигур стереометрия формулы таблица. Шпаргалка по стереометрии ЕГЭ 1 часть.
Шпора по стереометрии ЕГЭ фигуры. Формулы для стереометрии ЕГЭ математика профиль. Формулы стереометрии для ЕГЭ. Формулы объемов фигур стереометрия. Стереометрия Базовая математика формулы.
Формулы профильная математика ЕГЭ стереометрия. Формулы ЕГЭ математика стереометрия. Объёмы фигур формулы таблица шпаргалка. Объемы и площади фигур стереометрия. Формулы фигур стереометрии по ЕГЭ.
Формулы из стереометрии для ЕГЭ. Стереометрия 10 класс формулы. Площади фигур стереометрия. Стереометрия формулы. Стереометрия формулы площадей и объемов ЕГЭ.
Формулы по геометрии 10 класс стереометрия. Планиметрия и стереометрия формулы. Основные формулы стереометрии для ЕГЭ. Формулы объёмов и площадей поверхности стереометрических фигур. Формулы площадей всех фигур стереометрия.
Формулы по геометрии 11 класс стереометрия. Шпаргалка по стереометрии ЕГЭ профиль. Ыормулыпо стереометрии. Формулы объёмных фигур стереометрия. Стереометрия формулы площадей и объемов шпаргалка.
Стереометрия 11 класс формулы ЕГЭ. Основные формулы по стереометрии. Формулы по стереометрии 10 класс. Формулы площадей фигур по стереометрии. Основные формулы геометрии 10 класс стереометрия.
Основные формулы в стереометрии. Формулы стереометрии таблица. Теория по стереометрии формулы. Площади поверхности фигур стереометрия. Площади фигур стереометрия ЕГЭ.
Формулы стереометрии шпаргалка. Стереометрия стенд. Формулы по стереометрии.
Тип 1. Конус и цилиндр имеют общее основание и общую высоту конус вписан в цилиндр. Вычислите объём цилиндра, если объём конуса равен 57. Тип 2.
Цилиндр и конус имеют общие основание и высоту. Высота цилиндра равна радиусу основания.
Площадь многогранника формула. Шпора на ЕГЭ по математике профильный уровень геометрия. Формулы для ЕГЭ по математике профильный уровень геометрия.
Формулы геометрии ЕГЭ 2021. Формулы площади поверхности Призмы и пирамиды. Многогранники Призма пирамида. Многогранники пирамида куб Призма. Вся теория по геометрии планиметрия таблица.
Основные формулы геометрии таблица. Формулы по геометрии для ЕГЭ. Формулы площадей поверхности и объёмов всех фигур. Формулы площадей и объемов всех фигур для ЕГЭ. Формулы объёма геометрических фигур таблица.
Формулы объёмов всех фигур. Формулы площадей и объемов геометрических фигур таблица. Объемы фигур формулы таблица шпаргалка 11 класс. Формулы объемов Призмы, пирамиды, цилиндра, конуса и шара. Объёмы фигур формулы таблица.
Формулы площади и объема фигур шпаргалка. Шар стереометрия формулы. Стереометрия 11 класс таблица 11. Геометрия стереометрия формулы тела вращения. Фигуры вписанные стереометрия формулы.
Формулы цилиндра ЕГЭ. Объемы тел вращения таблица. Тела вращения формулы. Формулы цилиндра конуса и шара и сферы. Формулы по геометрии для ОГЭ 9 класс шпаргалка.
Планиметрия и стереометрия формулы. Задачи по стереометрии. Задачи по стереометрии ЕГЭ С решениями профильный уровень. Объёмы фигур формулы ЕГЭ математика. Все формулы объемов и площадей фигур для ЕГЭ.
Шпаргалка ЕГЭ формулы площадей и объемов стереометрических фигур. Формулы объемов геометрических фигур таблица ЕГЭ. Призма стереометрия теория. Стереометрия 11 класс таблица 11 правильная Призма. Геометрия стереометрия теория.
Формулы для цилиндра в геометрии 11 класс. Стереометрия цилиндр формулы. Формулы по цилиндру геометрия 11 класс. Сфера геометрия 11 класс формулы. Формулы для шара в геометрии 11 класс.
Стереометрия 11 класс шар формулы. Справочный материал по геометрии. Справочный материал по геометрии для ЕГЭ.
Формулы объемов и площадей геометрических фигур
Мой канал в Telegram: +nv_AT3GKIq0zNTBiХочешь готовиться к ЕГЭ со мной? А найти основные формулы для ЕГЭ по математике бывает непросто даже в Интернете. В таблицах представлены основные формулы объемов и площадей фигур для ЕГЭ. Формулы для профильного егэ-2022 по математике геометрия планиметрия 2d площади фигур: окружность:s=pir2 треугольник:s=1/2ah параллелограмм:s=ah четырхугольник:s=1/2d1d2sinvarphiу ромба varphi=90 трапеция:s=ab/2h стереометрия 3d. Основные формулы стереометрии. Формулы площадей стереометрия ЕГЭ.
Параллелепипед формулы
- Формулы по математике для ЕГЭ
- Что нужно знать о задаче по стереометрии № 14 варианта КИМ ЕГЭ
- Теория по математике на тему "Формулы стереометрии"
- Тригонометрия ЕГЭ: 5 формул для базы и профиля ⋆ MAXIMUM Блог
- Telegram: Contact @umschool_official
Математика. ЕГЭ. Стереометрия 2
ЕГЭ Профиль 2022. Материал позволит лучше закрепить материал. Материал по математике по теме "Формулы стереометрии" Математика 11 класс. Формулы для профильного егэ-2022 по математике геометрия планиметрия 2d площади фигур: окружность:s=pir2 треугольник:s=1/2ah параллелограмм:s=ah четырхугольник:s=1/2d1d2sinvarphiу ромба varphi=90 трапеция:s=ab/2h стереометрия 3d. Артур Шарафиев. Подготовка к экзамену по формулам стереометрии для ЕГЭ профиль 2023 требует систематического изучения материала, практических заданий и проверки своих знаний.
Формулы справочника для ЕГЭ
Формулы ЕГЭ математика профильный уровень геометрия. Основные формулы для профильной математики ЕГЭ. Формулы шпоры по математике ЕГЭ 2022. Формулы ЕГЭ математика профильный уровень Алгебра. Справочные материалы ЕГЭ математика профиль 2021. Справочный материал ЕГЭ математика 2022. Базовая математика ЕГЭ 2022. Справочные материалы ЕГЭ математика 2022.
Геометрические формулы для ЕГЭ база. Геометрические формулы для ЕГЭ база математика. Теоремы планиметрии 10 класс. Основные формулы планиметрии для ЕГЭ. Шпаргалки по геометрии для подготовки к ОГЭ. Геометрические задания ЕГЭ профиль математика. Теоремы по геометрии для ОГЭ 2023.
Геометрия на готовых чертежах 7-9 классы теорема Пифагора. Шпоры на ОГЭ по математике 2022. Формулы для ОГЭ по математике 2022. Шпаргалки по алгебре 9 класс ОГЭ. Шпаргалки ОГЭ математика 9 класс. Формулы для ЕГЭ профильная математика геометрия. Шпоры для ЕГЭ по математике 2021 профильный уровень геометрия.
Формулы геометрии и стереометрии шпаргалка. Формулы по стереометрии профильная математика. Объёмы фигур формулы ЕГЭ шпаргалка. Формулы для ЕГЭ по математике профиль планиметрия. Основные теоремы планиметрии для ЕГЭ. Основные формулы планиметрии для ЕГЭ профиль. Планиметрия теория для ЕГЭ формулы.
Шпаргалка по планиметрии на ЕГЭ. Планиметрия шпаргалки для ЕГЭ. Геометрия - теоремы планиметрии. Вся теория по геометрии планиметрия таблица. Формулы планиметрии таблица. Шпаргалки для ОГЭ по математике 2022. Шпоры ОГЭ математика 2021.
Формулы по алгебре для ОГЭ 9 класс шпаргалка. Шпоры для экзамена по математике 9 класс 2021. Шпаргалка по геометрии для ОГЭ 9 класс шпаргалка. Шпаргалки по стереометрии 11 класс для ЕГЭ. Формулы математика профиль ЕГЭ геометрия. Объем формулы ЕГЭ математика. Формулы на профильной математике ЕГЭ.
Формулы профильная математика ЕГЭ. Основные формулы ЕГЭ математика профиль. Формулы ЕГЭ математика профиль 2022. Площади четырехугольников формулы 8 класс геометрия. Формула площади произвольного четырехугольника. Основные формулы планиметрии ОГЭ. Планиметрия формулы шпора.
Планиметрия 7-9 класс формулы. Площади фигур в планиметрии таблица. Геометрия формулы для решения задач 7 8 9 класс. Формулы геометрии 10-11 класс шпаргалка. Таблица формул по геометрии 9 класс. Формулы геометрии 7-8 класс. Школа Пифагора справочный материал.
Школа Пифагора справочные материалы по математике. Шпаргалка по геометрии для ЕГЭ профиль. Шпаргалка ЕГЭ профильная математика геометрия. Планиметрия теория для ЕГЭ окружность. Основные формулы по планиметрии для ЕГЭ таблица. Формулы геометрия 11 класс ЕГЭ. Формулы геометрия 10 класс шпаргалка.
Стереометрия 10 класс шпаргалка. Стереометрия 10 класс основные формулы. Справочные материалы по ге.
Сфера, шар Тело, ограниченное сферой, называется шаром.
Осевое сечение шара это круг, радиус которого равен радиусу шара. Осевым сечением является самый большой круг шара. Тетраэдр Радиус описанной сферы тетраэдра. Радиус вписанной в тетраэдр сферы.
В тетраэдр можно вписать сферу, радиус вписанной сферы находим по формуле, приведенной ниже. Найти объем каждого параллелепипеда.
Для построения сечения пирамиды призмы, параллелепипеда, куба можно и нужно построить точки пересечения секущей плоскости с ребрами пирамиды призмы, параллелепипеда, куба и соединить каждые две из них, лежащие в одной грани. Заметим, что последовательность построения вершин и сторон сечения не существенна. В основе построения сечений многогранников лежит две задачи на построение: Линии пересечения двух плоскостей. Точки пересечения прямой и плоскости. Взаимное расположение прямых и плоскостей в стереометрии Определение: В ходе решения задач по стереометрии две прямые в пространстве называются параллельными , если они лежат в одной плоскости и не пересекаются.
Через любую точку пространства, не лежащую на данной прямой, проходит единственная прямая, параллельная данной прямой. Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость. Теорема 3 признак параллельности прямых. Если две прямые параллельны третьей прямой, то они параллельны между собой. Теорема 4 о точке пересечения диагоналей параллелепипеда. Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам. Возможны три случая взаимного расположения прямой и плоскости в стереометрии: Прямая лежит в плоскости каждая точка прямой лежит в плоскости.
Прямая и плоскость пересекаются имеют единственную общую точку. Прямая и плоскость не имеют ни одной общей точки. Определение: Прямая и плоскость называются параллельными , если они не имеют общих точек. Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна данной плоскости. Однако, в пространстве то есть в стереометрии возможен и третий случай, когда не существует плоскости, в которой лежат две прямые при этом они и не пересекаются, и не параллельны. Определение: Две прямые называются скрещивающимися , если не существует плоскости, в которой они обе лежат. Теоремы: Теорема 1 признак скрещивающихся прямых.
Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не принадлежащей первой прямой, то эти прямые скрещивающиеся. Через каждую из двух скрещивающихся прямых проходит единственная плоскость, параллельная другой прямой. Теперь введем понятие угла между скрещивающимися прямыми. Пусть a и b O в пространстве и проведем через нее прямые a 1 и b 1 , параллельные прямым a и b соответственно. Углом между скрещивающимися прямыми a и b называется угол между построенными пересекающимися прямыми a 1 и b 1. Однако на практике точку O чаще выбирают так, чтобы она принадлежала одной из прямых. Это обычно не только элементарно удобнее, но и рациональнее и правильнее с точки зрения построения чертежа и решения задачи.
Поэтому для угла между скрещивающимися прямыми дадим такое определение: Определение: Пусть a и b — две скрещивающиеся прямые. Возьмем произвольную точку O на одной из них в нашем случае, на прямой b и проведем через неё прямую параллельную другой из них в нашем случае a 1 параллельна a. Перпендикулярными могут быть как скрещивающиеся прямые, так и прямые лежащие и пересекающиеся в одной плоскости. Если прямая a перпендикулярна прямой b , то пишут: Определение: Две плоскости называются параллельными , если они не пересекаются, то есть не имеют общих точек. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны. Теорема 2 о свойстве противолежащих граней параллелепипеда. Противолежащие грани параллелепипеда лежат в параллельных плоскостях.
Теорема 3 о прямых пересечения двух параллельных плоскостей третьей плоскостью. Если две параллельные плоскости пересечены третьей, то прямые их пересечения параллельны между собой. Теорема 4. Отрезки параллельных прямых, расположенные между параллельными плоскостями, равны. Теорема 5 о существовании единственной плоскости, параллельной данной плоскости и проходящей через точку вне ее. Через точку, не лежащую в данной плоскости, проходит единственная плоскость, параллельная данной. Определение: Прямая, пересекающая плоскость, называется перпендикулярной плоскости, если она перпендикулярна каждой прямой, лежащей в этой плоскости.
Если одна из двух параллельных прямых перпендикулярна третьей прямой, то и другая прямая перпендикулярна этой прямой. Если одна из двух параллельных прямых перпендикулярна плоскости, то и другая прямая перпендикулярна этой плоскости. Теорема 3 о параллельности прямых, перпендикулярных плоскости. Если две прямые перпендикулярны одной плоскости, то они параллельны. Теорема 4 признак перпендикулярности прямой и плоскости. Если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна этой плоскости. Теорема 5 о плоскости, проходящей через данную точку и перпендикулярной данной прямой.
Через любую точку пространства проходит единственная плоскость, перпендикулярная данной прямой. Теорема 6 о прямой, проходящей через данную точку и перпендикулярной данной плоскости. Через любую точку пространства проходит единственная прямая, перпендикулярная данной плоскости. Теорема 7 о свойстве диагонали прямоугольного параллелепипеда. Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов длин трех его ребер, имеющих общую вершину: Следствие: Все четыре диагонали прямоугольного параллелепипеда равны между собой. Теперь приведем теорему, которая играет важную роль при решении многих задач. Теорема 1 о трех перпендикулярах : Прямая, проведенная в плоскости и перпендикулярная проекции наклонной на эту плоскость, перпендикулярна и самой наклонной.
Верно и обратное утверждение: Теорема 2 о трех перпендикулярах : Прямая, проведенная в плоскости и перпендикулярная наклонной, перпендикулярна и ее проекции на эту плоскость. Данные теоремы, для обозначений с чертежа выше можно кратко сформулировать так: Теорема: Если из одной точки, взятой вне плоскости, проведены к этой плоскости перпендикуляр и две наклонные, то: две наклонные, имеющие равные проекции, равны; из двух наклонных больше та, проекция которой больше. Определения расстояний объектами в пространстве: Расстоянием от точки до плоскости называется длина перпендикуляра, проведенного из этой точки к данной плоскости. Расстоянием между параллельными плоскостями называется расстояние от произвольной точки одной из параллельных плоскостей до другой плоскости. Расстоянием между прямой и параллельной ей плоскостью называется расстояние от произвольной точки прямой до плоскости. Расстоянием между скрещивающимися прямыми называется расстояние от одной из скрещивающихся прямых до плоскости, проходящей через другую прямую и параллельной первой прямой. Замечание: Как видно из предыдущего определения, проекций бывает много.
Другие кроме ортогональной проекции прямой на плоскость можно построить если прямая определяющая направление проецирования будет не перпендикулярна плоскости. Однако, именно ортогональную проекцию прямой на плоскость в будущем мы будем встречать в задачах. А называть ортогональную проекцию будем просто проекцией как на чертеже. Теорема: Угол между прямой и плоскостью является наименьшим из всех углов, которые данная прямая образует с прямыми, лежащими в данной плоскости и проходящими через точку пересечения прямой и плоскости. Определения: Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой и частью пространства, для которой эти полуплоскости служат границей. Линейным углом двугранного угла называется угол, сторонами которого являются лучи с общим началом на ребре двугранного угла, которые проведены в его гранях перпендикулярно ребру. Таким образом, линейный угол двугранного угла — это угол, образованный пересечением двугранного угла плоскостью, перпендикулярной его ребру.
Все линейные углы двугранного угла равны между собой. Градусной мерой двугранного угла называется градусная мера его линейного угла. В дальнейшем, при решении задач по стереометрии, под двугранным углом будем понимать всегда тот линейный угол, градусная мера которого удовлетворяет условию: Определения: Двугранным углом при ребре многогранника называется двугранный угол, ребро которого содержит ребро многогранника, а грани двугранного угла содержат грани многогранника, которые пересекаются по данному ребру многогранника. Углом между пересекающимися плоскостями называется угол между прямыми, проведенными соответственно в данных плоскостях перпендикулярно их линии пересечения через некоторую ее точку. Теоремы: Теорема 1 признак перпендикулярности плоскостей. Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны. Прямая, лежащая в одной из двух перпендикулярных плоскостей и перпендикулярная прямой, по которой они пересекаются, перпендикулярна другой плоскости.
Точки M и M 1 называются симметричными относительно прямой l , если прямая l MM 1 и перпендикулярна ему. Выпуклый многогранник называется правильным , если все его грани — равные между собой правильные многоугольники и в каждой вершине сходится одно и то же число ребер. Призма Определения: Призма — многогранник, две грани которого являются равными многоугольниками, лежащими в параллельных плоскостях, а остальные грани — параллелограммами, имеющими общие стороны с этими многоугольниками. Основания — это две грани, являющиеся равными многоугольниками, лежащими в параллельных плоскостях. Боковые грани — все грани, кроме оснований. Каждая боковая грань обязательно является параллелограммом. Боковая поверхность — объединение боковых граней.
Полная поверхность — объединение оснований и боковой поверхности. Боковые ребра — общие стороны боковых граней. Высота — отрезок, соединяющий основания призмы и перпендикулярный им. На чертеже это, например, KR. Диагональ — отрезок, соединяющий две вершины призмы, не принадлежащие одной грани. На чертеже это, например, BP. Диагональная плоскость — плоскость, проходящая через боковое ребро призмы и диагональ основания.
Другое определение: диагональная плоскость — плоскость, проходящая через два боковых ребра призмы, не принадлежащих одной грани. Диагональное сечение — пересечение призмы и диагональной плоскости. В сечении образуется параллелограмм, в том числе, иногда, его частные случаи — ромб, прямоугольник, квадрат. На чертеже это, например, EBLP. Перпендикулярное ортогональное сечение — пересечение призмы и плоскости, перпендикулярной ее боковому ребру. Свойства и формулы для призмы: Основания призмы являются равными многоугольниками. Боковые грани призмы являются параллелограммами.
Боковые ребра призмы параллельны и равны. Объём призмы равен произведению её высоты на площадь основания: где: S осн — площадь основания на чертеже это, например, ABCDE , h — высота на чертеже это MN. Площадь полной поверхности призмы равна сумме площади её боковой поверхности и удвоенной площади основания: Перпендикулярное сечение перпендикулярно ко всем боковым рёбрам призмы на чертеже ниже перпендикулярное сечение это A 2 B 2 C 2 D 2 E 2. Углы перпендикулярного сечения — это линейные углы двугранных углов при соответствующих боковых рёбрах. Перпендикулярное ортогональное сечение перпендикулярно ко всем боковым граням. Объем наклонной призмы равен произведению площади перпендикулярного сечения на длину бокового ребра: где: S сеч — площадь перпендикулярного сечения, l — длина бокового ребра на чертеже ниже это, например, AA 1 или BB 1 и так далее. Площадь боковой поверхности произвольной призмы равна произведению периметра перпендикулярного сечения на длину бокового ребра: где: P сеч — периметр перпендикулярного сечения, l — длина бокового ребра.
Виды призм в стереометрии: Если боковые ребра не перпендикулярны основанию, то такая призма называется наклонной изображены выше. Основания такой призмы, как обычно, расположены в параллельных плоскостях, боковые рёбра не перпендикулярны этим плоскостям, но параллельны между собой. Боковые грани — параллелограммы. В прямой призме боковые ребра являются высотами. Боковые грани прямой призмы - прямоугольники. А площадь и периметр основания равны соответственно площади и периметру перпендикулярного сечения у прямой призмы, вообще говоря, перпендикулярное сечение целиком является такой же фигурой, как и основания.
Мы будем выводить формулы понижения степени из формул двойного угла. Сейчас вообще ничего удивительного не будет. Что еще пригодится вам для тригонометрии на ЕГЭ Скажу по секрету, что это далеко не все формулы тригонометрии, которые существуют. Есть и другие: некоторые можно вывести из вышеуказанных, некоторые можно обобщить и вместо огромного количества формул использовать короткое правило. Но мне кажется, что пока этого и так много! Советую сначала хорошо отработать формулы, которые я перечислила в этой статье, и только потом браться за другие. Так вы не загрузите свою память и будете быстрее решать сложные задания по тригонометрии из ЕГЭ. Это, кстати, касается любой темы на экзамене по математике: а в ЕГЭ их очень много. Поэтому чтобы получить высокий балл, надо правильно и системно отработать их все.
Математика. ЕГЭ. Стереометрия 2
Формула сложения вероятностей для несовместных событий: вероятность наступления какого-либо из двух несовместных событий равна сумме вероятностей наступления этих событий (по отдельности), то есть (или) = () + (). Как подготовиться к решению заданий ЕГЭ № 14 по стереометрии | 1С:Репетитор. вся необходимая информация для решения 2 задачи ЕГЭ. Шпаргалка по стереометрии ЕГЭ профиль.
Все формулы для стереометрии для профиля - 85 фото
Планиметрия теория для ЕГЭ окружность. Основные формулы по планиметрии для ЕГЭ таблица. Формулы геометрия 11 класс ЕГЭ. Формулы геометрия 10 класс шпаргалка. Стереометрия 10 класс шпаргалка. Стереометрия 10 класс основные формулы. Справочные материалы по ге. Все формулы для ЕГЭ по математике профильный шпаргалка. Формулы ЕГЭ математика профильный уровень.
Формулы для ЕГЭ по математике база 2022. Формулы для ЕГЭ по математике профильный уровень 2022. Формулы площадей и объемов всех фигур. Таблица площадей и объемов геометрических фигур. Формулы площадей поверхности и объёмов всех фигур. Формулы площадей и объемов всех фигур для ЕГЭ. Шпоры по математике школа Пифагора. Школа Пифагора ЕГЭ шпоры.
Шпаргалка по геометрии школа Пифагора. ОГЭ математика площади фигур формулы. Площади фигур в ОГЭ справочные материалы. Основные формулы по геометрии для ОГЭ. Справочный материал для ОГЭ по математике 2023 геометрия. Шпаргалки для ЕГЭ по профильной математике 2022. Формулы для профильной математики ЕГЭ 2021. Шпаргалки ЕГЭ математика база 2022.
Основные формулы геометрии таблица. Геометрия 10 класс основные теоремы и формулы. Основные формулы планиметрии и стереометрии. Формулы стереометрии для ЕГЭ. Справочный материал ЕГЭ математика профиль. Справочные материалы. Справочные материалы тригонометрия. Справочный материал профиль.
Стереометрия 11 класс таблица. Формулы для ЕГЭ по математике геометрия стереометрия. Стереометрия формулы для ЕГЭ профиль пирамида. Теория по стереометрии для ЕГЭ. Теоремы по геометрии 7-8 класс шпаргалка. Формулы по планиметрии шпаргалка. Шпаргалка по формулам планиметрии на ЕГЭ. Стереометрия 10 класс шпаргалка ЕГЭ.
Формулы по математике для ЕГЭ база 2021. Справочные материалы ОГЭ математика 9 класс 2022. Справочный материал ОГЭ математика 9 класс 2022. Справочные материалы профильная математика ЕГЭ. Площади планиметрия для ЕГЭ. Площадь треугольника формула. Шпаргалка по стереометрии ЕГЭ профиль. Формулы по стереометрии.
Ыормулыпо стереометрии. Стереометрия тела вращения формулы. Формулы объема тел вращения: цилиндра, конуса и шара. Формулы объема по стереометрии. Формулы геометрии для ЕГЭ по математике профильный. Шпоры ЕГЭ профильная математика геометрия. ЕГЭ математика база справочные материалы на экзамене. Справочные материалы 9 класс ОГЭ математика.
Планиметрия 11 класс формулы. Формулы планиметрии для ЕГЭ шпаргалка. Формулы по геометрии для ЕГЭ стереометрия. Формулы стереометрии таблица для ЕГЭ. Основные формулы. Ключевые математические формулы. Основные формулы математики. Треугольники ЕГЭ.
Равнобедренный треугольник формулы ЕГЭ. Формулы для треугольника ЕГЭ.
Тетраэдр Радиус описанной сферы тетраэдра. Радиус вписанной в тетраэдр сферы. В тетраэдр можно вписать сферу, радиус вписанной сферы находим по формуле, приведенной ниже. Найти объем каждого параллелепипеда. Задачи на нахождение площади поверхности составного многогранника. Найдите площадь поверхности многогранника, изображённого на рисунке все двугранные углы прямые.
Чтобы найти площадь основания, разделим его на два прямоугольника и найдем площадь каждого: Далее подставим все данные в формулу и найдем площадь поверхности многогранника — Если составной многогранник нельзя представить в виде призмы, то площадь полной поверхности можно найти как сумму площадей всех граней, ограничивающих поверхность.
Профиматематик 5 подписчиков Подписаться 3 задание ЕГЭ по профильной математике - это задачи по стереометрии, или простыми словами - задачи по геометрии с объёмными фигурами. В них нет ничего сложного, если разобраться с базовыми формулами по нахождению объёма и площади поверхности. Я репетитор и занимаюсь частными индивидуальными занятиями с учениками, чтобы заниматься со мной пиши?
Сечением пирамиды призмы, параллелепипеда, куба называется фигура, состоящая из всех точек, которые являются общими для пирамиды призмы, параллелепипеда, куба и секущей плоскости. Секущая плоскость пересекает грани пирамиды параллелепипеда, призмы, куба по отрезкам, поэтому сечение есть многоугольник, лежащий в секущей плоскости, сторонами которого являются указанные отрезки. Для построения сечения пирамиды призмы, параллелепипеда, куба можно и нужно построить точки пересечения секущей плоскости с ребрами пирамиды призмы, параллелепипеда, куба и соединить каждые две из них, лежащие в одной грани.
Заметим, что последовательность построения вершин и сторон сечения не существенна. В основе построения сечений многогранников лежит две задачи на построение: Линии пересечения двух плоскостей. Точки пересечения прямой и плоскости.
Взаимное расположение прямых и плоскостей в стереометрии Определение: В ходе решения задач по стереометрии две прямые в пространстве называются параллельными , если они лежат в одной плоскости и не пересекаются. Через любую точку пространства, не лежащую на данной прямой, проходит единственная прямая, параллельная данной прямой. Если одна из двух параллельных прямых пересекает данную плоскость, то и другая прямая пересекает эту плоскость.
Теорема 3 признак параллельности прямых. Если две прямые параллельны третьей прямой, то они параллельны между собой. Теорема 4 о точке пересечения диагоналей параллелепипеда.
Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам. Возможны три случая взаимного расположения прямой и плоскости в стереометрии: Прямая лежит в плоскости каждая точка прямой лежит в плоскости. Прямая и плоскость пересекаются имеют единственную общую точку.
Прямая и плоскость не имеют ни одной общей точки. Определение: Прямая и плоскость называются параллельными , если они не имеют общих точек. Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна данной плоскости.
Однако, в пространстве то есть в стереометрии возможен и третий случай, когда не существует плоскости, в которой лежат две прямые при этом они и не пересекаются, и не параллельны. Определение: Две прямые называются скрещивающимися , если не существует плоскости, в которой они обе лежат. Теоремы: Теорема 1 признак скрещивающихся прямых.
Если одна из двух прямых лежит в некоторой плоскости, а другая прямая пересекает эту плоскость в точке, не принадлежащей первой прямой, то эти прямые скрещивающиеся. Через каждую из двух скрещивающихся прямых проходит единственная плоскость, параллельная другой прямой. Теперь введем понятие угла между скрещивающимися прямыми.
Пусть a и b O в пространстве и проведем через нее прямые a 1 и b 1 , параллельные прямым a и b соответственно. Углом между скрещивающимися прямыми a и b называется угол между построенными пересекающимися прямыми a 1 и b 1. Однако на практике точку O чаще выбирают так, чтобы она принадлежала одной из прямых.
Это обычно не только элементарно удобнее, но и рациональнее и правильнее с точки зрения построения чертежа и решения задачи. Поэтому для угла между скрещивающимися прямыми дадим такое определение: Определение: Пусть a и b — две скрещивающиеся прямые. Возьмем произвольную точку O на одной из них в нашем случае, на прямой b и проведем через неё прямую параллельную другой из них в нашем случае a 1 параллельна a.
Перпендикулярными могут быть как скрещивающиеся прямые, так и прямые лежащие и пересекающиеся в одной плоскости. Если прямая a перпендикулярна прямой b , то пишут: Определение: Две плоскости называются параллельными , если они не пересекаются, то есть не имеют общих точек. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны.
Теорема 2 о свойстве противолежащих граней параллелепипеда. Противолежащие грани параллелепипеда лежат в параллельных плоскостях. Теорема 3 о прямых пересечения двух параллельных плоскостей третьей плоскостью.
Если две параллельные плоскости пересечены третьей, то прямые их пересечения параллельны между собой. Теорема 4. Отрезки параллельных прямых, расположенные между параллельными плоскостями, равны.
Теорема 5 о существовании единственной плоскости, параллельной данной плоскости и проходящей через точку вне ее. Через точку, не лежащую в данной плоскости, проходит единственная плоскость, параллельная данной. Определение: Прямая, пересекающая плоскость, называется перпендикулярной плоскости, если она перпендикулярна каждой прямой, лежащей в этой плоскости.
Если одна из двух параллельных прямых перпендикулярна третьей прямой, то и другая прямая перпендикулярна этой прямой. Если одна из двух параллельных прямых перпендикулярна плоскости, то и другая прямая перпендикулярна этой плоскости. Теорема 3 о параллельности прямых, перпендикулярных плоскости.
Если две прямые перпендикулярны одной плоскости, то они параллельны. Теорема 4 признак перпендикулярности прямой и плоскости. Если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна этой плоскости.
Теорема 5 о плоскости, проходящей через данную точку и перпендикулярной данной прямой. Через любую точку пространства проходит единственная плоскость, перпендикулярная данной прямой. Теорема 6 о прямой, проходящей через данную точку и перпендикулярной данной плоскости.
Через любую точку пространства проходит единственная прямая, перпендикулярная данной плоскости. Теорема 7 о свойстве диагонали прямоугольного параллелепипеда. Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов длин трех его ребер, имеющих общую вершину: Следствие: Все четыре диагонали прямоугольного параллелепипеда равны между собой.
Теперь приведем теорему, которая играет важную роль при решении многих задач. Теорема 1 о трех перпендикулярах : Прямая, проведенная в плоскости и перпендикулярная проекции наклонной на эту плоскость, перпендикулярна и самой наклонной. Верно и обратное утверждение: Теорема 2 о трех перпендикулярах : Прямая, проведенная в плоскости и перпендикулярная наклонной, перпендикулярна и ее проекции на эту плоскость.
Данные теоремы, для обозначений с чертежа выше можно кратко сформулировать так: Теорема: Если из одной точки, взятой вне плоскости, проведены к этой плоскости перпендикуляр и две наклонные, то: две наклонные, имеющие равные проекции, равны; из двух наклонных больше та, проекция которой больше. Определения расстояний объектами в пространстве: Расстоянием от точки до плоскости называется длина перпендикуляра, проведенного из этой точки к данной плоскости. Расстоянием между параллельными плоскостями называется расстояние от произвольной точки одной из параллельных плоскостей до другой плоскости.
Расстоянием между прямой и параллельной ей плоскостью называется расстояние от произвольной точки прямой до плоскости. Расстоянием между скрещивающимися прямыми называется расстояние от одной из скрещивающихся прямых до плоскости, проходящей через другую прямую и параллельной первой прямой. Замечание: Как видно из предыдущего определения, проекций бывает много.
Другие кроме ортогональной проекции прямой на плоскость можно построить если прямая определяющая направление проецирования будет не перпендикулярна плоскости. Однако, именно ортогональную проекцию прямой на плоскость в будущем мы будем встречать в задачах. А называть ортогональную проекцию будем просто проекцией как на чертеже.
Теорема: Угол между прямой и плоскостью является наименьшим из всех углов, которые данная прямая образует с прямыми, лежащими в данной плоскости и проходящими через точку пересечения прямой и плоскости. Определения: Двугранным углом называется фигура, образованная двумя полуплоскостями с общей граничной прямой и частью пространства, для которой эти полуплоскости служат границей. Линейным углом двугранного угла называется угол, сторонами которого являются лучи с общим началом на ребре двугранного угла, которые проведены в его гранях перпендикулярно ребру.
Таким образом, линейный угол двугранного угла — это угол, образованный пересечением двугранного угла плоскостью, перпендикулярной его ребру. Все линейные углы двугранного угла равны между собой. Градусной мерой двугранного угла называется градусная мера его линейного угла.
В дальнейшем, при решении задач по стереометрии, под двугранным углом будем понимать всегда тот линейный угол, градусная мера которого удовлетворяет условию: Определения: Двугранным углом при ребре многогранника называется двугранный угол, ребро которого содержит ребро многогранника, а грани двугранного угла содержат грани многогранника, которые пересекаются по данному ребру многогранника. Углом между пересекающимися плоскостями называется угол между прямыми, проведенными соответственно в данных плоскостях перпендикулярно их линии пересечения через некоторую ее точку. Теоремы: Теорема 1 признак перпендикулярности плоскостей.
Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны. Прямая, лежащая в одной из двух перпендикулярных плоскостей и перпендикулярная прямой, по которой они пересекаются, перпендикулярна другой плоскости. Точки M и M 1 называются симметричными относительно прямой l , если прямая l MM 1 и перпендикулярна ему.
Выпуклый многогранник называется правильным , если все его грани — равные между собой правильные многоугольники и в каждой вершине сходится одно и то же число ребер. Призма Определения: Призма — многогранник, две грани которого являются равными многоугольниками, лежащими в параллельных плоскостях, а остальные грани — параллелограммами, имеющими общие стороны с этими многоугольниками. Основания — это две грани, являющиеся равными многоугольниками, лежащими в параллельных плоскостях.
Боковые грани — все грани, кроме оснований. Каждая боковая грань обязательно является параллелограммом. Боковая поверхность — объединение боковых граней.
Полная поверхность — объединение оснований и боковой поверхности. Боковые ребра — общие стороны боковых граней. Высота — отрезок, соединяющий основания призмы и перпендикулярный им.
На чертеже это, например, KR. Диагональ — отрезок, соединяющий две вершины призмы, не принадлежащие одной грани. На чертеже это, например, BP.
Диагональная плоскость — плоскость, проходящая через боковое ребро призмы и диагональ основания. Другое определение: диагональная плоскость — плоскость, проходящая через два боковых ребра призмы, не принадлежащих одной грани. Диагональное сечение — пересечение призмы и диагональной плоскости.
В сечении образуется параллелограмм, в том числе, иногда, его частные случаи — ромб, прямоугольник, квадрат. На чертеже это, например, EBLP. Перпендикулярное ортогональное сечение — пересечение призмы и плоскости, перпендикулярной ее боковому ребру.
Свойства и формулы для призмы: Основания призмы являются равными многоугольниками. Боковые грани призмы являются параллелограммами. Боковые ребра призмы параллельны и равны.
Объём призмы равен произведению её высоты на площадь основания: где: S осн — площадь основания на чертеже это, например, ABCDE , h — высота на чертеже это MN. Площадь полной поверхности призмы равна сумме площади её боковой поверхности и удвоенной площади основания: Перпендикулярное сечение перпендикулярно ко всем боковым рёбрам призмы на чертеже ниже перпендикулярное сечение это A 2 B 2 C 2 D 2 E 2. Углы перпендикулярного сечения — это линейные углы двугранных углов при соответствующих боковых рёбрах.
Перпендикулярное ортогональное сечение перпендикулярно ко всем боковым граням. Объем наклонной призмы равен произведению площади перпендикулярного сечения на длину бокового ребра: где: S сеч — площадь перпендикулярного сечения, l — длина бокового ребра на чертеже ниже это, например, AA 1 или BB 1 и так далее. Площадь боковой поверхности произвольной призмы равна произведению периметра перпендикулярного сечения на длину бокового ребра: где: P сеч — периметр перпендикулярного сечения, l — длина бокового ребра.
Виды призм в стереометрии: Если боковые ребра не перпендикулярны основанию, то такая призма называется наклонной изображены выше. Основания такой призмы, как обычно, расположены в параллельных плоскостях, боковые рёбра не перпендикулярны этим плоскостям, но параллельны между собой. Боковые грани — параллелограммы.
В прямой призме боковые ребра являются высотами.