Новости в случайном эксперименте симметричную монету бросают

В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что во второй раз выпадет то же, что и в первый. Поскольку монета симметричная, вероятность каждого исхода равна 1/2 (или 0,5). В нашем случае монету бросают 10 раз. Решение задач по теории вероятности: в случайном эксперименте симметричную монету бросают трижды. 282854. В случайном эксперименте симметричную монету бросают дважды.

Номер 55 учебник по вероятности и статистике Высоцкий, Ященко 7-9 класс часть 2

Монету бросают 10 раз Найдите вероятность того что Орел выпадет 5 раз. Симметричную монету бросили 2 раза Найдите вероятность события. Монету бросают дважды вероятность того что Орел выпадет хотя бы 1 раз. Вероятность выпадения Решки при одном бросании монеты. Вероятность выпадения орла 2 раза. Симметричная монета подбрасывается. Подбрасываются две симметричные монеты.

Монету подбрасывают несколько раз. Пространство элементарных событий при подбрасывании монеты 3 раза. Количество элементарных событий при броске монеты. Количество элементарных событий. Сколько элементарных событий при трех бросаниях монеты. Монету бросают 3 раза Найдите вероятность элементарного исхода Оро.

Теория вероятности Орел и Решка. Вероятность того что наступит исход ОО. Сколько элементарных событий при 10 бросаниях монеты. Симметричную монету бросают дважды. По теории вероятности бросание монеты. Монету подбрасывают 3 раза какова вероятность что герб выпадет 1 раз.

Бросание монетки вероятность. Симметричную монету бросают 3 раза. Все элементарные события бросания симметричной монеты. Симметричную монету бросают 3 раза выпишите все элементарные события. Пространство элементарных событий теория вероятности. Описать пространство элементарных исходов.

Описать пространство элементарных событий примеры. Эксперимент пространство элементарных событий исходов. Монета кинута три раза, какова вероятность. Бросают монету 3 раза какова вероятность. Монету бросают 4 раза какова вероятность. Игральный кубик бросают трижды.

Кубик бросают трижды. Игральную кость бросают трижды. Игральные кости бросают трижды сколько элементарных исходов опыта. Игральный кубик бросают дважды сколько элементарных исходов опыта. Сумма очков. Сколько элементарных событий при 3 бросаниях монеты.

Если этот вариант ответа не полностью вас удовлетворяет, то с помощью автоматического умного поиска можно найти другие вопросы по этой же теме, в категории Математика. В случае если ответы на похожие вопросы не раскрывают в полном объеме необходимую информацию, то воспользуйтесь кнопкой в верхней части сайта и сформулируйте свой вопрос иначе. Также на этой странице вы сможете ознакомиться с вариантами ответов пользователей. Последние ответы Полинка1455 28 апр. Zajcikvb 28 апр.

Mario58 28 апр.

Найдите вероятность того, что орел выпадет ровно три раза. Подставляем n и k в формулу: Задача. Монету бросают три раза. Снова выписываем числа n и k. Осталось подставить числа n и k в формулу: Напомню, что 0! В случайном эксперименте симметричную монету бросают 4 раза.

Найдите вероятность того, что орел выпадет больше раз, чем решка. Чтобы орлов было больше, чем решек, они должны выпасть либо 3 раза тогда решек будет 1 , либо 4 тогда решек вообще не будет. Найдем вероятность каждого из этих событий. Пусть p 1 - вероятность того, что орел выпадет 3 раза. Имеем: Теперь найдем p 2 - вероятность того, что орел выпадет все 4 раза. Имеем: Чтобы получить ответ, осталось сложить вероятности p 1 и p 2. Помните: складывать вероятности можно только для взаимоисключающих событий.

Их сегодня мы и разберем. Задачи о подбрасывании монеты Задача 1. Симметричную монету бросают дважды. Найдите вероятность того, что решка выпадет ровно один раз. В таких задачах удобно выписать все возможные исходы, записывая их при помощи букв Р решка и О орел. Так, исход ОР означает, что при первом броске выпал орел, а при втором — решка. Благоприятствуют событию «решка выпадет ровно один раз» 2 исхода: РО и ОР.

Искомая вероятность равна. Ответ: 0,5. Задача 2. Симметричную монету бросают трижды, Найдите вероятность того, что орел выпадет ровно два раза. Ответ: 0,375. Задача 3. Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнет игру с мячом.

Команда «Изумруд» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Изумруд» выиграет жребий ровно один раз. Эта задача аналогична предыдущей. Пусть каждый раз выпадение решки означает выигрыш жребия «Изумрудом» такое предположение не влияет на вычисление вероятностей. Задача 4.

Вероятность выпадения решки 3 раза мы уже находили в первом пункте и она равна 0. Таким образом, вероятность того, что решка выпадет либо 1 раз, либо 3 раза при пятикратном бросании монеты, равна 0. Мы можем рассчитать эту вероятность, сложив вероятности выпадения орла 1, 3 и 5 раз. Вероятность выпадения орла 1 раз мы уже находили в пункте в и она равна 0.

Значение не введено

Турист П. Ответ: 0,2 В этом примере, уже следует задуматься о том, что представляет собой элементарное событие. Здесь это сформированный рейс вертолёта. Один человек может попасть только на один рейс, то есть только в одну группу из 6-ти человек, - события независимы. По условию задачи порядок рейсов случаен, то есть все рейсы для каждой группы равновозможны. Считаем рейсы. Пример 3 Из множества натуральных чисел от 10 до 19 наудачу выбирают одно число. Какова вероятность того, что оно делится на 3?

Решение Выпишем в ряд заданные числа и отметим те из них, которые делятся на 3. Ответ: 0,3 Замечание. Этот способ решения относится к простейшему случаю, когда отрезок ряда короткий, и его легко выписать явно. Что будет, если задачу изменить, например, так: Из множества натуральных чисел от 107 до 198 наудачу выбирают одно число. Тогда придётся вспомнить, что "на 3 делится каждое третье число в натуральном ряду" на 4 - каждое четвертое, на 5 каждое пятое... В каждой полной группе есть одно число, которое делится на 3. В неполной группе, которую составляют два последних числа, 197 не делится 3, а 198 делится.

Внимание: Для усиления обучающего эффекта ответы и решения загружаются отдельно для каждой задачи последовательным нажатием кнопок на желтом фоне. Когда задач много, кнопки могут появиться с задержкой. Если кнопок не видно совсем, проверьте, разрешен ли в вашем браузере JavaScript. Задача 1 В сборнике билетов по биологии всего 55 билетов, в 11 из них встречается вопрос по ботанике. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по ботанике. Решение Событие A - "выбор билета с вопросом по ботанике". Выбрать можно только один билет события попарно несовместимы , все билеты одинаковы события равновозможны и все билеты доступны школьнику полная группа.

Значит событие "выбор билета" является элементарным. Ответ: 0,2 Замечание: В самом деле "бытовая" ситуация настолько знакома и проста, что интуитивно понятно, какие события являются элементарными, и какие благоприятствующими. Дальше я не буду подробно описывать эту часть решения, если в этом не будет необходимости. Задача 2. В сборнике билетов по математике всего 25 билетов, в 10 из них встречается вопрос по неравенствам. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику не достанется вопроса по неравенствам. Решение Способ I.

Событие A - "выбор билета без вопроса по неравенствам". Способ II. Событие A - "выбор билета c вопросом по неравенствам". Но вопрос этой задачи противоположен вопросу задачи 1, то есть нам нужна вероятность противоположного события В - "выбор билета без вопроса по неравенствам". Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая. Решение Событие A - "первой выступает гимнастка из Китая".

Чтобы определить число исходов, давайте сначала задумаемся, что такое исход жеребьевки? Что будем принимать за элементарное событие? Если будем представлять себе процедуру, когда одна спортсменка уже вытащила шарик с номером выступления, а вторая должна что-то вытащить из оставшихся, то будет сложное решение с использованием условной вероятности. Ответ получить можно см.

Итак, поехали!

Метод перебора комбинаций Этот метод еще называется «решение напролом». Состоит из трех шагов: Выписываем все возможные комбинации орлов и решек. Число таких комбинаций - это n ; Среди полученных комбинаций отмечаем те, которые требуются по условию задачи. К сожалению, этот способ работает лишь для малого количества бросков. Потому что с каждым новым броском число комбинаций удваивается.

Например, для 2 монет придется выписать всего 4 комбинации. Взгляните на примеры - и сами все поймете: Задача. В случайном эксперименте симметричную монету бросают 2 раза. Найдите вероятность того, что орлов и решек выпадет одинаковое количество. Итак, монету бросают два раза.

Находим вероятность: Задача. Монету бросают четыре раза. Найдите вероятность того, что решка не выпадет ни разу. Вроде, ничего не забыл. Из этих вариантов нас устраивает лишь комбинация «OOOO», в которой вообще нет решек.

Осталось найти вероятность: Как видите, в последней задаче пришлось выписывать 16 вариантов. Вы уверены, что сможете выписать их без единой ошибки? Лично я - не уверен. Поэтому давайте рассмотрим второй способ решения. Специальная формула вероятности Итак, в задачах с монетами есть собственная формула вероятности.

Она настолько простая и важная, что я решил оформить ее в виде теоремы. Взгляните: Теорема. Пусть монету бросают n раз. Тогда вероятность того, что орел выпадет ровно k раз, можно найти по формуле: Где C n k - число сочетаний из n элементов по k , которое считается по формуле: Таким образом, для решения задачи с монетами нужны два числа: число бросков и число орлов. Чаще всего эти числа даны прямо в тексте задачи.

Более того, не имеет значения, что именно считать: решки или орлы. Ответ получится один и тот же. На первый взгляд, теорема кажется слишком громоздкой. Но стоит чуть-чуть потренироваться - и вам уже не захочется возвращаться к стандартному алгоритму, описанному выше. Найдите вероятность того, что орел выпадет ровно три раза.

Подставляем n и k в формулу: Задача.

Облегчить ситуацию могут правила сложения и умножения вариантов, а также готовые рецепты комбинаторики: формулы для числа перестановок, сочетаний, размещений. Правило умножения еще называют "И-правилом", а правило сложения "ИЛИ-правилом".

Не забывайте проверить независимость способов для "И" и несовместимость не такими для "ИЛИ". Следующие задачи можно решать как перебором вариантов, так и с помощью формул комбинаторики. Я даю несколько способов решения для каждой задачи, потому что одним способом её можно решить быстро, а другим долго, и потому что кому-то понятнее один подход, а кому-то другой.

Но это не значит, что обязательно нужно разбирать все способы. Лучше хорошо усвоить один любимый. Выбор за вами.

Пример 4 В случайном эксперименте симметричную монету бросают пять раз. Найдите вероятность того, что орел выпадет дважды. Эту задачу можно решить несколькими способами.

Рассмотрим тот, который соответствунт заголовку раздела, а именно только применением формул комбинаторики. Решение В каждом из пяти бросаний монеты может реализоваться один из исходов - орёл или решка - для краткости "о" или "р". Таким образом, результатом серии испытаний будет группа из пяти букв, составленная из двух исходных, а значит с повторениями.

Например, "оорор" означает, что два раза подряд выпал орел, затем решка, снова орёл и снова решка. Благоприятствующие исходы - орел выпадет ровно два раза - представляют собой пятибуквенные "слова", составленные из трёх букв "р" и двух "о", которые могут стоять на разных позициях, например, "opppo" или "poopp", то есть это перестановки с повторениями. В таких случаях Вы сможете выписать и рассмотреть исходы явным образом.

Задача 10 В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел не выпадет ни разу. Благоприятствующее только ррр.

Ответ: 0,125 Задача 11 В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет ровно один раз. Ответ: 0,375 Задача 12 В случайном эксперименте симметричную монету бросают трижды.

Найдите вероятность того, что орел выпадет хотя бы один раз. Благоприятствующие все, кроме ооо. Способ III.

Событие "орел выпадет хотя бы один раз" противоположно событию "орел не выпадет ни разу. Мы определили её в задаче 10. Ответ: 0,875 Задача 13 В случайном эксперименте симметричную монету бросают четырежды.

Решение Воспользуемся правилом умножения для независимых испытаний. Ответ: 0,0625 Замечание: Конечно, эту задачу можно было бы решить любым из способов, рассмотренных раньше. Но чем больше число возможных исходов, тем дольше и бессмысленнее решать перебором вариантов.

Cамый лучший способ при большом числе бросаний - формула Бернулли. Попробуйте применить её в этой задаче самостоятельно. Задача 14 В случайном эксперименте бросают две игральные кости.

Найдите вероятность того, что в сумме выпадет 8 очков. Для одной кости может быть 6 разных исходов испытания выпадение очков 1,2,... Первый и последний варианты являются в нашем случае невозможными событиями, числа 7 нет на обычных игральных костях.

Остальные реализуются, если на одной кости выпадает первое слагаемое, а на другой кости - второе. Для этой задачи хорошо считать варианты с помощью таблички.

Правильный ответ: 0,5 31 Игральную кость бросают дважды. Найдите вероятность того, что наибольшее из двух выпавших чисел равно 5. Правильный ответ: 0,25 32 Игральную кость бросают дважды. Найдите вероятность того, что оба раза выпало число, большее 3. Правильный ответ: 0,25 33 Игральную кость бросают дважды. Найдите вероятность того, что сумма двух выпавших чисел равна 7 или 10. Правильный ответ: 0,25 34 Игральную кость бросают дважды.

Найдите вероятность того, что сумма двух выпавших чисел равна 6 или 9. Правильный ответ: 0,25 35 Игральную кость бросают 2 раза. Найдите вероятность того, что хотя бы раз выпало число, большее 3. Правильный ответ: 0,75 36 Игральную кость бросают 2 раза. Найдите вероятность того, что хотя бы раз выпало число, меньшее 4. Правильный ответ: 0,75 37 Стрелок 3 раза стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что стрелок первые 2 раза попал в мишени, а последний раз промахнулся. Правильный ответ: 0,128 38 Стрелок 3 раза стреляет по мишеням.

Вероятность попадания в мишень при одном выстреле равна 0,6. Найдите вероятность того, что стрелок первый раз попал в мишени, а последние два раза промахнулся. Правильный ответ: 0,096 39 На экзамене по геометрии школьнику достаётся одна задача из сборника. Вероятность того, что эта задача по теме «Площадь», равна 0,15. Вероятность того, что это окажется задача по теме «Окружность», равна 0,3. В сборнике нет задач, которые одновременно относятся к этим двум темам. Найдите вероятность того, что на экзамене школьнику достанется задача по одной из этих двух тем. Правильный ответ: 0,45 40 На экзамене по геометрии школьнику достаётся одна задача из сборника. Вероятность того, что эта задача по теме «Параллелограмм», равна 0,45.

Вероятность того, что это окажется задача по теме «Треугольники», равна 0,15. Правильный ответ: 0,6 41 В каждой десятой банке кофе согласно условиям акции есть приз. Призы распределены по банкам случайно.

В случайном эксперименте симметричную монету бросают четырежды?

1) В случайном эксперименте симметричную монету бросают дважды. Проверяем знания📓 В случайном эксперименте симметричную монету бросают дважды. В случайном эксперименте бросают три игральные кости. Задача 4. В случайном эксперименте симметричную монету бросают четыре раза.

В случайном эксперименте симметричную монету бросают... раз

Для проведения жеребьевки первого тура участников случайным образом разбили на две группы по 13 человек. Найти вероятность того, что Коля и Толя попадут в разные группы. Всего исходов для Коли и Толи четыре: 1-1, 1-2, 2-1, 2-2, а благоприятных два: 1-2 и 2-1. Подсчитаем количество всевозможных пар, полученных номеров. Коля имеет 26 вариантов получения номера, тогда у Толи 25 вариантов.

Определите вероятность того, что при бросании игрального кубика правильной кости выпадет более 3 очков. При бросании игрального кубика правильной кости может выпасть любая из шести его граней, то есть произойти любое из элементарных событий - выпадение от 1 до 6 точек очков. Определите вероятность того, что при бросании игрального кубика выпало число очков, не большее 4. Результат округлите до тысячных.

Благоприятствуют событию «решка выпадет ровно один раз» 2 исхода: РО и ОР. Искомая вероятность равна. Ответ: 0,5.

Задача 2. Симметричную монету бросают трижды, Найдите вероятность того, что орел выпадет ровно два раза. Ответ: 0,375.

Задача 3. Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнет игру с мячом. Команда «Изумруд» играет три матча с разными командами.

Найдите вероятность того, что в этих играх «Изумруд» выиграет жребий ровно один раз. Эта задача аналогична предыдущей. Пусть каждый раз выпадение решки означает выигрыш жребия «Изумрудом» такое предположение не влияет на вычисление вероятностей.

Задача 4. Симметричную монету бросают трижды. Найдите вероятность того, что наступит исход РОО в первый раз выпадает решка, во второй и третий - орёл.

Вероятность наступления исхода РОО равна. Ответ: 0,125. Задачи о бросках кубика Задача 5.

Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию «сумма очков равна 8»? Задача 6.

Одновременно бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 4 очка. Результат округлите до сотых.

Вообще, если бросают игральных костей кубиков , то имеется равновозможных исходов. Столько же исходов получается, если один и тот же кубик бросают раз подряд. Событию «в сумме выпало 4» благоприятствуют следующие исходы: 1 — 3, 2 — 2, 3 — 1.

Их количество равно 3. Для подсчёта приближённого значения дроби удобно воспользоваться делением уголком.

Монету бросают до тех пор пока не выпадет Орел. Монету подбрасывают 4 раза таблица. Задачи про монеты по теории вероятности. Задачи на вероятность с монеткой. Монету бросают 3 раза. Задачи на элементарные события.

Игральный кубик бросают дважды сколько элементарных исходов. Кубик бросают дважды сколько исходов опыта. Кубик бросают дважды. Игральный кубик бросают. Бросание монеты какова вероятность. Монету бросают 2 раза. Монету бросают 2 раза какова вероятность. Бросают 2 монеты какова вероятность.

Монету бросают 4 раза Найдите. Вероятность того что выпадет Ровно. Решение задач на вероятность с монетой. Задачи на бросание монеты теория вероятностей. Задачи на нахождение вероятности с монетами. В случайном ксперимене симмеринуую монеру. Монету бросают дважды. В случайном эксперименте симметричную монету бросают дважды.

В случайном эксперемнетк монетку. Симметричную монету бросают четырежды. Вероятность бросания монеты. В случайном эксперименте монету бросают четырежды. Монету бросают четыре раза Найдите вероятность. Монету бросают два раза. Монетку бросают три раза. Монету подбрасывают 5 раз.

Задачи на монетку теория вероятности. Симметричная монета. Задачи на случайности. Монету бросают 4 раза. Симметричную монету подбросили несколько раз Найдите вероятность. Симметричную монету бросают. Монету бросают пять раз.

В случайном эксперименте симметричную монету бросают дважды

В случайном эксперименте бросают две игральные кости. Задачи для подготовки к Задачи ЕГЭ профиль. Задания по теме Классическое определение вероятности. Условия, решения, ответы, тесты, курсы, обсуждения. Задача №8603. Так как монету бросают дважды, существует четыре возможных исхода: орел-орел, решка-решка, орел-решка и решка-орел. Формулировка задачи: В случайном эксперименте симметричную монету бросают дважды.

Остались вопросы?

Метод перебора комбинаций Этот метод еще называется «решение напролом». Состоит из трех шагов: Выписываем все возможные комбинации орлов и решек. Число таких комбинаций — это n; Среди полученных комбинаций отмечаем те, которые требуются по условию задачи. К сожалению, этот способ работает лишь для малого количества бросков. Потому что с каждым новым броском число комбинаций удваивается. Например, для 2 монет придется выписать всего 4 комбинации.

Вероятность того, что это окажется задача по теме «Треугольники», равна 0,15. Правильный ответ: 0,6 41 В каждой десятой банке кофе согласно условиям акции есть приз. Призы распределены по банкам случайно. Варя покупает банку кофе в надежде выиграть приз. Найдите вероятность того, что Варя не найдет приз в своей банке. Правильный ответ: 0,9 42 В каждой двадцать пятой банке кофе согласно условиям акции есть приз. Коля покупает банку кофе в надежде выиграть приз. Найдите вероятность того, что Коля не найдёт приз в своей банке. Правильный ответ: 0,96 43 Из 1600 пакетов молока в среднем 80 протекают.

Какова вероятность того, что случайно выбранный пакет молока не течёт? Правильный ответ: 0,95 44 Из 600 клавиатур для компьютера в среднем 12 не исправны. Какова вероятность того, что случайно выбранная клавиатура исправна? Правильный ответ: 0,98 45 В среднем из каждых 80 поступивших в продажу аккумуляторов 76 аккумуляторов заряжены. Найдите вероятность того, что купленный аккумулятор не заряжен. Правильный ответ: 0,05 46 В среднем из каждых 50 поступивших в продажу аккумуляторов 48 аккумуляторов заряжены. Правильный ответ: 0,04 47 Телевизор у Маши сломался и показывает только один случайный канал. Маша включает телевизор. В это время по трем каналам из двадцати показывают кинокомедии.

Найдите вероятность того, что Маша попадет на канал, где комедия не идет. Правильный ответ: 0,85 48 Телевизор у Маши сломался и показывает только один случайный канал. В это время по двум каналам из десяти показывают кинокомедии. Правильный ответ: 0,8 49 Миша с папой решили покататься на колесе обозрения. Всего на колесе двадцать четыре кабинки, из них 5— синие, 7 — зеленые, остальные — красные. Кабинки по очереди подходят к платформе для посадки. Найдите вероятность того, что Миша прокатится в красной кабинке. Правильный ответ: 0,5 50 Миша с папой решили покататься на колесе обозрения. Всего на колесе шестнадцать кабинок, из них 4 — синие, 6 — зеленые, остальные — красные.

Правильный ответ: 0,375.

Игральную кость бросают дважды. Найдите вероятность того, что оба раза выпало число, меньшее 4.

Так как игральную кость игральный кубик бросают дважды, то будем рассуждать следующим образом: если на первом кубике выпало одно очко, то на втором может выпасть 1, 2, 3, 4, 5, 6. Получаем пары 1;1 , 1;2 , 1;3 , 1;4 , 1;5 , 1;6 и так с каждой гранью.

Задача входит в состав ЕГЭ по математике базового уровня для 11 класса под номером 10 Классическое определение вероятности. Рассмотрим, как решаются подобные задачи на примерах. Пример задачи 1: В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл не выпадет ни разу. Решение: Рассмотрим все возможные комбинации, которые могут выпасть, если монету бросают дважды. Нас интересуют только те из них, в которых нет ни одного орла.

Задачи с монетой по теории вероятностей на профильном ЕГЭ по математике

Правильный ответ на вопрос«В случайном эксперименте симметричную монету бросают три раза. № 34 В случайном эксперименте симметричную монету бросают четырежды. Найдите вероятность того, что решка выпадет ровно два раза. В случайном эксперименте симметричную монету бросают трижды. В случайном эксперименте симметричную монету бросают е вероятность того что в первый раз выпадает орел, а во второй решка.

Бросили пять монет

Так как монету бросают дважды, существует четыре возможных исхода: орел-орел, решка-решка, орел-решка и решка-орел. 4. Задание B5 (№ 283471) В случайном эксперименте симметричную монету бросают четырежды. Ответы экспертов на вопрос №1217066 В случайном эксперименте симметричную монету бросают трижды. Т.к у монеты 2 стороны, то всего возможны 2^4 = 16 исходов эксперимента, из которых решка выпадает дважды лишь в 6 случаях.

Похожие новости:

Оцените статью
Добавить комментарий