Новости в случайном эксперименте симметричную монету бросают

Решение В случайном эксперименте симметричную монету бросают дважды.

Задачи с монетой по теории вероятностей на профильном ЕГЭ по математике

В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что во второй раз выпадет то же, что и в первый. Главная» Информация о мире» В случайном эксперименте симметричную монету бросают дважды. орел, Р - решка). Т. К нам не важен порядок выпадения стррон то у нас всего 5 вариантов(один из которых нам нужен) и зная что стороны симметричны у обоих сторон шанс выпадения одинаковый сл 1/5=20%. В случайном эксперименте симметричную монету бросают 4 раза.

Монету бросают 4 раза сколько элементарных событий

Например, для 2 монет придется выписать всего 4 комбинации. Взгляните на примеры - и сами все поймете: Задача. В случайном эксперименте симметричную монету бросают 2 раза. Найдите вероятность того, что орлов и решек выпадет одинаковое количество. Итак, монету бросают два раза. Находим вероятность: Задача. Монету бросают четыре раза. Найдите вероятность того, что решка не выпадет ни разу. Вроде, ничего не забыл.

Из этих вариантов нас устраивает лишь комбинация «OOOO», в которой вообще нет решек. Осталось найти вероятность: Как видите, в последней задаче пришлось выписывать 16 вариантов. Вы уверены, что сможете выписать их без единой ошибки? Лично я - не уверен. Поэтому давайте рассмотрим второй способ решения. Специальная формула вероятности Итак, в задачах с монетами есть собственная формула вероятности. Она настолько простая и важная, что я решил оформить ее в виде теоремы. Взгляните: Теорема.

Пусть монету бросают n раз. Тогда вероятность того, что орел выпадет ровно k раз, можно найти по формуле: Где C n k - число сочетаний из n элементов по k , которое считается по формуле: Таким образом, для решения задачи с монетами нужны два числа: число бросков и число орлов. Чаще всего эти числа даны прямо в тексте задачи. Более того, не имеет значения, что именно считать: решки или орлы. Ответ получится один и тот же. На первый взгляд, теорема кажется слишком громоздкой. Но стоит чуть-чуть потренироваться - и вам уже не захочется возвращаться к стандартному алгоритму, описанному выше. Найдите вероятность того, что орел выпадет ровно три раза.

Подставляем n и k в формулу: Задача. Монету бросают три раза. Снова выписываем числа n и k. Осталось подставить числа n и k в формулу: Напомню, что 0! В случайном эксперименте симметричную монету бросают 4 раза. Найдите вероятность того, что орел выпадет больше раз, чем решка. Чтобы орлов было больше, чем решек, они должны выпасть либо 3 раза тогда решек будет 1 , либо 4 тогда решек вообще не будет. Найдем вероятность каждого из этих событий.

Пусть p 1 - вероятность того, что орел выпадет 3 раза. Имеем: Теперь найдем p 2 - вероятность того, что орел выпадет все 4 раза. Имеем: Чтобы получить ответ, осталось сложить вероятности p 1 и p 2. Помните: складывать вероятности можно только для взаимоисключающих событий. Всего 4 варианта: о; о о; р р; р р; о.

Будьте внимательны! Не забудьте, что благоприятствующих событий не может быть больше, чем вообще всех возможных, а значит числитель дроби никогда не превысит знаменатель. Если вы получили другой ответ, он заведомо неверный. Пример 1 На борту самолёта 12 мест рядом с запасными выходами и 18 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир В. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. Пассажиру В. Но "благоприятствующими" будут только те из них, когда пассажир В. Ответ: 0,1 В примере, который представлен выше, реализуется самое простое понятие элементарного события. Так как один человек способен занять только одно место, события независимы. А так как в условии специально оговорено, что при регистрации место выбиралось случайно, то равновозможны. Поэтому, фактически, мы считали не события, а места в самолёте. Пример 2 В группе туристов 30 человек. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 6 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист П. Турист П. Ответ: 0,2 В этом примере, уже следует задуматься о том, что представляет собой элементарное событие. Здесь это сформированный рейс вертолёта. Один человек может попасть только на один рейс, то есть только в одну группу из 6-ти человек, - события независимы. По условию задачи порядок рейсов случаен, то есть все рейсы для каждой группы равновозможны. Считаем рейсы. Пример 3 Из множества натуральных чисел от 10 до 19 наудачу выбирают одно число. Какова вероятность того, что оно делится на 3? Решение Выпишем в ряд заданные числа и отметим те из них, которые делятся на 3. Ответ: 0,3 Замечание. Этот способ решения относится к простейшему случаю, когда отрезок ряда короткий, и его легко выписать явно. Что будет, если задачу изменить, например, так: Из множества натуральных чисел от 107 до 198 наудачу выбирают одно число. Тогда придётся вспомнить, что "на 3 делится каждое третье число в натуральном ряду" на 4 - каждое четвертое, на 5 каждое пятое... В каждой полной группе есть одно число, которое делится на 3. В неполной группе, которую составляют два последних числа, 197 не делится 3, а 198 делится. Внимание: Для усиления обучающего эффекта ответы и решения загружаются отдельно для каждой задачи последовательным нажатием кнопок на желтом фоне. Когда задач много, кнопки могут появиться с задержкой. Если кнопок не видно совсем, проверьте, разрешен ли в вашем браузере JavaScript. Задача 1 В сборнике билетов по биологии всего 55 билетов, в 11 из них встречается вопрос по ботанике. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по ботанике. Решение Событие A - "выбор билета с вопросом по ботанике". Выбрать можно только один билет события попарно несовместимы , все билеты одинаковы события равновозможны и все билеты доступны школьнику полная группа. Значит событие "выбор билета" является элементарным.

Большинство задач B6 решаются по этой формуле буквально в одну строчку — достаточно прочитать условие. Но в случае с подбрасыванием монет эта формула бесполезна, поскольку из текста таких задач вообще не понятно, чему равны числа k и n. В этом и состоит вся сложность. Тем не менее, существует как минимум два принципиально различных метода решения: Метод перебора комбинаций — стандартный алгоритм. Выписываются все комбинации орлов и решек, после чего выбираются нужные; Специальная формула вероятности — стандартное определение вероятности, специально переписанное так, чтобы было удобно работать с монетами. Для решения задачи B6 надо знать оба метода.

Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию «сумма очков равна 8»? Задача 6. Одновременно бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 4 очка. Результат округлите до сотых. Вообще, если бросают игральных костей кубиков , то имеется равновозможных исходов. Столько же исходов получается, если один и тот же кубик бросают раз подряд. Событию «в сумме выпало 4» благоприятствуют следующие исходы: 1 — 3, 2 — 2, 3 — 1. Их количество равно 3. Для подсчёта приближённого значения дроби удобно воспользоваться делением уголком. Таким образом, приблизительно равна 0,083…, округлив до сотых имеем 0,08. Ответ: 0,08 Задача 7. Одновременно бросают три игральные кости. Найдите вероятность того, что в сумме выпадет 5 очков. Исходом будем считать тройку чисел: очки, выпавшие на первой, второй и третьей игральной кости. Всего имеется равновозможных исходов. Событию «в сумме выпало 5» благоприятствуют следующие исходы: 1—1—3, 1—3—1, 3—1—1, 1—2—2, 2—1—2, 2—2—1. Их количество равно 6. Приблизительно получаем 0,027…, округлив до сотых, имеем 0,03. Под редакцией Ф. Лысенко, С. Кулабухова В теории вероятностей существует группа задач, для решения которых достаточно знать классическое определение вероятности и наглядно представлять предлагаемую ситуацию. Такими задачами является большинство задач с подбрасыванием монеты и задачи с бросанием игрального кубика. Напомним классическое определение вероятности. Число возможных элементарных исходов испытания и число благоприятных исходов в рассматриваемых задачах удобно определять перебором всех возможных вариантов комбинаций и непосредственным подсчетом. В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел не выпадет ни разу. В случайном эксперименте симметричную монету бросают трижды.

ЕГЭ. Теория вероятностей. Разбор задачи про монету, которую бросили дважды

Монету бросают 4 раза сколько элементарных событий № 34 В случайном эксперименте симметричную монету бросают четырежды. Найдите вероятность того, что решка выпадет ровно два раза.
В случайном эксперименте сим… - вопрос №1217066 - Математика Задача 4. В случайном эксперименте симметричную монету бросают четыре раза.
Монету бросают 4 раза сколько элементарных событий Симметричную монету бросили 4 раза.
Монету бросают 4 раза сколько элементарных событий Задание. В случайном эксперименте симметричную монету бросают дважды.
Остались вопросы? 1) В случайном эксперименте симметричную монету бросают дважды.

Задачи с использованием элементов комбинаторики

  • Решение задач на вероятность из материалов ОГЭ - математика, презентации
  • Бросили пять монет
  • Специальная формула вероятности
  • В случайном эксперименте симметричную монету бросают... раз
  • Задача 4. В случайном эксперименте симметричную монету бросают четырежды — Студопедия
  • Разместите свой сайт в Timeweb

Решение задачи с симметричной монетой

  • В случайном эксперименте симметричную монету бросают трижды
  • Метод перебора комбинаций
  • Специальная формула вероятности
  • Смотрите также

ЕГЭ профильный уровень. №4 Классическое определение вероятности. Задача 7

Example В случайном эксперименте симметричную монету бросают пять раз. Найдите вероятность того, что орел выпадет ровно 2 раза. Задание. В случайном эксперименте симметричную монету бросают дважды. 4. Задание B5 (№ 283471) В случайном эксперименте симметричную монету бросают четырежды. В случайном эксперименте симметричную монету бросают четырежды. Задачи для подготовки к Задачи ЕГЭ профиль. Задания по теме Классическое определение вероятности. Условия, решения, ответы, тесты, курсы, обсуждения. Задача №8603. № 34 В случайном эксперименте симметричную монету бросают четырежды. Найдите вероятность того, что решка выпадет ровно два раза.

Задачи с монетой по теории вероятностей на профильном ЕГЭ по математике

В случайном эксперименте симметричную монету бросают. Симметричную монету бросают четырежды. Вероятность монетки. Симметричную монету бросают два раза. Вероятность монетки четыре раза. Вероятность, что Орел выпадет Ровно 5 раз.

Вероятность подбрасывания монетки. Бросают три монеты какова. Бросают две монеты. Вероятность выпадения герба при бросании монеты. Вероятность выпадения герба при двух бросаниях монеты.

Монету подбрасывают три раза. Бросают три монеты найти что герб выпадет 2 раза. Монету бросают 4 раза Найдите вероятность того что Орел выпадет 2 раза. Комбинаторика и теория вероятности задачи с решением. Монету бросают 2 раза.

Монету бросают 2 раза Найдите вероятность того что Орел выпадет 1 раз. Задачи по теореме сложения умножения. Вероятность выпадения события. Задачи на вероятность бросание монеты. Формулы для решения теории вероятности.

Задачи на вероятность формула. Формула вероятности события. Формула нахождения вероятности. В случайном эксперемнетк монетку. Найти вероятность того что герб выпадет Ровно 2 раза.

Монета бросается два раза. Найдите вероятность что выпало Ровно 2 герба. Орел и Решка вероятность выпадения. Теория вероятности Орел и Решка. Какова вероятность того что не менее 2.

Какова вероятность того что при 5 бросаниях монеты она 3 раза упадет. Какова вероятность что при 5 бросаниях монеты герб выпадет 3 раза. Вероятность выпадения орла. Какова вероятность выпадения орла при подбрасывании монеты. Вероятность хотя бы один раз.

Монета бросается 2 раза какова вероятность того что герб. Бросают монеты какова вероятность хотябы одного герба. Монету бросают 6 раз. Найдите вероятность, что герб выпадет менее 2 раз. Найти вероятность того, что герб выпадет.

Монету бросают шесть раз. Решение задач. Найдите вероятность того.

Решение задач на вероятность с монетой. Задачи на бросание монеты теория вероятностей. Задачи на нахождение вероятности с монетами. В случайном ксперимене симмеринуую монеру.

Монету бросают дважды. В случайном эксперименте симметричную монету бросают дважды. В случайном эксперемнетк монетку. Симметричную монету бросают четырежды. Вероятность бросания монеты. В случайном эксперименте монету бросают четырежды. Монету бросают четыре раза Найдите вероятность.

Монету бросают два раза. Монетку бросают три раза. Монету подбрасывают 5 раз. Задачи на монетку теория вероятности. Симметричная монета. Задачи на случайности. Монету бросают 4 раза.

Симметричную монету подбросили несколько раз Найдите вероятность. Симметричную монету бросают. Монету бросают пять раз. В случайном эксперименте симметричную монету бросают 5 раз. Вероятность того что Орел выпадет 1 раз. В случайном эксперименте симметричную монету. Бросание монеты теория вероятности.

В случайном эксперименте бросают монету дважды. Задача про симметричную монету. В случайном эксперименте бросают симметричную монету бросают дважды. В соучацном эксперименте симетриснную манеткибросают дважды. Случайный эксперимент это. Монету бросают 2 раза Найдите вероятность того что Орел выпадет 1 раз. Найти вероятность того, что орёл выпадет один раз.

Монету бросают 3 раза Найдите вероятность того что Орел выпадет 2. Монету бросают 10 раз Найдите вероятность того что Орел выпадет 5 раз. Симметричную монету бросили 2 раза Найдите вероятность события. Монету бросают дважды вероятность того что Орел выпадет хотя бы 1 раз. Вероятность выпадения Решки при одном бросании монеты.

Задача входит в состав ЕГЭ по математике базового уровня для 11 класса под номером 10 Классическое определение вероятности. Рассмотрим, как решаются подобные задачи на примерах. Пример задачи 1: В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орёл не выпадет ни разу. Решение: Рассмотрим все возможные комбинации, которые могут выпасть, если монету бросают дважды. Нас интересуют только те из них, в которых нет ни одного орла.

Так как игральную кость игральный кубик бросают дважды, то будем рассуждать следующим образом: если на первом кубике выпало одно очко, то на втором может выпасть 1, 2, 3, 4, 5, 6. Получаем пары 1;1 , 1;2 , 1;3 , 1;4 , 1;5 , 1;6 и так с каждой гранью. Все случаи представим в виде таблицы из 6-ти строк и 6-ти столбцов: 1; 1.

Решение задачи с симметричной монетой

  • Будущее для жизни уже сейчас
  • Решение №1758 В случайном эксперименте симметричную монету бросают четырежды.
  • Монету бросают два раза. В случайном эксперименте симметричную монету бросают дважды
  • Задание 2. Тренировочный вариант ЕГЭ № 371 Ларина. | Виктор Осипов

Остались вопросы?

Монету бросают 4 раза сколько элементарных событий Остановка бурового станка есть случайное событие. Рассматривается 5 буровых станков.
В случайном эксперименте симметричную монету бросают три... - В случайном эксперименте симметричную монету бросают четырежды. Найдите вероятность того, что решка выпадет ровно 2 раза.
Решение задач на вероятность из материалов ОГЭ - математика, презентации Задание. В случайном эксперименте симметричную монету бросают дважды.

В случайном эксперименте симметричную монету бросают... раз

В случайном эксперименте симметричную монету бросают четырежды. Найдите вероятность того, что решка не выпадет ни разу. орел, Р - решка). Получи верный ответ на вопрос«В случайном эксперименте симметричную монету бросают трижды. Новости. Будет ли как-то улучшаться система проверки и организации итоговых сочинений? в случайном эксперименте симметричную монету бросают дважды. найдите вероятность того что решка выпадет ровно один раз. В случайном эксперименте симметричную монету бросают четыре раза.

Способы решения задач по теории вероятностей ЕГЭ по математике базового уровня

Как важно внимательно относиться к каждому слову в условии! Замечание 2: Правила округления мы повторяли при решении текстовых задач. Задача 9 Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 10 участников из России, в том числе Руслан Орлов. Найдите вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России? Соревнования по бадминтону, обычно, проводятся с выбыванием, и только в первом туре участвуют все 26 бадминтонистов. Для этого используют различные методы перебора вариантов и вспомогательные рисунки, таблицы, графы "дерево возможностей". Облегчить ситуацию могут правила сложения и умножения вариантов, а также готовые рецепты комбинаторики: формулы для числа перестановок, сочетаний, размещений. Правило умножения еще называют "И-правилом", а правило сложения "ИЛИ-правилом".

Не забывайте проверить независимость способов для "И" и несовместимость не такими для "ИЛИ". Следующие задачи можно решать как перебором вариантов, так и с помощью формул комбинаторики. Я даю несколько способов решения для каждой задачи, потому что одним способом её можно решить быстро, а другим долго, и потому что кому-то понятнее один подход, а кому-то другой. Но это не значит, что обязательно нужно разбирать все способы. Лучше хорошо усвоить один любимый. Выбор за вами. Пример 4 В случайном эксперименте симметричную монету бросают пять раз. Найдите вероятность того, что орел выпадет дважды.

Эту задачу можно решить несколькими способами. Рассмотрим тот, который соответствунт заголовку раздела, а именно только применением формул комбинаторики. Решение В каждом из пяти бросаний монеты может реализоваться один из исходов - орёл или решка - для краткости "о" или "р". Таким образом, результатом серии испытаний будет группа из пяти букв, составленная из двух исходных, а значит с повторениями. Например, "оорор" означает, что два раза подряд выпал орел, затем решка, снова орёл и снова решка. Благоприятствующие исходы - орел выпадет ровно два раза - представляют собой пятибуквенные "слова", составленные из трёх букв "р" и двух "о", которые могут стоять на разных позициях, например, "opppo" или "poopp", то есть это перестановки с повторениями. В таких случаях Вы сможете выписать и рассмотреть исходы явным образом. Задача 10 В случайном эксперименте симметричную монету бросают трижды.

Найдите вероятность того, что орел не выпадет ни разу. Благоприятствующее только ррр. Ответ: 0,125 Задача 11 В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет ровно один раз. Ответ: 0,375 Задача 12 В случайном эксперименте симметричную монету бросают трижды. Найдите вероятность того, что орел выпадет хотя бы один раз. Благоприятствующие все, кроме ооо. Способ III.

Событие "орел выпадет хотя бы один раз" противоположно событию "орел не выпадет ни разу. Мы определили её в задаче 10. Ответ: 0,875 Задача 13 В случайном эксперименте симметричную монету бросают четырежды. Решение Воспользуемся правилом умножения для независимых испытаний. Ответ: 0,0625 Замечание: Конечно, эту задачу можно было бы решить любым из способов, рассмотренных раньше. Но чем больше число возможных исходов, тем дольше и бессмысленнее решать перебором вариантов. Cамый лучший способ при большом числе бросаний - формула Бернулли.

Вы перешли к вопросу В случайном эксперименте симметричную монету бросают четырежды?.

Он относится к категории Математика, для 10 - 11 классов. Здесь размещен ответ по заданным параметрам. Если этот вариант ответа не полностью вас удовлетворяет, то с помощью автоматического умного поиска можно найти другие вопросы по этой же теме, в категории Математика. В случае если ответы на похожие вопросы не раскрывают в полном объеме необходимую информацию, то воспользуйтесь кнопкой в верхней части сайта и сформулируйте свой вопрос иначе. Также на этой странице вы сможете ознакомиться с вариантами ответов пользователей.

Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,4, а при каждом последующем — 0,6. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,98?

Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх.

Найдите вероятность того, что оба раза выпало число, меньшее 4. Так как игральную кость игральный кубик бросают дважды, то будем рассуждать следующим образом: если на первом кубике выпало одно очко, то на втором может выпасть 1, 2, 3, 4, 5, 6. Получаем пары 1;1 , 1;2 , 1;3 , 1;4 , 1;5 , 1;6 и так с каждой гранью. Все случаи представим в виде таблицы из 6-ти строк и 6-ти столбцов: 1; 1.

ЕГЭ профильный уровень. №4 Классическое определение вероятности. Задача 7

Так как монету бросают дважды, существует четыре возможных исхода: орел-орел, решка-решка, орел-решка и решка-орел. Если мы хотим найти вероятность того, что орел не выпадет ни разу, то это означает, что должен выпасть только один исход из четырех решка-решка или решка-орел или орел-решка. Вероятность каждого из таких исходов равна 0.

Копировать ссылку Задание: В случайном эксперименте симметричную монету бросают дважды.

Найдите вероятность того, что орел не выпадет ни разу Ответ нейросети: Для решения данной задачи необходимо использовать формулу вероятности. Вероятность выпадения орла или решки в одном броске монеты равна 0.

Делим количество благоприятных исходов на общее количество исходов, чтобы найти вероятность выпадения хотя бы одной решки. Получаем ответ в виде десятичной дроби или процента. Также искали:.

Обратите внимание на выделенные формулировки. Часто бывает, что условия двух задач отличаются только одним словом, а решения могут быть прямо противоположными. И наоборот, казалось бы разные вопросы, но фактически об одном и том же. Будьте внимательны! Не забудьте, что благоприятствующих событий не может быть больше, чем вообще всех возможных, а значит числитель дроби никогда не превысит знаменатель. Если вы получили другой ответ, он заведомо неверный. Пример 1 На борту самолёта 12 мест рядом с запасными выходами и 18 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир В. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. Пассажиру В. Но "благоприятствующими" будут только те из них, когда пассажир В. Ответ: 0,1 В примере, который представлен выше, реализуется самое простое понятие элементарного события. Так как один человек способен занять только одно место, события независимы. А так как в условии специально оговорено, что при регистрации место выбиралось случайно, то равновозможны. Поэтому, фактически, мы считали не события, а места в самолёте. Пример 2 В группе туристов 30 человек. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 6 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист П. Турист П. Ответ: 0,2 В этом примере, уже следует задуматься о том, что представляет собой элементарное событие. Здесь это сформированный рейс вертолёта. Один человек может попасть только на один рейс, то есть только в одну группу из 6-ти человек, - события независимы. По условию задачи порядок рейсов случаен, то есть все рейсы для каждой группы равновозможны. Считаем рейсы. Пример 3 Из множества натуральных чисел от 10 до 19 наудачу выбирают одно число. Какова вероятность того, что оно делится на 3? Решение Выпишем в ряд заданные числа и отметим те из них, которые делятся на 3. Ответ: 0,3 Замечание. Этот способ решения относится к простейшему случаю, когда отрезок ряда короткий, и его легко выписать явно. Что будет, если задачу изменить, например, так: Из множества натуральных чисел от 107 до 198 наудачу выбирают одно число. Тогда придётся вспомнить, что "на 3 делится каждое третье число в натуральном ряду" на 4 - каждое четвертое, на 5 каждое пятое... В каждой полной группе есть одно число, которое делится на 3. В неполной группе, которую составляют два последних числа, 197 не делится 3, а 198 делится. Внимание: Для усиления обучающего эффекта ответы и решения загружаются отдельно для каждой задачи последовательным нажатием кнопок на желтом фоне. Когда задач много, кнопки могут появиться с задержкой. Если кнопок не видно совсем, проверьте, разрешен ли в вашем браузере JavaScript. Задача 1 В сборнике билетов по биологии всего 55 билетов, в 11 из них встречается вопрос по ботанике. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по ботанике.

Похожие новости:

Оцените статью
Добавить комментарий