Новости теория суперсимметрии

В чем заключается «кризис суперсимметрии», как «поделить» физику высоких энергий и для чего нужно строить у себя установки класса megascience, в интервью. Еще не все потеряно, есть усложненные теории суперсимметрии, по которым суперсимметричных частиц так просто не обнаружишь. Во всех теориях суперсимметрии предполагается, что персимметрию уже на основе первых данных с БАК. В чем заключается «кризис суперсимметрии», как «поделить» физику высоких энергий и для чего нужно строить у себя установки класса megascience, в интервью.

Экзамены суперсимметричной модели вселенной 1978

Когда суперсимметрия задана как местный симметрия, теория Эйнштейна общая теория относительности включается автоматически, и результат называется теорией супергравитация. Это удар по суперсимметрии, который, однако, не сбрасывает теорию со счетов. Супервремя — понятие, возникшее как «игрушечная модель» в суперсимметричной теории поля — одномерный слепок суперпространства.

Нобелевская премия по физике 2008 года. Нобелевская асимметрия

Сейчас ученые ЦЕРН сообщили, что не смогли обнаружить признаков этих тяжелых двойников. В последние месяцы они проводили на БАК опыты с В-мезоном. В ходе них установлено, что распад В-мезона происходит не столь часто, как если бы существовал его суперсимметричный партнер, наличие которого предполагает теория.

Например, спин 1 означает «одна постоянная Планка». Договорившись, в каком порядке обозначать физические величины, состояние любой частицы можно описать набором квантовых чисел — это будет ее квантовое состояние. Именно в значении спина скрыта фундаментальная разница между фермионами и бозонами. Оказывается, что два фермиона не могут находиться в одном квантовом состоянии, то есть обладать одинаковым набором квантовых чисел. А у бозонов подобных предрассудков нет. И, согласно современным понятиям, из-за столь принципиальных отличий фермионы не могут превращаться в бозоны или обратно.

Ты просто «супер» К началу семидесятых годов физикам уже было известно практически все о симметрии в законах физики. Оказалось, что каждое из взаимодействий — электромагнитное, слабое, сильное — обладает своей особой симметрией. Помимо этого, все известные нам теории в целом также симметричны: происходящие явления не зависят, например, от ориентации в пространстве и от направления течения времени. Наличие симметрий приводит к законам сохранения — энергии, электрического заряда и других. Но в 1973 году физики Юлиус Весс и Бруно Зумино предложили принципиально новый тип симметрии — между фермионами и фотонами, что частицы одного вида могут превращаться в частицы другого. Это симметрия несколько другого уровня, которая по сути, позволяет излучению превращаться в вещество, и наоборот. Поскольку эту идею нельзя было приписать к стандартным понятиям симметрии, она получила претенциозное название «суперсимметрия». Рука об руку Суперсимметрия постулирует, что каждой частице Стандартной модели соответствует ее «суперпартнер» - фермион, соответствующий бозону, или наоборот.

Партнеры фермионов — сфермионы: скварк для кварка, сэлектрон для электрона и так далее. Партнер фотона был назван фотино, глюона — глюино, а для бозона Хиггса — хиггсино. Кроме спина, суперпартнеры обладают абсолютно одинаковыми свойствами — массой, зарядом и другими. Достижения суперсимметрии Суперсимметрия объясняет некоторые важные проблемы Стандартной модели.

Впервые такой распад наблюдался в искусственных условиях, и по подсчетам ученых, на каждый миллиард распадов этого мезона приходится всего три распада такого рода. Если бы сверхпартнеры обычных частиц существовали в реальности, число таких распадов было бы куда выше. Это важнейший тест правильности всей теории суперсимметрии, которая является весьма популярной среди многих физиков-теоретиков. Профессор Вал Гибсон, руководитель группы исследователей из Кембриджа, которая участвует в эксперименте LHCb, заявил, что новые результаты ставят в опасное положение тех его коллег, кто работает с теорией суперсимметрии.

Эти результаты на самом деле полностью укладываются в Стандартную модель. Суперчастицы до сих пор не обнаружены и другими детекторами на других ускорителях. Загадка темной материи Если теория суперсимметрии не в состоянии объяснить существование темной материи, теоретикам придется искать другие объяснения несоответствий в Стандартной модели. Пока что физики, которые спешат предложить свои варианты новой физической теории, терпят неудачу. Однако сторонники теории суперсимметрии, например, профессор Джон Эллис из Королевского колледжа в Лондоне, возражают на это, указывая, что полученные результаты не противоречат этой теории.

Но, как это часто случается с научными исследованиями, история теории струн полна взлетов и падений. Сперва люди были озадачены тем, что она предсказывала существование частицы, которая движется быстрее света, так называемый «тахион». Это предсказание вошло в противоречие со всеми экспериментальными наблюдениями и бросило серьезную тень на теорию струн. Она предсказывает, что у каждой частицы есть свой суперпартнер и, по необычному совпадению, то же самое условие фактически устраняет тахион. Другая необычная особенность в том, что теория струн требует существования десяти пространственно-временных измерений. В настоящее время нам известно лишь четыре: глубина, высота, ширина и время. Хотя это похоже на серьезное препятствие, предлагалось уже несколько решений, и в настоящее время это все видится скорее необычной особенностью, нежели проблемой. Например, мы могли бы существовать в четырехмерном мире без какого-либо доступа к дополнительным измерениям. Однако различные компактификации привели бы к иным значениям физических констант и иным законам физики. М-теория Оставалась еще одна проблема, которая не давала покоя теоретикам струн того времени. Тщательная классификация показала существование пяти различных последовательных теорий струн, и было непонятно, почему природа должна выбирать одну из пяти. И здесь в игру вступает М-теория.

Новые методы в классической и квантовой теории поля с расширенной суперсимметрией

Максимум — экспериментальные подтверждения того, что давно предсказала теория, вроде бозона Хиггса. Значит ли это, что фундаментальная физика переживает упадок? В книге «Уродливая Вселенная: как поиски красоты заводят физиков в тупик» издательство «Бомбора» , переведенной на русский язык Аленой Якименко, научный сотрудник Франкфуртского института передовых исследований Сабина Хоссенфельдер рассказывает, как увлечение физиков математической красотой направляет современные научные исследования, и что с этим не так. Сходящиеся линии В последний раз теория всего была у человечества 2500 лет назад. Греческий философ Эмпедокл предположил, что мир соткан из четырех элементов: земли, воды, воздуха и огня. Аристотель позже добавил пятый, божественный элемент — эфир. Никогда больше объяснение всего не было таким простым. В философии Аристотеля каждый элемент характеризуется двумя свойствами: огонь сухой и теплый, вода влажная и холодная, земля сухая и холодная, а воздух влажный и теплый. Изменения происходят, поскольку 1 элементы стремятся к своим «естественным местам» — воздух поднимается вверх, камни падают вниз и так далее — и 2 могут менять на противоположное по одному своему свойству за раз, если тому нет препятствий: так, например, сухой и теплый огонь может превратиться в сухую и холодную землю, а влажная и холодная вода — во влажный и теплый воздух. Утверждение, что камни падают вниз, ибо такова их естественная склонность, не очень-то много объясняет, но то была, несомненно, простая теория, которую можно было проиллюстрировать удовлетворительно симметричной диаграммой рис.

Впрочем, даже в IV веке до нашей эры стало очевидно, что теория слишком уж проста. Алхимики начали выделять все новые и новые вещества, и теория со всего лишь четырьмя элементами не могла объяснить такого разнообразия. Однако только в XVIII веке химики поняли, что все вещества — комбинации относительно небольшого числа «элементов» в то время думали, что их меньше сотни , которые дальше уже разложить нельзя. Наступила эра редукционизма. А тем временем Ньютон понял, что падение камней и движение планет роднит общая причина: тяготение. Джоуль показал, что теплота — это вид энергии, как обнаружилось позднее — происходящий из движения крохотных частиц под названием «атомы». Для каждого химического элемента характерен свой тип атома. Максвелл объединил электричество и магнетизм в электромагнетизм. И всякий раз, когда прежде разрозненные эффекты получали объяснение в рамках общей теории, новые открытия и применения не заставляли себя долго ждать: приливы вызываются Луной, энергию можно использовать для охлаждения, колебательные контуры служат источниками электромагнитного излучения.

В конце XIX века физики заметили, что атомы способны испускать и поглощать только свет с определенными длинами волн, но объяснения наблюдавшимся регулярностям ученые дать не могли. Чтобы с этим разобраться, они разработали квантовую механику, которая объяснила не только атомные спектры, но и большинство свойств химических элементов. К 1930-м годам физики выяснили, что все атомы имеют ядро, состоящее из меньших частиц — нейтронов и протонов — и окруженное электронами. На стезе редукционизма это стало еще одной вехой. Следующим шагом в истории объединения Эйнштейн примирил пространство и время и получил специальную теорию относительности, после чего свел воедино гравитацию и специальную теорию относительности, создав общую теорию относительности. В итоге возникла необходимость избавиться от противоречий между квантовой механикой и специальной теорией относительности, что привело к благополучному рождению квантовой электродинамики. Полагаю, примерно на этом этапе наши теории были самыми простыми. Но уже тогда физики знали о радиоактивном распаде — явлении, которое даже квантовая электродинамика объяснить не могла. Ответственность за распады возложили на новое, слабое взаимодействие, добавив его в теорию.

Затем коллайдеры достигли энергий, достаточно высоких для того, чтобы нащупать сильное ядерное взаимодействие, — и на физиков обрушился «зоопарк» элементарных частиц см.

Это могло стать расширением для стандартной модели, - объясняет сатклифф. В выводах, опубликованных в журнале Nature Physics, измерения не показали никакого правостороннего вращения. В конечном счете ученые получили результат, который был в соответствии со стандартной моделью: прелестный кварк распадается только на верхний кварк, если имеет левосторонний спин. Это удар по суперсимметрии, который, однако, не сбрасывает теорию со счетов. И тот факт, что ученые смогли проделать такие измерения а ранее они казались слишком сложными , впечатляет.

Это как искать иголку в стоге сена", - говорит сатклифф.

А в настоящее время БАК быстро накапливает данные при еще более высоких энергиях, сокращая "тяжелую область" для суперчастиц. К концу года он достигнет 1000 ГэВ, что потенциально исключит некоторые вариации теории суперсимметрии, которым отдавалось наибольшее предпочтение. Это создает серьезную проблему для теории суперсимметрии. Поскольку суперчастицы оказываются более тяжелыми, чем предполагалось, они уже не так хорошо уравновешивают квантовые колебания. Теоретики все еще могут заставить теорию работать, но только при определенных значениях масс суперчастиц.

Получается, что нужна та самая "тонкая настройка", для устранения которой теория была изобретена. Но для физики элементарных частиц в целом это будет очень интересно". Не забываем поделиться записью!

К 1930-м годам физики выяснили, что все атомы имеют ядро, состоящее из меньших частиц — нейтронов и протонов — и окруженное электронами. На стезе редукционизма это стало еще одной вехой. Следующим шагом в истории объединения Эйнштейн примирил пространство и время и получил специальную теорию относительности, после чего свел воедино гравитацию и специальную теорию относительности, создав общую теорию относительности. В итоге возникла необходимость избавиться от противоречий между квантовой механикой и специальной теорией относительности, что привело к благополучному рождению квантовой электродинамики. Полагаю, примерно на этом этапе наши теории были самыми простыми. Но уже тогда физики знали о радиоактивном распаде — явлении, которое даже квантовая электродинамика объяснить не могла. Ответственность за распады возложили на новое, слабое взаимодействие, добавив его в теорию.

Затем коллайдеры достигли энергий, достаточно высоких для того, чтобы нащупать сильное ядерное взаимодействие, — и на физиков обрушился «зоопарк» элементарных частиц см. Это временное приращение сложности быстро пресекли теория сильного ядерного взаимодействия и объединение электромагнитного и слабого взаимодействий в единое электрослабое, поскольку выяснилось, что большинство из той лавины частиц составные — собраны из всего лишь двадцати четырех частиц, которые уже нельзя разложить на части. Эти двадцать четыре частицы с бозоном Хиггса, добавившимся позже, их стало в итоге двадцать пять остаются элементарными и сегодня, и Стандартная модель плюс общая теория относительности до сих пор объясняют все наблюдения. Мы несколько оживили их темной материей и темной энергией, но, поскольку у нас нет никаких данных о микроскопической структуре этих темных лошадок, в настоящее время их трудно увязать всех вместе. Объединение, однако, шло столь успешно, что физики считали логичным следующим шагом появление теории Великого объединения. Группа содержит все преобразования, которые не изменят теорию, при условии что соблюдается симметрия. Группа симметрии круга, например, состоит из всех вращений вокруг его центра и обозначается как U 1. Пока в нашей дискуссии о симметрии мы обсудили лишь симметрии уравнений, законов природы. Однако наблюдаемое нами описывается не самими уравнениями, а их решениями. И сам по себе факт, что уравнение обладает симметрией, совершенно не означает, что решения этого уравнения обладают той же симметрией.

Представьте себе волчок, крутящийся на столе рис. Окружающая его обстановка одинакова по всем направлениям, параллельным поверхности стола, значит, уравнения движения обладают вращательной симметрией относительно любой оси, перпендикулярной столешнице. Когда волчок закручивают, его движение сопровождается уменьшением момента импульса из-за трения. Поначалу волчок действительно подчиняется вращательной симметрии, но в конце концов он заваливается на сторону и останавливается. После этого его ось указывает уже в одном каком-то направлении. Мы говорим, что симметрия «нарушилась». Подобное спонтанное нарушение симметрии — обычное дело в фундаментальных законах природы. Как иллюстрирует пример с волчком, будет ли система подчиняться симметрии — может зависеть от энергии системы. Волчок, пока обладает достаточной кинетической энергией, симметрии подчиняется. И только когда на трение растрачивается существенное количество энергии, симметрия нарушается.

То же относится и к фундаментальным симметриям. Энергии, с которыми мы обычно имеем дело в повседневной жизни, определяются температурой окружающей нас среды.

Эксперимент на Большом адронном коллайдере опроверг современную теорию мироздания

Симметрия, суперсимметрия и супергравитация Теория струн (теория суперструн) и суперсимметрия претендуют на роль Единой Теории Поля.
🔸 Доказательство суперсимметрии полностью изменит наше понимание Вселенной🔸 | Спонтанное нарушение суперсимметрии (общая теория). Механизм Файе — Илиопулоса спонтанного нарушения суперсимметрии.
Большой адронный коллайдер подорвал позиции теории суперсимметрии » Последние новости — Аргументы Суперсимметрия важна для теории струн, но наличие суперсимметрии в природе само по себе не означает, что последняя — правильная физическая теория.
Физики в Копенгагене подвели итоги 15-летнего пари о теории суперсимметрии Немногим более сорока лет назад появилась суперсимметрия – теория, в которой каждому существующему фермиону в пару полагается бозон, и наоборот.
Суперсимметрия в свете данных LHC: что делать дальше? Знаменитая теория Суперсимметрии, объясняющая основы мироздания, не нашла подтверждения в ходе исследований в Европейском центре ядерных исследований (ЦЕРН).

Загадка темной материи

  • Адронный коллайдер подтвердил теорию суперсимметрии
  • СУПЕРСИММЕТРИЯ
  • С теорией суперсимметрии придётся расстаться | Андрей Орлов | Дзен
  • Подписка на дайджест
  • Теория суперструн популярным языком для чайников
  • Telegram: Contact @rasofficial

Симметрия, суперсимметрия и супергравитация

Киральная симметрия (от греч. cheir — рука) — инвариантность уравнений квантовой теории поля относительно преобразований, перемешивающих состояния частиц как с различными. Важное предсказание суперсимметрии – существование суперрасширения теории гравитации, супергравитации, и суперсимметричного партнера гравитона – гравитино, частицы со спином 3/2. Несмотря на кажущуюся катастрофу, изначальная теория суперсимметрии даёт нам простой и правдоподобный выход из ситуации.

Доказательство суперсимметрии полностью изменит наше понимание Вселенной

Теория Суперсимметрии имеет дело с Суперпространством, в котором трехмерие дополняется принципиально ненаблюдаемыми измерениями. Суперсимметрия является одним из основных кандидатов на роль новой теории в физике элементарных частиц за рамками Стандартной модели. Так что суперсимметрия должна нарушаться в том смысле, что отношения, предсказанные теорией суперсимметрии, не могут быть строгими. Спонтанное нарушение суперсимметрии (общая теория). Механизм Файе — Илиопулоса спонтанного нарушения суперсимметрии. Чем больше мы исследуем теорию суперсимметрии, тем неотразимее она становится», — пишет специалист по физике элементарных частиц Дэн Хупер. В чем заключается «кризис суперсимметрии», как «поделить» физику высоких энергий и для чего нужно строить у себя установки класса megascience, в интервью.

Для продолжения работы вам необходимо ввести капчу

  • Статьи в журнале «Современные научные исследования и инновации»
  • Доказательство суперсимметрии полностью изменит наше понимание Вселенной
  • Гляжусь, как в зеркало: есть ли шансы у суперсимметрии?
  • Откройте свой Мир!
  • Нобелевская премия по физике 2008 года. Нобелевская асимметрия

Адронный коллайдер подтвердил теорию суперсимметрии

Эксперимент на Большом адронном коллайдере опроверг современную теорию мироздания Нужно построить теорию, которая будет инвариантна относительно преобразований суперсимметрии, а также относительно.
Купить книги в - Магазин научной книги Во всех теориях суперсимметрии предполагается, что персимметрию уже на основе первых данных с БАК.
OFF: Большой адронный коллайдер нанес еще один удар теории суперсимметрии Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие, и суперсимметрии выдвигалась многими.

С теорией суперсимметрии придётся расстаться

суперсимметрия. Теория струн (теория суперструн) и суперсимметрия претендуют на роль Единой Теории Поля. Напр., в теории С. происходит сокращение бесконечностей, которые присущи всем релятивистским теориям и представляют проблему, особенно в квантовой гравитации. Теория суперсимметрии обобщает часто встречающееся в природе явление симметрии на уровень элементарных частиц и утверждает, что существует некоторое преобразование. Тем не менее этот вопрос был решен в начале 1980-х годов вместе с введением в теорию струн так называемой “суперсимметрии”. На днях теория суперсимметрии получила еще один удар от Большого адронного коллайдера (БАК).

Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи

На сегодня эта гипотеза не была подтверждена экспериментально. Для того чтобы фактически проверить ее, существует несколько возможностей. Одна из них заключается в поиске определенных цепочек превращения элементарных частиц в коллайдере внутри БАК элементарные частицы сталкиваются друг с другом, и этот процесс приводит последовательному образованию других частиц. Ученые искали такие цепочки превращений в данных, собранных детектором CMS.

Второй вариант подразумевает не поиск новых частиц, а обнаружение «недостатка» энергии при определенных типах столкновений. Согласно положениям гипотезы суперсимметрии, за такой недостаток «ответственны» нейтралино — один из типов гипотетических суперсимметричных частиц. По итогам анализа части данных, собранных на детекторах CMS и ATLAS в течение 2010 года, ученые не обнаружили событий, которые соответствовали бы проявлениям гипотезы суперсимметрии.

Однако исследователи отмечают, что пока рано полностью исключать ее — с их точки зрения, новые результаты только устанавливают более высокие энергетические пределы для проявления суперсимметрии. Зачем нужен большой адронный коллайдер Большой адронный коллайдер — ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее.

Сейчас ученые ЦЕРН сообщили, что не смогли обнаружить признаков этих тяжелых двойников. В последние месяцы они проводили на БАК опыты с В-мезоном. В ходе них установлено, что распад В-мезона происходит не столь часто, как если бы существовал его суперсимметричный партнер, наличие которого предполагает теория.

Она основана на предположении, что существует гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга.

Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие, и наоборот. Теория суперсимметрии выдвигалась многими физиками-теоретиками в качестве средства объяснения некоторых несоответствий в Стандартной модели Вселенной. Эти физики очень рассчитывали получить с помощью Большого адронного коллайдера первое экспериментальное подтверждение этой теории. Однако новое наблюдение, о котором было доложено на конференции по физике адронного коллайдера в Киото, противоречит многим моделям в рамках теории суперсимметрии. Теория суперсимметрии Гипотеза суперсимметрии была впервые сформулирована в 1973 году австрийским физиком Юлиусом Вессом и итальянским физиком Бруно Зумино и постулирует существование определенного рода симметрии между двумя основными классами частиц — бозонами и фермионами. Фактически, гипотеза суперсимметрии позволяет при помощи преобразований связать воедино вещество и излучение. На сегодня эта гипотеза не была подтверждена экспериментально.

Согласно теории нарушенной суперсимметрии у каждой частицы по—прежнему есть суперпартнер, но массы этих суперпартнеров отличаются от масс оригинальных частиц Стандартной модели. Однако если суперсимметрия нарушена слишком сильно, она не сможет разрешить проблему иерархии, потому что мир при сильно нарушенной симметрии выглядит в точности так же, как если бы этой симметрии вовсе не было. Суперсимметрия должна быть нарушена ровно настолько, чтобы мы до сих пор не могли наблюдать ее признаков, но чтобы масса Хиггса была тем не менее защищена от больших квантово—механических вкладов, которые сделали бы ее слишком большой. Это говорит о том, что суперсимметричные частицы должны иметь массы масштаба слабого взаимодействия. Будь они легче — и мы бы их уже обнаружили; будь они тяжелее — и следовало бы ожидать более тяжелого хиггса.

Мы не можем точно сказать, какими будут эти массы, ведь и масса Хиггса известна нам лишь очень приблизительно. Но мы знаем, что если эти массы окажутся слишком большими, то проблема иерархии никуда не денется. Поэтому мы делаем вывод о том, что если суперсимметрия существует в природе и решает проблему иерархии, то должно существовать множество новых частиц с массами в диапазоне от нескольких сотен гигаэлектронвольт до нескольких тераэлектронвольт. Это именно тот диапазон, в котором БАК должен будет вести поиск. При энергии столкновения 14 ТэВ коллайдер должен выдавать эти частицы даже с учетом того, что кваркам и глюонам, порождающим при столкновении новые частицы, достается лишь небольшая часть исходной энергии протонов.

Проще всего будет получить на БАКе суперсимметричные частицы, несущие сильный или цветовой заряд. Эти частицы при столкновении протонов или, точнее, при столкновении кварков и глюонов в них могут рождаться в изобилии. Иными словами, при штатной работе БАКа могут возникать новые суперсимметричные частицы, участвующие в сильном взаимодействии. Если это так, они оставят в детекторах очень заметные и характерные следы. Эти сигнатуры — экспериментальные свидетельства, оставляемые частицей — зависят от того, что происходит с частицей после возникновения.

Большинство суперсимметричных частиц будут быстро распадаться. Причина в том, что, как правило, для каждой такой тяжелой частицы существует более легкая частица такая как частицы Стандартной модели с точно таким же полным зарядом. Если это так, то тяжелая суперсимметричная частица распадется на частицы Стандартной модели таким образом, чтобы сохранился первоначальный заряд, и эксперимент обнаружит только частицы Стандартной модели. Вероятно, этого недостаточно, чтобы распознать суперсимметрию. Однако почти во всех суперсимметричных моделях суперсимметричная частица не может распадаться исключительно на частицы Стандартной модели.

После ее распада должна остаться другая более легкая суперсимметричная частица. Причина в том, что суперсимметричные частицы появляются или исчезают только парами. Поэтому на месте распада одной суперсимметричной частицы должна остаться другая суперсимметричная частица. Следовательно, самая легкая из таких частиц должна быть стабильной. Эта самая легкая частица, которой не на что распадаться, известна физикам как легчайшая суперсимметричная частица, или LSP.

С экспериментальной точки зрения распад суперсимметричной частицы характерен тем, что даже после завершения всех процессов легчайшая из нейтральных суперсимметричных частиц должна остаться. Космологические ограничения говорят о том, что LSP не несет никаких зарядов и потому не будет взаимодействовать ни с одним из элементов детектора. Это означает, что в каждом случае возникновения и распада любой супер- симметричной частицы экспериментальные результаты покажут, что импульс и энергия не сохраняются, их часть куда? Частица LSP уйдет незамеченной и унесет свои импульс и энергию туда, где их невозможно будет зарегистрировать; сигнатурой LSP будет дефицит энергии. Предположим, к примеру, что в результате столкновения возникает скварк — суперсимметричный партнер кварка.

На какие частицы он распадется, зависит от его массы и от того, какие имеются более легкие частицы. Одним из возможных вариантов распада будет превращение скварка в обычный кварк и легчайшую суперсимметричную частицу рис. Напомню, что распад может происходить практически немедленно, и детектор зарегистрирует только его продукты. Если произошел распад скварка, детекторы зарегистрируют пролет кварка в трекере и в адронном калориметре, который измеряет энергию, отдаваемую частицами, участвующими в сильном взаимодействии, но установка определит также недостачу части импульса и энергии. Тот факт, что импульса не хватает, экспериментаторы определят точно так же, как и при рождении нейтрино.

Они измерят весь поперечный по отношению к пучку импульс и обнаружат, что в сумме он не равен нулю. Одна из сложнейших задач, стоящих перед экспериментаторами, — достоверно и однозначно распознать недостачу импульса.

Новые методы в классической и квантовой теории поля с расширенной суперсимметрией

Важные результаты в изучении низкоэнергетических следствий теории суперструн методами суперсимметричной теории поля получила в ходе цикла работ группа теоретиков из ОИЯИ. Знаменитая теория Суперсимметрии, объясняющая основы мироздания, не нашла подтверждения в ходе исследований в Европейском центре ядерных исследований (ЦЕРН). Еще не все потеряно, есть усложненные теории суперсимметрии, по которым суперсимметричных частиц так просто не обнаружишь. Во всех теориях суперсимметрии предполагается, что персимметрию уже на основе первых данных с БАК.

Похожие новости:

Оцените статью
Добавить комментарий