Спонтанное нарушение суперсимметрии (общая теория). Механизм Файе — Илиопулоса спонтанного нарушения суперсимметрии.
СУПЕРСИММЕ́ТРИ́Я
Суперсимметрия часто описывается как трамплин для теории струн — чтобы она стала возможной, необходима некоторая версия суперсимметрии. Теория струн остается одним из ведущих кандидатов на «теорию всего», которая объединит всю физику. Тем не менее проверить ее экспериментально чрезвычайно трудно. Тем не менее открытие суперсимметрии по крайней мере даст апологетам теории струн знать, что они идут в правильном направлении. Как разлетаются бозоны Физики думают, что мы найдем доказательства суперсимметрии? Несмотря на десятилетия поисков, никто не нашел никаких доказательств суперсимметрии. Впрочем, великие теории открывались не за два-три года. К примеру, почти полвека понадобилось на то, чтобы открыть бозон Хиггса с момента теоретического предположения его существования. Потому, хотя мы и не видим доказательств суперсимметрии, эта теория остается очень мощной.
Тем не менее Вселенной абсолютно все равно, насколько идеальными наши теории ни казались бы, говорит Линкольн. Многие физики говорят, что мы должны были найти доказательства суперсимметричных частиц уже в первый запуск БАК, поэтому теория вполне может быть не ахти. Но только потому, что мы не видели каких-либо суперсимметричных частиц, еще не означает, что их нет. Может быть, есть что-то в том, как суперсимметрия проявляется, чего мы пока не понимаем. Может, нужен более мощный коллайдер, чтобы частицы-суперпартнеры проявили себя. Мы не узнаем этого, пока БАК не заработает. Если суперсимметрия была вне досягаемости по уровню энергии во время последнего запуска, данные этого года могут быть совершенно неописуемыми.
Основная идея заключается в том, что все пространство пронизывает специальное хиггсовское поле, которое взаимодействует с остальными полями и нарушает симметрию, хотя уравнения теории остаются симметричными. Возмущения хиггсовского поля должны проявляться на эксперименте как новые частицы — хиггсовские бозоны. Бозон Хиггса — очень тяжелая частица, тяжелее W- и Z-бозонов. Поэтому она пока не открыта экспериментально. Теория сильных взаимодействий, квантовая хромодинамика, тоже основана на уравнениях Янга — Миллса. Квантовая хромодинамика говорит, что многие элементарные частицы — мезоны и барионы например, протон — состоят из кварков. Однако изолированные кварки никогда не наблюдались это явление называется конфайнментом. Из-за сложности уравнений квантовой хромодинамики конфайнмент до сих пор не выведен из них напрямую. Кстати, решение уравнений Янга — Миллса и объяснение конфайнмента является одной из семи проблем тысячелетия, за которые институт Клэя назначил приз в миллион долларов. Квантовая хромодинамика также находит подтверждение в ускорительных экспериментах. Стандартная модель фундаментальных взаимодействий включает в себя модель электрослабых взаимодействий и квантовую хромодинамику. Стандартная модель оказалась в состоянии объяснить практически все экспериментальные данные, полученные к настоящему времени в физике элементарных частиц. Суперсимметрия Идея суперсимметрии Перед тем, как перейти к обсуждению суперсимметрии, рассмотрим понятие спина. Спин — это собственный момент импульса, присущий каждой частице. Он измеряется в единицах постоянной Планка и бывает целым или полуцелым. Спин является исключительно квантовомеханическим свойством, его нельзя представить с классической точки зрения. Наивная попытка трактовать элементарные частицы как маленькие «шарики», а спин — как их вращение, противоречит специальной теории относительности, так как точки на поверхности шариков должны в таком случае двигаться быстрее света. Суперсимметрия — это симметрия между частицами с целым и полуцелым спином. Идея суперсимметрии была предложена в теоретических работах Гольфанда и Лихтмана, Волкова и Акулова, а также Весса и Зумино около 40 лет назад. Вкратце она заключается в построении теорий, уравнения которых не изменялись бы при преобразовании полей с целым спином в поля с полуцелым спином и наоборот. С тех пор были написаны тысячи статей, суперсимметризации были подвергнуты все модели квантовой теории поля, был разработан новый математический аппарат, позволяющий строить суперсимметричные теории. Стандартную модель фундаментальных взаимодействий, рассмотренную ранее, тоже можно сделать суперсимметричной. При этом решается ряд ее проблем. Рассмотрим некоторые из них. Мотивировка суперсимметрии Несмотря на огромные успехи Стандартной модели в объяснении экспериментальных данных, она обладает рядом теоретических трудностей, которые не позволяют Стандартной модели быть окончательной теорией, описывающей наш мир. Оказывается, часть этих трудностей может быть преодолена при суперсимметричном расширении Стандартной модели. Объединение констант связи Гипотеза великого объединения, которой придерживаются многие физики, говорит, что различные фундаментальные взаимодействия есть проявления одного, более общего, взаимодействия. Это взаимодействие должно проявляться при огромных энергиях по различным оценкам, энергия великого объединения в 1013 или даже в 1016 раз превосходит энергию, доступную современным ускорителям элементарных частиц. При понижении энергии от объединенного взаимодействия «отщепляется» сначала гравитационное взаимодействие, потом сильное, а в завершение электрослабое взаимодействие распадается на слабое и электромагнитное. В Стандартной модели, однако, электрослабое и сильное взаимодействия объединены лишь формально. Они могут оказаться разными проявлениями общего взаимодействия, а могут и не оказаться. Тем не менее, анализ экспериментальных результатов дает некоторые подсказки к вопросу о существовании великого объединения. У каждого из фундаментальных взаимодействий есть величина, которая характеризует его интенсивность. Эта величина называется константой взаимодействия. Константа электромагнитных взаимдействий просто равна заряду электрона. В случае сильных и слабых взаимодействий ситуация несколько сложнее. Одно из интересных свойств квантовой теории поля состоит в том, что константа взаимодействия на самом деле не константа — она меняется при изменении характерных энергий процессов с участием элементарных частиц, причем теория может предсказать характер этой зависимости. В частности, это означает, что при приближении к электрону на расстояния, гораздо меньшие размеров атома, начинает меняться его заряд! Причем такое изменение, обусловленное квантовыми эффектами, подтверждено экспериментальными данными, например, небольшим изменением уровней энергии электронов в атоме водорода лэмбовский сдвиг. Константы электромагнитного, слабого и сильного взаимодействий измерены с достаточной точностью для того, чтобы можно было вычислить их изменение с ростом энергии. Результаты изображены на рисунке. В Стандартной модели графики слева нет таких энергий, где произошло бы объединение констант взаимодействий. А в минимальном суперсимметричном расширении Стандартной модели графики справа такая точка имеется. Это значит, что суперсимметрия в физике элементарных частиц обладает приятным свойством — в ее рамках возможно великое объединение! Объединение с гравитацией Стандартная модель не включает гравитационное взаимодействие. Оно совершенно незаметно в ускорительных экспериментах из-за малых масс элементарных частиц. Однако при больших энергиях гравитация может стать существенной. Современная теория гравитационных взаимодействий — общая теория относительности — является классической теорией. Квантовое обобщение этой теории, без сомнения, стало бы самой общей физической теорией, если бы было построено. Помимо отсутствия каких бы то ни было экспериментальных данных, имеются серьезные теоретические препятствия в построении теории квантовой гравитации. В объединении гравитации с остальными взаимодействиями также есть трудности. Переносчик гравитационного взаимодействия, гравитон, должен иметь спин 2, в то время как спин переносчиков остальных взаимодействий фотон, W- и Z-бозоны, глюоны равен 1. Чтобы «перемешать» эти поля, нужно преобразование, меняющее спин. А преобразование суперсимметрии как раз и есть такое преобразование. Таким образом, объединение с гравитацией в рамках суперсимметрии вполне естественно. Природа темной материи Вселенной Суперсимметрия может объяснить некоторые результаты исследований в космологии. Один из таких результатов заключается в том, что видимая светящаяся материя составляет не всю материю во Вселенной. Значительное количество энергии приходится на так называемую темную материю и темную энергию.
Бозонный фотон состоит в паре с фермионным фотино, а W—бозон спарен с Wino—фермионом. Новые частицы взаимодействуют между собой подобно соответствующим частицам Стандартной модели, но при этом обладают противоположными квантово—механическими свойствами. В суперсимметричной теории свойства каждого бозона сопоставлены свойствам его суперпартнера—фермиона, и наоборот. Поскольку у каждой частицы есть суперпартнер, и все взаимодействия между ними строго сбалансированы, теория допускает существование столь причудливой симметрии, которая заменяет фермионы бозонами, и наоборот. Чтобы понять загадочную на первый взгляд взаимную компенсацию виртуальных вкладов в массу хиггса, следует вспомнить, что суперсимметрия подбирает каждому бозону соответствующий партнер—фермион. В частности, бозону Хиггса в этой модели ставится в соответствие фермион Хиггса, или хиггсино. Если на массу бозона квантово—механические добавки оказывают существенное влияние, то масса фермиона не может быть много больше его классической массы, то есть массы без учета квантово—механических поправок. Логика здесь заложена довольно тонкая, но большие поправки не возникают, потому что массы фермионов относятся как к правым, так и к левым частицам. Масса позволяет им превращаться друг в друга и обратно. Если классического массового члена нет и частицы не могут превращаться друг в друта до прибавления квантово—механических виртуальных эффектов, то они не смогут сделать этого и после учета всех квантово—механических вкладов. Если фермион с самого начала не имеет массы то есть не имеет классической массы , то его масса останется нулевой и после включения квантово—механических поправок. К бозонам подобные аргументы не применимы. Бозон Хиггса, к примеру, имеет нулевой собственный момент импульса, так что ни в каком смысле мы не можем говорить о том, что он вращается влево или вправо. Но из соображений суперсимметрии массы бозонов соответствуют массам фермионов. Поэтому если масса хиггсино равна нулю или мала , точно такой же должна быть согласно теории суперсимметрии масса его партнера — бозона Хиггса — даже с учетом квантово—механических поправок. Мы пока не знаем, верно ли это довольно изящное объяснение стабильности иерархии и компенсации поправок к массе хиггса. Но если суперсимметрия действительно решает проблему иерархии, то мы многое можем сказать о том, каких результатов следует ожидать на БАКе. В этом случае мы знаем, какие именно новые частицы должны существовать, потому что у каждой известной частицы должен быть суперсимметричный партнер. Мало того, мы можем оценить массы новых частиц. Разумеется, если бы суперсимметрия в природе соблюдалась в точности, мы бы сразу знали и массы всех суперпартнеров. Они были бы попросту идентичны массам соответствующих известных частиц. Однако ни одну частицу—суперпартнер до сих пор обнаружить не удалось. Это свидетельствует о том, что суперсимметрия, даже если она реально существует в природе, не может быть строгой. Так что суперсимметрия должна нарушаться в том смысле, что отношения, предсказанные теорией суперсимметрии, не могут быть строгими. Согласно теории нарушенной суперсимметрии у каждой частицы по—прежнему есть суперпартнер, но массы этих суперпартнеров отличаются от масс оригинальных частиц Стандартной модели. Однако если суперсимметрия нарушена слишком сильно, она не сможет разрешить проблему иерархии, потому что мир при сильно нарушенной симметрии выглядит в точности так же, как если бы этой симметрии вовсе не было. Суперсимметрия должна быть нарушена ровно настолько, чтобы мы до сих пор не могли наблюдать ее признаков, но чтобы масса Хиггса была тем не менее защищена от больших квантово—механических вкладов, которые сделали бы ее слишком большой. Это говорит о том, что суперсимметричные частицы должны иметь массы масштаба слабого взаимодействия. Будь они легче — и мы бы их уже обнаружили; будь они тяжелее — и следовало бы ожидать более тяжелого хиггса. Мы не можем точно сказать, какими будут эти массы, ведь и масса Хиггса известна нам лишь очень приблизительно. Но мы знаем, что если эти массы окажутся слишком большими, то проблема иерархии никуда не денется. Поэтому мы делаем вывод о том, что если суперсимметрия существует в природе и решает проблему иерархии, то должно существовать множество новых частиц с массами в диапазоне от нескольких сотен гигаэлектронвольт до нескольких тераэлектронвольт. Это именно тот диапазон, в котором БАК должен будет вести поиск. При энергии столкновения 14 ТэВ коллайдер должен выдавать эти частицы даже с учетом того, что кваркам и глюонам, порождающим при столкновении новые частицы, достается лишь небольшая часть исходной энергии протонов. Проще всего будет получить на БАКе суперсимметричные частицы, несущие сильный или цветовой заряд. Эти частицы при столкновении протонов или, точнее, при столкновении кварков и глюонов в них могут рождаться в изобилии. Иными словами, при штатной работе БАКа могут возникать новые суперсимметричные частицы, участвующие в сильном взаимодействии.
Это могло стать расширением для стандартной модели, - объясняет сатклифф. В выводах, опубликованных в журнале Nature Physics, измерения не показали никакого правостороннего вращения. В конечном счете ученые получили результат, который был в соответствии со стандартной моделью: прелестный кварк распадается только на верхний кварк, если имеет левосторонний спин. Это удар по суперсимметрии, который, однако, не сбрасывает теорию со счетов. И тот факт, что ученые смогли проделать такие измерения а ранее они казались слишком сложными , впечатляет. Это как искать иголку в стоге сена", - говорит сатклифф.
Суперсимметрия и суперкоординаты
Адронный коллайдер подтвердил теорию суперсимметрии | Это позволяет связать суперсимметрии и деформации пространственно-временной метрики, которые, согласно общей теории относительности, и есть причина тяготения. |
OFF: Большой адронный коллайдер нанес еще один удар теории суперсимметрии | Суперсимметрия — Это статья о физической гипотезе. Об одноимённом альбоме группы «Океан Эльзы» см. статью Суперсиметрія (альбом). За пределами Стандартной модели Стандартная модель Свидетельства Проблема иерархий • Тёмная материя Проблема. |
Супер ассиметричная модель вселенной попович | Для завершения обоснования суперсимметрии природы инфраструктурной динамикой -позитрония в «условиях резонанса» остаётся напомнить о возможности представления. |
Нобелевская премия по физике 2008 года. Нобелевская асимметрия | Суперсимметрия — Это статья о физической гипотезе. Об одноимённом альбоме группы «Океан Эльзы» см. статью Суперсиметрія (альбом). За пределами Стандартной модели Стандартная модель Свидетельства Проблема иерархий • Тёмная материя Проблема. |
ВЗГЛЯД / «Вселенная удваивается» :: Общество | Теория струн (теория суперструн) и суперсимметрия претендуют на роль Единой Теории Поля. |
Физик Эмиль Ахмедов о рядах Тейлора, березиновских координатах и свойствах полей фермионов
- Вы точно человек?
- «Уродливая Вселенная: как поиски красоты заводят физиков в тупик»
- 🔸 Доказательство суперсимметрии полностью изменит наше понимание Вселенной🔸 |
- Супер ассиметричная модель вселенной попович
Крах теории суперсимметрии: большой адронный коллайдер ничего не нашел
Бесчисленное множество моделей Главная проблема с поиском суперсимметрии — головокружительное количество вариантов суперсимметричных моделей, а значит, и огромный набор возможностей того, как именно они будут проявляться в эксперименте. Пока суперсимметрия остается точной симметрией, суперсимметричный мир элегантен и относительно прост. Если дело так и обстоит, то только при исключительно высоких энергиях. Но в нашем низкоэнергетическом мире — даже в момент протонных столкновений на LHC! В результате теория предсказывает большое число суперчастиц частиц-суперпартнеров обычных частиц , массы и взаимодействие которых могут быть почти произвольными. Теория не говорит, какие из частиц будут легче, какие тяжелее, сколько времени какие из них будут жить, какие у них будут наиболее вероятные процессы рождения и распада. Подчеркнем, что даже перечисление всех сколько-нибудь различающихся вариантов суперсимметричных теорий является совершенно неподъемной задачей. Например, в самой простой реализации идеи суперсимметрии — минимальном суперсимметричном расширении Стандартной модели MSSM — имеется 105 свободных параметров см. Даже если попытаться «просканировать» весь набор их возможных комбинаций в самом грубом приближении например, предположив, что каждый параметр может принимать либо нулевое, либо какое-то одно ненулевое значение , мы получим 2105 комбинаций. Ясно, что ни о каком перечислении всех моделей не может быть и речи. К счастью, подавляющая часть всех таких вариантов сильно расходится с опытными данными.
Но задача выбрать все те, которые согласуются, не проще. Выходом будет попытка сформулировать и тщательно проанализировать нескольких конкретных и очень ограниченных вариантов суперсимметричных теорий. Эти модели должны, с одной стороны, удерживать основные черты суперсимметрии и при этом не входить в явное противоречие с опытом, а с другой стороны, должны предоставить свободу лишь очень малому количеству параметров. Только в этом случае появляется разумный шанс просканировать всё пространство параметров, разбить его на области, различающиеся по физическим последствиям, провести подробные вычисления и сделать предсказания для эксперимента. Они характеризуются предположением об исключительной универсальности всех скалярных частиц и всех фермионов частиц до момента нарушения суперсимметрии и содержат всего 5 свободных параметров в довесок к параметрам Стандартной модели. Именно в рамках этих моделей делалось множество предсказаний для LHC, на основании которых затем разрабатывалась стратегия экспериментального поиска суперсимметрии.
Физический смысл имеет не сама волновая функция, а квадрат ее модуля, который показывает вероятность нахождения частицы в каком-либо месте.
Если все волновые функции умножить на одно и то же комплексное число с модулем 1, никакие предсказания теории не изменятся. Действительно, модуль произведения комплексных чисел равен произведению модулей, и от такого домножения никакие вероятности не изменяются. Это пример так называемой глобальной симметрии глобальной — потому, что волновая функция умножалась в разных точках на одно и то же число. Суть этой симметрии заключается в том, что теория не изменяется относительно некоторого класса преобразований в нашем случае эти преобразования — умножение на произвольное комплексное число с модулем, равным 1. Квантовая электродинамика обладает симметрией относительно преобразований, называемых калибровочными. Эти преобразования заключаются в домножении поля электронов на комплексное число с модулем 1 правда, чтобы теория не изменялась, одновременно с преобразованием поля электронов нужно выполнить и некоторые другие преобразования электромагнитного поля. В отличие от рассмотренного выше случая квантовой механики, это число уже может быть в каждой точке различным локальная симметрия.
Интересно отметить следующий момент. Как было сказано выше, с каждой симметрией связана сохраняющаяся величина. В случае калибровочных преобразований квантовой электродинамики такой сохраняющейся величиной является обычный электрический заряд. В пятидесятых годах Янг и Миллс построили модель, уравнения которой не менялись под действием более сложных локальных калибровочных преобразований. Сначала интерес был исключительно математическим. Однако потом на основе теории Янга — Миллса были созданы важнейшие теории взаимодействия элементарных частиц — теория электрослабых взаимодействий и квантовая хромодинамика. Эти теории, обладающие калибровочной симметрией, получили экспериментальное подтверждение.
Стандартная модель фундаментальных взаимодействий В шестидесятых годах удалось объединить электромагнетизм и слабые взаимодействия. Салам, Глэшоу и Вайнберг построили теорию электрослабых взаимодействий. В 1979 году им была присуждена Нобелевская премия. Новая теория предсказала существование новых частиц, так называемых W- и Z-бозонов. Они отвечают за «перенос» слабого взаимодействия. Эти бозоны были открыты на протонном суперсинхротроне в 1983 году. Казалось бы, каким образом можно объединить электромагнитные и слабые взаимодействия, если у первых радиус взаимодействия бесконечен действительно, мы видим свет — электромагнитное излучение — от удаленных галактик и других астрономических объектов , а у вторых он не превышает размеры атомного ядра?
Оказывается, такая «несимметричность» связана с тем, что масса фотонов равна нулю, а масса W- и Z-бозонов очень большая, они примерно в 100 раз тяжелее протона. Нарушение так называемой электрослабой симметрии является важным свойством теории электрослабых взаимодействий этой симметрией обладают уравнения теории. В результате нарушения W- и Z-бозоны и некоторые другие частицы например, электроны приобретают массы. В рамках модели Янга — Миллса калибровочные бозоны нельзя сделать массивными, не разрушив калибровочную симметрию. Для нарушения электрослабой симметрии был придуман механизм Хиггса. Основная идея заключается в том, что все пространство пронизывает специальное хиггсовское поле, которое взаимодействует с остальными полями и нарушает симметрию, хотя уравнения теории остаются симметричными. Возмущения хиггсовского поля должны проявляться на эксперименте как новые частицы — хиггсовские бозоны.
Бозон Хиггса — очень тяжелая частица, тяжелее W- и Z-бозонов. Поэтому она пока не открыта экспериментально. Теория сильных взаимодействий, квантовая хромодинамика, тоже основана на уравнениях Янга — Миллса. Квантовая хромодинамика говорит, что многие элементарные частицы — мезоны и барионы например, протон — состоят из кварков. Однако изолированные кварки никогда не наблюдались это явление называется конфайнментом. Из-за сложности уравнений квантовой хромодинамики конфайнмент до сих пор не выведен из них напрямую. Кстати, решение уравнений Янга — Миллса и объяснение конфайнмента является одной из семи проблем тысячелетия, за которые институт Клэя назначил приз в миллион долларов.
Квантовая хромодинамика также находит подтверждение в ускорительных экспериментах. Стандартная модель фундаментальных взаимодействий включает в себя модель электрослабых взаимодействий и квантовую хромодинамику. Стандартная модель оказалась в состоянии объяснить практически все экспериментальные данные, полученные к настоящему времени в физике элементарных частиц. Суперсимметрия Идея суперсимметрии Перед тем, как перейти к обсуждению суперсимметрии, рассмотрим понятие спина. Спин — это собственный момент импульса, присущий каждой частице. Он измеряется в единицах постоянной Планка и бывает целым или полуцелым. Спин является исключительно квантовомеханическим свойством, его нельзя представить с классической точки зрения.
Наивная попытка трактовать элементарные частицы как маленькие «шарики», а спин — как их вращение, противоречит специальной теории относительности, так как точки на поверхности шариков должны в таком случае двигаться быстрее света. Суперсимметрия — это симметрия между частицами с целым и полуцелым спином. Идея суперсимметрии была предложена в теоретических работах Гольфанда и Лихтмана, Волкова и Акулова, а также Весса и Зумино около 40 лет назад. Вкратце она заключается в построении теорий, уравнения которых не изменялись бы при преобразовании полей с целым спином в поля с полуцелым спином и наоборот. С тех пор были написаны тысячи статей, суперсимметризации были подвергнуты все модели квантовой теории поля, был разработан новый математический аппарат, позволяющий строить суперсимметричные теории. Стандартную модель фундаментальных взаимодействий, рассмотренную ранее, тоже можно сделать суперсимметричной. При этом решается ряд ее проблем.
Рассмотрим некоторые из них. Мотивировка суперсимметрии Несмотря на огромные успехи Стандартной модели в объяснении экспериментальных данных, она обладает рядом теоретических трудностей, которые не позволяют Стандартной модели быть окончательной теорией, описывающей наш мир. Оказывается, часть этих трудностей может быть преодолена при суперсимметричном расширении Стандартной модели. Объединение констант связи Гипотеза великого объединения, которой придерживаются многие физики, говорит, что различные фундаментальные взаимодействия есть проявления одного, более общего, взаимодействия. Это взаимодействие должно проявляться при огромных энергиях по различным оценкам, энергия великого объединения в 1013 или даже в 1016 раз превосходит энергию, доступную современным ускорителям элементарных частиц. При понижении энергии от объединенного взаимодействия «отщепляется» сначала гравитационное взаимодействие, потом сильное, а в завершение электрослабое взаимодействие распадается на слабое и электромагнитное. Нейтралино — одна из гипотетических частиц, предсказываемых теориями, включающими суперсимметрию.
Так как суперпартнёры Z-бозона, фотона и бозона Хиггса соответственно: зино, фотино и хиггсино имеют одинаковые квантовые числа, они смешиваются, образуя собственные состояния массового оператора, называемые нейтралино. Свойства нейтралино зависят от того, какая из составляющих зино, фотино, хиггсино доминирует. Легчайшее нейтралино стабильно, если оно легче гравитино, а R-чётность сохраняется. Нейтралино участвует только в слабом и гравитационном взаимодействиях. Если нейтралино является стабильной или долгоживущей частицей, то при рождении в ускорительных экспериментах оно будет ускользать от детекторов частиц; однако большие потери энергии и импульса в событии такого рода могут служить экспериментальным проявлением рождения этой частицы. Стабильные реликтовые нейтралино могут быть обнаружены по рассеянию на ядрах в неускорительных экспериментах по поиску частиц тёмной материи.
Если сделать ещё один шаг, то вы окажетесь нигде. Вы можете только вернуться. Это звучит странно, и это так и есть; в итоге приходится определять такие измерения через математику, а не при помощи слов или аналогий. Теория относительности Эйнштейна прекрасно справляется с описанием и предсказанием множества аспектов нашего мира. Его теория состоит из набора уравнению, подчиняющихся определённому набору симметрий. К примеру — трансляционная симметрия, или симметрия, связанная с переносом эксперимента из одного места пространства-времени в другое: эксперимент, проведённый сегодня в Лондоне, даст такой же результат, как тот же самый эксперимент, проведённый через несколько месяцев в Токио. В 1960-х математически было доказано, что суперсимметрия — это единственная симметрия, которую можно добавить к симметриям теории Эйнштейна так, чтобы получившиеся уравнения не стали расходиться со свойствами реального мира. В этом смысле суперсимметрия стоит особняком. Где же эти частицы-суперпартнёры? Если бы суперссиметрия была точной симметрией природы, мы бы уже нашли множество суперпартнёров. Перед тем, как следовать далее, давайте вспомним, какие нам известны элементарные частицы. В статье по ссылке рис. Имена у них довольно уродливые, сэлектрон и странный скварк, где «с» означает суперсимметрию. Вы можете спросить, почему их по две и почему для каждого нейтрино всего по одной. Обратитесь к рис. У фотона есть фотино, у глюонов — глюино, и т. С массивными W-бозонами всё чуть сложнее. К сожалению, в физике частиц с именованием частиц есть постоянная проблема — букв не хватает. У всех этих частиц точно такая же масса, в этом воображаемом суперсимметричном мире. Одна безмассовая, вторая массивная. Почему две? Оказывается, в суперсимметричном мире необходимо наличие двух частиц для того, чтобы у верхних и нижних кварков масса появлялась обычным способом. Второй аргумент — два хиггсино необходимы для математической непротиворечивости. Но, очевидно, что этот идеально суперсимметричный мир — не наш. Мы бы уже более ста лет назад знали о существовании частиц, у которых был бы такой же электрический заряд и такая же масса, как у электронов, но при этом они бы электронами не являлись. Например, у нас были бы атомы с электронами, атомы с сэлектронами, и атомы с их смесью. Количество типов атомов было бы намного большим наблюдаемого, и поскольку бозоны в атомах вели бы себя совершенно не так, как фермионы, химия новых атомов была бы совершенно другой.
Это может поменять представление ученых о том, как вообще все работает во Вселенной. Что такое «новая физика»? Стандартная модель — общепринятая на данный момент теоретическая конструкция, описывающая взаимодействие всех элементарных частиц во Вселенной. Свод правил, называемый Стандартной моделью, был разработан около 50 лет назад. Эксперименты, проводившиеся на протяжении десятилетий, снова и снова подтверждали, что его описания частиц и сил, которые составляют и управляют Вселенной, в значительной степени верны. До настоящего времени. В свою очередь, новая физика — физика за пределами Стандартной модели — относится к теоретическим разработкам, которые необходимы, чтобы объяснить недостатки СТ. Например, происхождение массы, сильная CP-проблема, нейтринные осцилляции, асимметрия материи и антиматерии, происхождение темной материи и темной энергии. Другая проблема заключается в математических основах самой Стандартной модели — она не согласуется с общей теорией относительности ОТО. Одна или обе теории распадаются в своих описаниях на более мелкие при определенных условиях например, в рамках известных сингулярностей пространства-времени, таких как Большой взрыв и горизонты событий черных дыр. Поскольку эти теории, как правило, полностью согласуются с текущими наблюдаемыми явлениями или не доведены до состояния конкретных предсказаний, вопрос о том, какая теория является правильной или по крайней мере «лучшим шагом» к Теории всего , может быть решен только с помощью экспериментов. В настоящее время это одна из наиболее активных областей исследований как в теоретической, так и в экспериментальной физике. Стандартная модель очень точно предсказывает g-фактор мюона — значение, которое говорит ученым, как эта частица ведет себя в магнитном поле. Этот g-фактор, как известно, близок к значению два, и эксперименты измеряют его отклонение от двух, отсюда и название Muon g-2. Эксперимент в Брукхейвене показал, что g-2 отличается от теоретического предсказания на несколько частей на миллион. Эта крохотная разница намекала на существование неизвестных взаимодействий между мюоном и магнитным полем — взаимодействий, которые могут включать новые частицы или силы. К чему приведут новые открытия? Частицы, выходящие за рамки Стандартной модели, могут помочь объяснить загадочные явления, как природа темной материи, загадочной и широко распространенной субстанции, о существовании которой физики знают, но её еще предстоит обнаружить. А что такое мюоны? Вся наша Вселенная построена из частиц размером меньше атома.
С теорией суперсимметрии придётся расстаться
Суперсимметрия указала бы в направлении универсальной теории в физике Главная цель физики — постоянно конденсировать наше понимание вселенной все более простыми терминами. К примеру, теперь мы понимаем, что гравитация, которая привела к падению яблока на голову Ньютона, — это та же гравитация, которая управляет планетами и звездами. И теперь мы знаем, что законы электричества и законы магнетизма — просто два закона, которые определяют единую фундаментальную силу электромагнетизма. Если суперсимметричные частицы включены в Стандартную модель, они бы тесно связали три из четырех фундаментальных сил, которые описываются Стандартной моделью: электромагнетизм, сильное и слабое взаимодействие. Суперсимметрия будет означать, что все эти три силы будут обладать одной и той же силой на очень высоких энергетических уровнях. Калаби-Яу В частности, суперсимметрия может укрепить теорию струн.
Суперсимметрия часто описывается как трамплин для теории струн — чтобы она стала возможной, необходима некоторая версия суперсимметрии. Теория струн остается одним из ведущих кандидатов на «теорию всего», которая объединит всю физику. Тем не менее проверить ее экспериментально чрезвычайно трудно. Тем не менее открытие суперсимметрии по крайней мере даст апологетам теории струн знать, что они идут в правильном направлении. Бозоны Хиггса Физики думают, что мы найдем доказательства суперсимметрии?
Несмотря на десятилетия поисков, никто не нашел никаких доказательств суперсимметрии. Впрочем, великие теории открывались не за два-три года. К примеру, почти полвека понадобилось на то, чтобы открыть бозон Хиггса с момента теоретического предположения его существования. Потому, хотя мы и не видим доказательств суперсимметрии, эта теория остается очень мощной. Тем не менее Вселенной абсолютно все равно, насколько идеальными наши теории ни казались бы, говорит Линкольн.
В ее рамках теоретики могут исключить влияние колебаний в своих уравнениях, но только если будут иметь точно установленную массу бозона Хиггса. Чуть больше или меньше — и теория рушится. Многих физиков не устраивает Стандартная модель, требующая такой тонкой настройки. Теория суперсимметрии предлагает альтернативное решение проблемы. Теория постулирует, что у фундаментальных частиц есть более тяжелые суперсимметричные партнеры, многие из которых неустойчивы и редко взаимодействуют с обычной материей. Квантовые флуктуации суперсимметричных частиц отлично уравновешивают таковые у обычных частиц, что возвращает диапазон масс бозона Хиггса к приемлемым значениям. Теоретики также обнаружили, что теория суперсимметрии может решить другие проблемы. Некоторые из самых легких суперсимметричных частиц могут оказаться темной материей, за которой астрофизики охотятся с 1930-х годов.
Фундаментальные взаимодействия В настоящее время известно четыре фундаментальных взаимодействия: гравитационное, электромагнитное, сильное и слабое. Первые два обладают дальнодействием и проявляются в повседневной жизни. Гравитация, например, управляет движением небесных тел. Все мы испытываем гравитационное притяжение Земли. Электромагнетизм объясняет большинство явлений, с которыми сталкивается человек в повседневной жизни. Два других взаимодействия короткодействующие. Они проявляются только на масштабах атомного ядра объясняют альфа- и бета-распад и становятся определяющими на более мелких масштабах. В микромире ключевую роль играют квантовые свойства частиц. Для описания фундаментальных взаимодействий, однако, недостаточно обычной квантовой механики. Во-первых, квантовая механика является нерелятивистской теорией, то есть она верна для малых скоростей по сравнению со скоростью света. Во-вторых, квантовая механика не описывает процессы рождения и уничтожения частиц, которые происходят при взаимодействии частиц высоких энергий. Релятивистским обобщением согласующимся с идеями специальной теории относительности квантовой механики является квантовая теория поля. Квантовая теория поля В квантовополевых теориях частицы материи являются «квантами» возмущениями соответствующих полей. Взаимодействие между частицами переносится специальными полями. Предполагается, что частицы материи в процессе взаимодействия испускают и поглощают другие частицы — кванты поля-переносчика. Первый успешный пример квантовой теории поля — квантовая электродинамика — был построен в работах Фейнмана, Швингера и Томонаги в середине двадцатого века, за что они были удостоены Нобелевской премии в 1965 году. Квантовая электродинамика рассматривает взаимодействие между заряженными частицами например, электронами и позитронами , возникающее вследствие обмена фотонами — квантами электромагнитного поля. Вплоть до настоящего времени квантовая электродинамика остается самой точной физической теорией. Симметрия в физике элементарных частиц Под симметрией физики понимают неизменность чего-либо при выполнении определенных преобразований. При этом большую роль играет симметрия законов, или уравнений. Дмитрий Васильевич Волков 1925-1996 : историческая справка Д. Волков — выдающийся физик-теоретик, академик Национальной академии наук Украины, крупный специалист в области элементарных частиц, квантовой электродинамики, ядерной физики, квантовой теории поля, физики твердого тела. В этом году ему должно было исполниться 80 лет. Двадцатипятилетним молодым человеком приехал в Харьков Дмитрий Волков и на протяжении 45 лет его деятельность была связана с этим городом. В 1951 году он приехал сюда с группой студентов из разных вузов страны он — из Ленинградского университета по приказу Министерства высшего образования для продолжения учебы в Харьковском университете на вновь организованном отделении ядерной физики при физико-математическом факультете. Родился Д. Волков 3 июля 1925 года в Ленинграде в семье рабочего-слесаря и учительницы. В семье было двое сыновей: старший Левушка и младший Митенька, названные так в честь героев произведений Л. Толстого, большой поклонницей которого была мать, Ольга Ивановна. Она занималась духовным воспитанием детей, прививая им любовь к литературе, музыке. Отец, Василий Николаевич, старался закалить их физически, занимаясь с ними спортом, но он всячески поощрял стремление мальчиков и к знаниям. Великая Отечественная война 1941-1945 гг. Дмитрий окончил восьмой класс средней школы, отец, не подлежавший мобилизации по возрасту, ушел добровольцем в народное ополчение и в феврале 1942 года пропал без вести. Старший брат Лева, став курсантом Ленинградского воинского подразделения, в декабре 1941 года был ранен и умер. Но горе, обрушившееся на семью Волковых, не сломило их. Участвовал в боях на Карельском и на 1-м Дальневосточном фронтах в качестве связиста, радиста, артиллерийского разведчика. За проявленное в боях мужество награжден несколькими медалями, в 1965 г. После войны Дмитрий Волков возвращается в родной Ленинград с твердым намерением учиться. В течение года он экстерном сдает экзамены за 9-й и 10-й классы и в 1947 году поступает на физический факультет Ленинградского университета. В процессе учебы профессорско-преподавательский коллектив не только дал ему знания и сформировал интерес к профессии, но и привил глубокое уважение и любовь к науке. И эту любовь Волков пронес через всю жизнь. В Харьковском университете ему тоже повезло. Здесь читали лекции известные всему научному миру физики, академики А. Вальтер, К. Синельников, А. Ахиезер — ведущие ученые УФТИ. В 1956 году по окончании аспирантуры Д. Здесь он сложился и вырос как ученый, защитив кандидатскую 1958 г. Научные интересы Дмитрия Васильевича охватывают широкий круг исследований в теоретической физике. Довольно рано сформировался его научный стиль, отличающийся глубоким и оригинальным подходом к исследуемым вопросам. Уже в первых его работах проявилась нестандартность подхода к фундаментальным проблемам квантовой теории поля. Международное признание ученый получил сразу — открытая им парастатистика, названная впоследствии статистикой Грина-Волкова и обобщая известные статистики Бозе-Эйнштейна и Ферми-Дирака, сыграла важную роль в развитии представлений о кварковой структуре адронов. В 1960 году Д. Волков, молодой еще физик, в составе советской делегации впервые принимал участие в конгрессе по физике элементарных частиц в США. Обмениваясь в аэропорту с американскими коллегами новостями науки, глава делегации М. Марков спросил: «Что у вас нового? Ли ответил: «Это у вас новости! Результативными были и последующие годы. Мировую известность Волкову принесло открытие нового типа симметрии — суперсимметрии — и построение на ее основе теории супергравитации, обобщающей теорию тяготения Эйнштейна. Концепция суперсимметрии определила основное направление развития физики элементарных частиц на десятилетия. Волковское открытие в области суперсимметрии цитировалось как основополагающее в трудах многих крупных международных конференций. В 1962 г. Волков открыл совместно с В.
Физики высказывали догадки, что галактики содержат некую невидимую и необнаружимую обычными средствами темную материю, состоящую из суперчастиц. Поэтому их масса в реальности больше, чем следует из астрономических наблюдений, и поэтому они вращаются быстрее. Они измерили скорость распада частицы под названием мезон Bs на две частицы - мюоны. Впервые такой распад наблюдался в искусственных условиях, и по подсчетам ученых, на каждый миллиард распадов этого мезона приходится всего три распада такого рода. Если бы сверхпартнеры обычных частиц существовали в реальности, число таких распадов было бы куда выше. Это важнейший тест правильности всей теории суперсимметрии, которая является весьма популярной среди многих физиков-теоретиков. Профессор Вал Гибсон, руководитель группы исследователей из Кембриджа, которая участвует в эксперименте LHCb, заявил, что новые результаты ставят в опасное положение тех его коллег, кто работает с теорией суперсимметрии. Эти результаты на самом деле полностью укладываются в Стандартную модель. Суперчастицы до сих пор не обнаружены и другими детекторами на других ускорителях.
Вы точно человек?
Экзамены суперсимметричной модели вселенной 1978 | Суперсимметрия доминировала над физикой частиц десятилетиями, и исключила почти все альтернативные физические теории, выходившие за рамки СМ. |
Суперсимметрия и проблема калибровочной иерархии / Хабр | Во всех теориях суперсимметрии предполагается, что персимметрию уже на основе первых данных с БАК. |
[Перевод] Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи
Вселенные, в которых бозон имел большое значение массы, разрушились первыми в горниле Большого Взрыва. Чем большую массу имел бозон Хиггса в каждой конкретной Вселенной, тем раньше она разрушилась, а наша современная Вселенная может быть одной из Вселенных с самым легким бозонам Хиггса, которым удалось пережить катаклизм и не разрушиться при этом. Кроме этого откровенно фантастического сценария, новая теория включает в себя две новые частицы, которые идут в дополнение к известным частицам, определенным Стандартной Моделью. Существование этих двух частиц позволяет объяснить озадачивающие ученых свойства симметрии сильных ядерных взаимодействий, связывающих кварки в протоны и нейтроны, а протоны и нейтроны — в ядра атомов. Современная теория сильных взаимодействий, известная как квантовая хромодинамика, допускает наличие некоторых разногласий в симметрии фундаментальных сильных взаимодействий, так называемой CP-симметрии, хотя эти разногласия пока еще не наблюдались экспериментальным путем. Существование одной из частиц новой теории позволяет решить проблему CP-симметрии, убирая разногласия и делая сильные взаимодействия полностью симметричными.
Открытый не так давно бозон Хиггса был предсказан Стандартной моделью. Последние тесты по сталкиванию протонов в Киото, Япония, исключили ещё один большой класс суперсимметричных моделей, и другие теории «новой физики», поскольку не нашли ничего необычного в распадавшихся частицах. В отсутствие намёков на направление движения в экспериментальных данных, как можно догадаться о чём-нибудь, происходящем в природе?
Более молодые физики, изучающие частицы, встали перед трудным выбором: следовать путём, проторённым за десятилетия их учителями, и изобретать ещё более изощрённые версии суперсимметрии, или пойти своим путём, без всякого направления со стороны каких бы то ни было данных. В блогпосте о японских испытаниях Фальковский шутит, что пора уже искать работу в неврологии. Я просто не могу придумать ничего лучше». Суперсимметрия доминировала над физикой частиц десятилетиями, и исключила почти все альтернативные физические теории, выходившие за рамки СМ. Теория привлекательна по трём причинам. Она предсказывает существование частиц, из которых может состоять «тёмная материя», невидимая субстанция, пронизывающая окраины галактик. Она объединяет три фундаментальных взаимодействия при высоких энергиях. И, самое большое преимущество,— она решает загадку физики под названием «проблема калибровочной иерархии».
Загадка связана с несоразмерностью гравитации и слабым ядерным взаимодействием, которое в 100 миллионов триллионов триллионов 1032 раз сильнее, и действует на гораздо меньших масштабах, управляя взаимодействием внутри атомного ядра. Частицы, переносящие слабое взаимодействие, W и Z-бозоны, получают массу из хиггсовского поля, поля энергии, пропитывающего пространство.
Стандартная модель базируется на трёх различных калибровочных группах. Значения констант этих групп различны на малых энергиях, и с увеличением энергии они меняются.
На энергетическом уровне порядка 100 ГэВ две константы становятся одинаковыми явление электрослабого объединения. На энергетическом уровне 1016 ГэВ все три константы сходятся примерно к одному значению, но в Стандартной модели они не могут стать равными друг другу. То есть, строго говоря, в рамках Стандартной модели «великое объединение» электрослабого и сильного взаимодействия невозможно. Поправки за счёт новых полей МССМ меняют вид энергетической эволюции констант, так что они могут сойтись в одну точку.
Тёмная материя. За последние годы в астрофизике наблюдаются явления , указывающие на существование тёмной материи. В MSSM естественно возникает кандидат на объяснение этого феномена — нейтралино , нейтральная стабильная частица.
Стандартная модель — лучшее описание, которое у нас есть, но оно далеко от совершенства. Стандартная модель образовалась в 1970-х годах. Это набор уравнений, который описывает, как все известные элементарные частицы взаимодействуют с четырьмя фундаментальными силами: сильным и слабым взаимодействием, электромагнетизмом и гравитацией.
Стандартная модель отлично связывает первые три из этих четырех фундаментальных сил, но не касается гравитации. Гравитация настолько слабая сила, что даже игрушечный магнит может ее побороть. Остальные три силы намного сильнее. Гравитация имеет крайне важное значение для физики, и ее поведение описывает общая теория относительности Эйнштейна. Стандартная модель также не может объяснить присутствие таинственного вещества под названием темная материя, которое удерживает галактики вместе. И не может объяснить, почему во Вселенной намного больше материи, чем антиматерии, хотя должно быть равное количество.
Суперсимметрия — это расширение Стандартной модели, которое могло бы помочь заполнить некоторые из этих недостатков. Она прогнозирует, что каждая частица в Стандартной модели может обладать пока не обнаруженным партнером. Это касается даже знакомых нам частиц вроде электронов. Суперсимметрия предсказывает, что у электронов есть партнеры «селектроны», у фотонов — «фотино» и так далее. Вот все пробелы в физике, которые может исправить суперсимметрия. Суперсимметрия может объяснить, почему бозон Хиггса такой легкий Несмотря на то, что Стандартная модель предсказала существование бозона Хиггса, его обнаружение проделало еще одну трещину в теории.
Хиггс, который физики наблюдали на БАК в 2012 году, намного легче, чем ожидалось.
Популярные материалы
- Российский физик — о поисках тёмной материи и её роли во Вселенной
- Комментарии:
- СУПЕРСИММЕТРИЯ • Большая российская энциклопедия - электронная версия
- С теорией суперсимметрии придётся расстаться | Андрей Орлов | Дзен
- Концепция развивается
«В настоящее время мы не можем описать Вселенную»
Загадка темной материи Если теория суперсимметрии не в состоянии объяснить существование темной материи, теоретикам придется искать другие объяснения несоответствий в Стандартной модели. Пока что физики, которые спешат предложить свои варианты новой физической теории, терпят неудачу. Однако сторонники теории суперсимметрии, например, профессор Джон Эллис из Королевского колледжа в Лондоне, возражают на это, указывая, что полученные результаты не противоречат этой теории. Меня лично этот результат не очень расстраивает", - говорит ученый. В 2011 году на Большом адронном коллайдере была проведена серия экспериментов, в ходе которых проверялись фундаментальные выводы теории суперсимметрии, а также верность описания ею физического мира. Как заявила 27 августа 2011 года представитель ЦЕРН профессор Тара Шиарс, эксперименты не подтвердили основные положения теории.
При этом Тара Шиарс уточнила, что не нашла подтверждения упрощенная версия теории суперсимметрии. Однако полученные результаты не опровергают более сложный вариант теории. Паллаб Гош.
Вы видите, что нарушение суперсимметрии то, что она прячется и её нелегко обнаружить увеличило масштаб масс всех суперпартнёров так, что вся массовая шкала находится выше массы верхнего кварка. И это не так искусственно или глупо, как кажется — математика с готовностью принимает этот эффект. Существует множество точных примеров того, как это может произойти — но их слишком много для того, чтобы мы догадались, какой из них наиболее вероятен. И это не единственная схема, способная возникнуть при нарушении суперсимметрии! Существует большое количество других возможностей, которые я буду называть вариантами суперсимметрии. Но представленный мною вариант — наиболее популярный среди теоретиков и экспериментаторов, особенно в Европе в США он менее популярен, про другие места я не знаю. Этой популярности есть веские причины; оказывается, что существует несколько независимых способов получить схему, сходную с этой.
Однако популярность всегда порождает предвзятость, а нам необходимо рассматривать все возможности, не делая предположений касательно этих аргументов. Но если суперпартнёры очень массивные, не может ли получиться так, что мы не сможем произвести ни одного из них в ближайшие десятилетия или даже столетия? Не занимаемся ли мы подсчётом количества ангелов, способных уместиться на кончике иглы? Из всего вышеизложенного пока действительно следует, что такой риск существует. Однако есть и более тонкий аргумент в пользу наличия суперсимметрии, благодаря которому у многих физиков есть надежда на то, что все эти суперпартнёры находятся в пределах досягаемости Большого адронного коллайдера. Это следует из того факта, что суперсимметрия решила бы проблему иерархии — одну из величайших загадок нашего мира. Проблема иерархии Важным свойством природы, ставящим в тупик учёных, а в их числе и меня, является свойство иерархии — огромной разницы между свойствами слабого ядерного взаимодействия и гравитации. Эту иерархию можно описать несколькими разными способами, каждый из которых упирает на одно из её свойств. Например: Масса мельчайшей возможной чёрной дыры определяет то, что известно, как планковская масса. В связи с этим существует огромная иерархия масштабов массы между слабым ядерным взаимодействием и гравитацией.
Сталкиваясь с таким огромным числом, как 10 000 000 000 000 000, десять квадриллионов, физики естественным образом задают вопрос: откуда оно взялось? И у него может быть довольно интересное объяснение. Но пытаясь найти это объяснение в 1970-х, физики увидели существование серьёзной проблемы, даже парадокса, скрывающегося за этим числом. Эта проблема, известная сейчас, как проблема иерархии, связана с размером ненулевого поля Хиггса, которое в свою очередь определяет массу частиц W и Z. Но оказывается, что из квантовой механики следует, что такой размер поля Хиггса нестабилен, это нечто вроде аналогия неполная! Из известной нам физики, из квантового дрожания, вроде бы следует, что для поля Хиггса должно существовать два естественных значения — по аналогии с двумя естественными местами для вазы, либо твёрдо стоящей на столе, либо валяющейся разбитой на полу. И получается, что поле Хиггса вроде бы должно быть либо нулевым, или оно должно быть сопоставимым по размеру с планковской энергией, в 10 000 000 000 000 000 больше наблюдаемого значения. Почему же его значение получается ненулевым и таким крохотным, таким, на первый взгляд, неестественным? Это и есть проблема иерархии. Многие физики-теоретики посвящали заметную часть своей карьеры попыткам решения этой проблемы.
Чтобы понять важность этих результатов, нужно вернуться к основам. Как мы знаем, Стандартная модель описывает элементарные частицы, которые составляют Вселенную, а также их взаимодействие. В настоящее время это одно из лучших описаний субатомного мира, в соответствии с ЦЕРН, которое, однако, имеет ряд брешей. Она не может описать гравитацию, не объясняет существование темной материи и не может предсказать массу бозона Хиггса. К Стандартной модели создаются дополнения, но ученые непрерывно ищут расхождения внутри нее, которые могут указать в направлении новой физики. И теория суперсимметрии является одним из лучших кандидатов на замену СМ.
По словам профессора Воробьева, о результатах экспериментов можно будет точно говорить в конце 2012 года Фото: hepd. Алексей Воробьев: В ходе эксперимента сталкиваются два протона больших энергий. В результате рождается много разных частиц. Среди них рождаются B-мезоны. И специфика высоких энергий такова, что их рождается достаточно много. Живут они очень мало —10-12 секунд, после тут же распадаются.
Загадка темной материи
- Теория суперсимметрии
- Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи
- Популярные материалы
- Откройте свой Мир!
- «Уродливая Вселенная: как поиски красоты заводят физиков в тупик»
Вы точно человек?
Суперсимметрия важна для теории струн, но наличие суперсимметрии в природе само по себе не означает, что последняя — правильная физическая теория. Возвращаясь к эпизоду "Теории большого взрыва", предлагаемым объяснением наблюдаемого в настоящее время несоответствия является суперсимметрия. Одним из преимуществ суперсимметрии является то, что она значительно упрощает уравнения, позволяя исключить некоторые переменные.
«В настоящее время мы не можем описать Вселенную»
Для завершения обоснования суперсимметрии природы инфраструктурной динамикой -позитрония в «условиях резонанса» остаётся напомнить о возможности представления. Сформулированная в 1973 году, теория Суперсимметрии предполагает наличие у каждой известной науке элементарной частицы двойника, отличающегося своими характеристиками. Теория суперсимметрии возникла в 1970-х годах как способ исправить существенные недостатки Стандартной модели физики высоких энергий. 28 апреля - 43672616965 - Медиаплатформа МирТесен. Так что суперсимметрия должна нарушаться в том смысле, что отношения, предсказанные теорией суперсимметрии, не могут быть строгими. Киральная симметрия (от греч. cheir — рука) — инвариантность уравнений квантовой теории поля относительно преобразований, перемешивающих состояния частиц как с различными.
Экзамены суперсимметричной модели вселенной 1978
Существует много споров об этой теории, но суперсимметрия является одним из наиболее привлекательно возможных расширений Стандартной модели и ведущим претендентом в. Важные результаты в изучении низкоэнергетических следствий теории суперструн методами суперсимметричной теории поля получила в ходе цикла работ группа теоретиков из ОИЯИ. Теория суперсимметрии основывается на стандартной модели физики, которая включает гравитацию и объясняет существование темной материи и темной энергии. С ней должна уйти на покой теория расширения пространства, из которой происходят теории тёмной материи и энергии.