Новости теория суперсимметрии

Знаменитая теория Суперсимметрии, объясняющая основы мироздания, не нашла подтверждения в ходе исследований в Европейском центре ядерных исследований (ЦЕРН) на. Причём из теории суперсимметрии следует существование новых частиц — аналогов уже известных элементарных частиц. Чем больше мы исследуем теорию суперсимметрии, тем неотразимее она становится», — пишет специалист по физике элементарных частиц Дэн Хупер. Причём из теории суперсимметрии следует существование новых частиц — аналогов уже известных элементарных частиц. Так же существуют и более классические теории, согласно которым бозон Хиггса является сложной частицей, основанной на новом типе симметрии, суперсимметрии.

Крах теории суперсимметрии: большой адронный коллайдер ничего не нашел

Современная теория сильных взаимодействий, известная как квантовая хромодинамика, допускает наличие некоторых разногласий в симметрии фундаментальных сильных взаимодействий, так называемой CP-симметрии, хотя эти разногласия пока еще не наблюдались экспериментальным путем. Существование одной из частиц новой теории позволяет решить проблему CP-симметрии, убирая разногласия и делая сильные взаимодействия полностью симметричными. Более того, эта же дополнительная частица может являться частицей темной материи, загадочной субстанции, на долю которой приходится подавляющая часть материи нашей Вселенной. Естественно, сейчас еще нет и не может существовать единого мнения насчет того, какая именно из теорий, объясняющих малую массу бозона Хиггса или проблему CP-симметрии сильных взаимодействий, является истинной, а какие теории не имеют шанса на существование. Боле того, наша новая теория предсказывает некоторые особенности, которые могут облегчить жизнь ученым, производящим поиски частиц темной материи». Как уже упоминалось выше, сейчас существует множество теорий, призванных объяснить малую массу бозона Хиггса.

Среди них рождаются B-мезоны. И специфика высоких энергий такова, что их рождается достаточно много. Живут они очень мало —10-12 секунд, после тут же распадаются. М-мезон — это аналог электрона, но тяжелее его в 200 раз. Правда, не всегда. А простейший вариант теории суперсимметрии предсказывает ускорение этого процесса.

Учёные предполагают, что при столкновении подобных частиц может родиться частица тёмной материи. Но непосредственно зарегистрировать частицы неизвестного вещества вряд ли получится, так как они должны иметь крайне низкую вероятность регистрации системами детектора. С помощью... Однако при помощи детектора можно проанализировать все другие частицы, появившиеся при столкновении, и определить, что объём детектора покинула какая-то частица, которая, предположительно, может быть связана с частицами тёмной материи. Однако не факт, что частицы, рождённые в коллайдерах, — это те самые, которые отвечают за скрытую массу во Вселенной. Существуют и методы регистрации тёмной материи с помощью регистрации излучения от массивных объектов. Учёным известно, что там, где наблюдаются большие скопления видимого вещества, тёмная материя тоже имеет более высокую плотность. Ожидается, что при достаточной плотности частицы тёмной материи могут столкнуться и аннигилировать, излучая при этом частицы обычной материи, которая уже может быть зарегистрирована. Однако этот метод не позволяет точно определить, что излучение исходит именно от тёмной материи. Согласно научным представлениям, Вселенная состоит из элементарных частиц двух типов: переносчиков взаимодействий — бозонов — и «кирпичиков» материи — фермионов. Существует также теория суперсимметрии — гипотетическая симметрия, связывающая бозоны и фермионы. В данной теории, образно говоря, взаимодействие становится материей, а материя — взаимодействием. Причём из теории суперсимметрии следует существование новых частиц — аналогов уже известных элементарных частиц. Одна из таких гипотетических частиц — нейтралино, которая может являться вимпом. Этот эффект уже зарегистрирован для нейтрино, и, вероятно, вимпы будут рассеиваться таким же образом. Вероятность когерентного рассеяния выше, если частицы тёмной материи будут сталкиваться с тяжёлыми элементами, ядра которых содержат много протонов и нейтронов. Но по мере роста массы ядра снижается передача энергии такого взаимодействия, поэтому рассеяние будет сложно зарегистрировать. Поэтому нужен компромиссный вариант. Сейчас специалистам...

Физики со всего мира на встрече в Копенгагене подвели итоги пари, касающегося теории суперсимметрии, пишет научно-популярное издание Quanta. Первые ставки были сделаны еще в 2000 году, когда началось строительство Большого адронного коллайдера БАК. Ученые с мировым именем поспорили, будут ли с его помощью открыты новые частицы, подтверждающие теорию суперсимметрии, согласно которой каждая частица должна иметь своего суперпартнера.

Суперсимметрия в свете данных LHC: что делать дальше?

Суперсимметрия может объяснить, почему бозон Хиггса такой легкий Несмотря на то, что Стандартная модель предсказала существование бозона Хиггса, его обнаружение проделало еще одну трещину в теории. Хиггс, который физики наблюдали на БАК в 2012 году, намного легче, чем ожидалось. Стандартная модель предсказывает, что бозон Хиггса в триллионы раз тяжелее, чем тот, что наблюдали физики во время первого запуска БАК, как говорит Дон Линкольн, физик из Лаборатории Ферми. Будучи частицей, которая дает массу другим частицам, Хиггс должен быть очень тяжелым, поскольку взаимодействует с огромным числом частиц. Частицы-партнеры, предсказываемые суперсимметрией, могли бы поправить это. Если они существуют, эти дополнительные частицы отменяли бы вклад партнеров в массу Хиггса. Потому бозон Хиггса был бы легким, как мы его и наблюдали. Это естественное объяснение куда более желательно, чем внесение корректировок в существующую Стандартную модель. Когда вы вынуждены править теории, объясняющие то, что вы в действительности наблюдаете, это знак того, что «вы на самом деле не знаете, что делаете», говорит Линкольн, а эта теория, по всей видимости, неправильная или неполная. Самые легкие суперсимметричные частицы, предсказываемые в рамках теории, могут быть неуловимыми частицами темной материи, на которые охотятся физики десятилетиями. Суперсимметрия предсказывает, что у этой частицы будет нейтральный заряд и она едва ли будет взаимодействовать с любой другой частицей.

Примерно такое описание физики ждут от частиц темной материи. Темная материя невидима, поэтому частицы, из которых она состоит, должны быть нейтральными, иначе будут рассеивать свет и станут видимыми. Эти частицы также ни с чем не взаимодействуют, иначе мы бы их уже обнаружили. Суперсимметрия указала бы в направлении универсальной теории в физике Главная цель физики — постоянно конденсировать наше понимание вселенной все более простыми терминами. К примеру, теперь мы понимаем, что гравитация, которая привела к падению яблока на голову Ньютона, — это та же гравитация, которая управляет планетами и звездами.

Остальные две — слабое и сильное взаимодействие — проявляются на очень малых масштабах и только когда мы имеем дело с субатомными процессами. Стандартная модель фундаментальных взаимодействий обеспечивает единую структуру для трех из этих сил, но гравитация никак не хочет вписываться в эту картину. Несмотря на точное описание крупномасштабных явлений, таких как поведение планеты на орбите или динамика галактик, общая теория относительности перестает работать на очень коротких дистанциях. Согласно Стандартной модели, все силы опосредуются определенными частицами. В случае с гравитацией работу выполняет гравитон. Но когда мы пытаемся рассчитать взаимодействия этих гравитонов, появляются бессмысленные бесконечности в уравнениях. Полноценная теория гравитации должна быть рабочей в любых масштабах и принимать во внимание квантовую природу фундаментальных частиц. Это позволило бы уместить гравитацию в объединенной структуре с тремя другими фундаментальными взаимодействиями, тем самым создав пресловутую теорию всего. Конечно, с тех пор, как умер Альберт Эйнштейн в 1955 году, был проделан значительный прогресс в этой области. Наш лучший кандидат сегодня носит имя M-теории. Революция струн Чтобы понять основную идею М-теории, нужно вернуться в 1970-е годы, когда ученые поняли, что вместо того, чтобы описывать вселенную, основываясь на точечных частицах, их лучше было бы описывать в виде осциллирующих струн энергетических трубочек. Новый способ осмысления фундаментальных составляющих природы привел к решению многих теоретических проблем.

Он пишет, что пришло время «начинать думать и разрабатывать новые идеи». Но материала для работы маловато. Пока что никаких намёков на «новую физику» за пределами Стандартной модели — принятого набора уравнений, описывающих известные элементарные частицы — не возникло ни в экспериментах на БАК, ни где-либо ещё. Открытый не так давно бозон Хиггса был предсказан Стандартной моделью. Последние тесты по сталкиванию протонов в Киото, Япония, исключили ещё один большой класс суперсимметричных моделей, и другие теории «новой физики», поскольку не нашли ничего необычного в распадавшихся частицах. В отсутствие намёков на направление движения в экспериментальных данных, как можно догадаться о чём-нибудь, происходящем в природе? Более молодые физики, изучающие частицы, встали перед трудным выбором: следовать путём, проторённым за десятилетия их учителями, и изобретать ещё более изощрённые версии суперсимметрии, или пойти своим путём, без всякого направления со стороны каких бы то ни было данных. В блогпосте о японских испытаниях Фальковский шутит, что пора уже искать работу в неврологии. Я просто не могу придумать ничего лучше». Суперсимметрия доминировала над физикой частиц десятилетиями, и исключила почти все альтернативные физические теории, выходившие за рамки СМ. Теория привлекательна по трём причинам. Она предсказывает существование частиц, из которых может состоять «тёмная материя», невидимая субстанция, пронизывающая окраины галактик. Она объединяет три фундаментальных взаимодействия при высоких энергиях.

Но его предсказанная масса сама подвержена большим флуктуациям, вызванным квантовыми эффектами от других элементарных частиц. Эти колебания могут увеличить его массу до такого значения, после которого другие элементарные частицы станут более массивными, чем они есть на самом деле, что фактически противоречит Стандартной модели. В ее рамках теоретики могут исключить влияние колебаний в своих уравнениях, но только если будут иметь точно установленную массу бозона Хиггса. Чуть больше или меньше — и теория рушится. Многих физиков не устраивает Стандартная модель, требующая такой тонкой настройки. Теория суперсимметрии предлагает альтернативное решение проблемы. Теория постулирует, что у фундаментальных частиц есть более тяжелые суперсимметричные партнеры, многие из которых неустойчивы и редко взаимодействуют с обычной материей. Квантовые флуктуации суперсимметричных частиц отлично уравновешивают таковые у обычных частиц, что возвращает диапазон масс бозона Хиггса к приемлемым значениям.

Большой адронный коллайдер подорвал позиции теории суперсимметрии

Так что суперсимметрия должна нарушаться в том смысле, что отношения, предсказанные теорией суперсимметрии, не могут быть строгими. В чем заключается «кризис суперсимметрии», как «поделить» физику высоких энергий и для чего нужно строить у себя установки класса megascience, в интервью. Иконка канала Математические теоремы: между теорией и практикой.

Эксперимент на Большом адронном коллайдере опроверг современную теорию мироздания

Кроме того, электрослабая шкала получает огромные квантовые поправки планковского масштаба. Наблюдаемая иерархия между электрослабой шкалой и шкалой Планка должна быть достигнута исключительно точной настройкой. Эта проблема известна как проблема иерархии. Суперсимметрия, близкая к электрослабой шкале , например, в минимальной суперсимметричной стандартной модели , решила бы проблему иерархии, которая присуща Стандартной модели. Это уменьшило бы размер квантовых поправок за счет автоматической отмены между фермионными и бозонными взаимодействиями Хиггса, а квантовые поправки планковского масштаба отменяли бы между партнерами и суперпартнерами из-за знака минус, связанного с фермионными петлями.

Иерархия между электрослабой шкалой и шкалой Планка могла бы быть достигнута естественным образом, без особой тонкой настройки. Другая мотивация для минимальной суперсимметричной стандартной модели исходит из великого объединения , идеи о том, что калибровочные группы симметрии должны объединяться при высоких энергиях. В Стандартной модели, однако, слабые , сильные и электромагнитные связи датчиков не могут быть объединены при высокой энергии. В частности, эволюция ренормгруппы трех калибровочных констант связи Стандартной модели несколько чувствительна к нынешнему содержанию частиц в теории.

Эти константы связи не совсем совпадают на общей шкале энергий, если мы запустим ренормализационную группу, используя Стандартную модель. После включения минимальной SUSY в электрослабой шкале работа калибровочных связей изменяется, и совместная сходимость калибровочных констант связи прогнозируется примерно при 10 16 ГэВ. Модифицированный ход также обеспечивает естественный механизм радиационного нарушения электрослабой симметрии. Во многих суперсимметричных расширениях Стандартной модели, таких как минимальная суперсимметричная стандартная модель , есть тяжелая стабильная частица такая как нейтралино , которая может служить кандидатом в слабовзаимодействующую массивную частицу WIMP темной материи.

Существование суперсимметричного кандидата в темную материю тесно связано с R-четностью. Суперсимметрия в электрослабом масштабе дополненная дискретной симметрией обычно обеспечивает кандидатную частицу темной материи в массовом масштабе, согласующемся с расчетами теплового реликтового содержания. Стандартная парадигма для включения суперсимметрии в реалистичную теорию состоит в том, чтобы базовая динамика теории была суперсимметричной, но основное состояние теории не соблюдает симметрию, и суперсимметрия нарушается спонтанно. Нарушение суперсимметрии не может происходить постоянно частицами MSSM в том виде, в котором они появляются в настоящее время.

Симметрия электрослабого взаимодействия, например, восстанавливается как раз при энергиях, достигающихся на Большом адронном коллайдере, о чем сигнализирует нам рождение бозона Хиггса. Это маленькие группы, как видно по небольшим числам в скобках. Но более крупные группы симметрии зачастую содержат в себе несколько групп поменьше, так что одна большая группа, чья симметрия нарушается при высоких энергиях, могла бы породить Стандартную модель при энергиях, которые мы исследуем. Получается, теория Великого объединения — словно некий слон, а у нас сейчас, на низких энергиях, есть от него лишь ухо, хвост и нога. Целиком слон восстановится только при энергии объединения, оцениваемой примерно в 1016 ГэВ, что на 15 порядков превышает энергии Большого адронного коллайдера.

Сначала для симметрии Великого объединения была предложена самая маленькая группа, содержащая группы симметрии Стандартной модели, — SU 5. Такие объединенные силы в общем случае допускают новые взаимодействия, позволяющие протонам распадаться. А если протоны нестабильны, значит, нестабильны и ядра атомов. В подобных теориях объединения время жизни протона может достигать 1031 лет, существенно превышая возраст Вселенной на текущий момент. Однако в соответствии с квантовой механикой это попросту означает, что среднее время жизни протона таково.

Раз протоны вообще могут распадаться, значит, это может происходить и быстро — просто быстрые распады будут событиями редкими. В каждой молекуле воды 10 протонов, а в каждом литре воды около 1025 молекул воды. Поэтому вместо того, чтобы ждать 1031 лет, дабы увидеть распад одного протона, мы можем следить за огромным объемом воды, ожидая, пока распадется один из тамошних протонов. Подобные эксперименты проводятся с середины 1980-х годов, но еще никто не засек распада протона. Текущие наблюдения а точнее, отсутствие оных намекают на то, что среднее время жизни протона больше 1033 лет.

Так что SU 5 -модель Великого объединения исключается. Следующей была предложена группа побольше — SO 10 , в этой модели объединения верхняя граница для времени жизни протона проходит повыше. С тех пор опробованы были еще несколько групп симметрии, и в некоторых моделях верхняя граница для времени жизни протона сдвинута аж до 1036 лет, что на порядки превышает даже возможности будущих экспериментов. Помимо распада протона теории Великого объединения также предсказывают существование новых частиц, поскольку крупные группы содержат больше, чем есть в Стандартной модели. Предполагается, как обычно, что эти новые частицы слишком тяжелые, поэтому пока и не могли быть замечены.

Таким образом, сейчас у физиков-теоретиков есть широкий ассортимент теорий объединения, застрахованных от опровержения на основании экспериментов в обозримом будущем. Само по себе Великое объединение между тем не решает проблемы с массой бозона Хиггса. Физикам приходится еще и суперсимметризовать Великое объединение. Мы знаем, что суперсимметрия — если это суперсимметрия природы — должна нарушаться при энергиях выше тех, что нами пока достигнуты, ведь мы еще не засекли суперсимметричных частиц. Но мы так пока и не знаем, при какой энергии симметрия восстанавливается — и происходит ли это вообще.

Аргумент, согласно которому суперсимметрия должна придать массе бозона Хиггса естественность, подразумевает, что энергия, при которой суперсимметрия нарушается, на Большом адронном коллайдере должна быть уже достигнута. Добавление суперсимметрии к Великому объединению не только еще больше увеличивает число симметрий — дополнительное преимущество в том, что это приводит к небольшому продлению времени жизни протона. Так, некоторые варианты суперсимметричной SU 5 -модели и поныне держатся на грани жизнеспособности. Тем не менее основная причина для добавления суперсимметрии заключается в числовом совпадении, которое мы обсуждали в четвертой главе, — в объединении констант взаимодействий см.

У фотона есть фотино, у глюонов — глюино, и т. С массивными W-бозонами всё чуть сложнее.

К сожалению, в физике частиц с именованием частиц есть постоянная проблема — букв не хватает. У всех этих частиц точно такая же масса, в этом воображаемом суперсимметричном мире. Одна безмассовая, вторая массивная. Почему две? Оказывается, в суперсимметричном мире необходимо наличие двух частиц для того, чтобы у верхних и нижних кварков масса появлялась обычным способом. Второй аргумент — два хиггсино необходимы для математической непротиворечивости.

Но, очевидно, что этот идеально суперсимметричный мир — не наш. Мы бы уже более ста лет назад знали о существовании частиц, у которых был бы такой же электрический заряд и такая же масса, как у электронов, но при этом они бы электронами не являлись. Например, у нас были бы атомы с электронами, атомы с сэлектронами, и атомы с их смесью. Количество типов атомов было бы намного большим наблюдаемого, и поскольку бозоны в атомах вели бы себя совершенно не так, как фермионы, химия новых атомов была бы совершенно другой. Данные и повседневный опыт исключают эту возможность. Нет никаких сэлектронов с массой электронов, и точка.

Так что точная суперсимметрия не является корректной теорией природы, и мы это знали ещё до того, как её задумывали. Конец суперсимметрии? Не так быстро. Несмотря на кажущуюся катастрофу, изначальная теория суперсимметрии даёт нам простой и правдоподобный выход из ситуации. В физике распространена идея о том, что симметрии могут быть спрятаны от нашего взора физики говорят, спонтанно нарушаться, но это не очень хороший интуитивный пример — симметрия есть, её просто сложно распознать. Законы природы не зависят от того, каким образом будет ориентирован эксперимент см.

Это так и есть, но это сложно увидеть на Земле, где имеет значение, повёрнут ли ваш эксперимент нужной стороной вверх, или он находится вверх ногами, или он наклонён. Но в далёком космосе, далеко от планет, лун и звёзд, законы природы обладают вращательной симметрией. Ваш эксперимент даст один и тот же ответ вне зависимости от его ориентации. Кстати, измерения света, испущенного очень удалёнными атомами, подтверждают эту теорию. Земля нас запутывает. Она заставляет нас думать, что направление вниз отличается от направления вверх или влево.

Но это явное различие не является свойством законов природы.

Частицы-партнеры, предсказываемые суперсимметрией, могли бы поправить это. Если они существуют, эти дополнительные частицы отменяли бы вклад партнеров в массу Хиггса. Потому бозон Хиггса был бы легким, как мы его и наблюдали.

Это естественное объяснение куда более желательно, чем внесение корректировок в существующую Стандартную модель. Когда вы вынуждены править теории, объясняющие то, что вы в действительности наблюдаете, это знак того, что «вы на самом деле не знаете, что делаете», говорит Линкольн, а эта теория, по всей видимости, неправильная или неполная. Самые легкие суперсимметричные частицы, предсказываемые в рамках теории, могут быть неуловимыми частицами темной материи, на которые охотятся физики десятилетиями. Суперсимметрия предсказывает, что у этой частицы будет нейтральный заряд и она едва ли будет взаимодействовать с любой другой частицей.

Примерно такое описание физики ждут от частиц темной материи. Темная материя невидима, поэтому частицы, из которых она состоит, должны быть нейтральными, иначе будут рассеивать свет и станут видимыми. Эти частицы также ни с чем не взаимодействуют, иначе мы бы их уже обнаружили. Суперсимметрия указала бы в направлении универсальной теории в физике Главная цель физики — постоянно конденсировать наше понимание вселенной все более простыми терминами.

К примеру, теперь мы понимаем, что гравитация, которая привела к падению яблока на голову Ньютона, — это та же гравитация, которая управляет планетами и звездами. И теперь мы знаем, что законы электричества и законы магнетизма — просто два закона, которые определяют единую фундаментальную силу электромагнетизма. Если суперсимметричные частицы включены в Стандартную модель, они бы тесно связали три из четырех фундаментальных сил, которые описываются Стандартной моделью: электромагнетизм, сильное и слабое взаимодействие. Суперсимметрия будет означать, что все эти три силы будут обладать одной и той же силой на очень высоких энергетических уровнях.

Многомерное пространство Калаби-Яу В частности, суперсимметрия может укрепить теорию струн.

Доказательство суперсимметрии полностью изменит наше понимание Вселенной

Знаменитая теория Суперсимметрии, объясняющая основы мироздания, не нашла подтверждения в ходе исследований в Европейском центре ядерных исследований (ЦЕРН). Знаменитая теория Суперсимметрии, объясняющая основы мироздания, не нашла подтверждения в ходе исследований в Европейском центре ядерных исследований (ЦЕРН) на. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие, и суперсимметрии выдвигалась многими. Суперсимметрия часто описывается как трамплин для теории струн — чтобы она стала возможной, необходима некоторая версия суперсимметрии. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие, и суперсимметрии выдвигалась многими. Еще не все потеряно, есть усложненные теории суперсимметрии, по которым суперсимметричных частиц так просто не обнаружишь.

Большой адронный коллайдер подорвал позиции теории суперсимметрии

На сегодня эта гипотеза не была подтверждена экспериментально. Для того чтобы фактически проверить ее, существует несколько возможностей. Одна из них заключается в поиске определенных цепочек превращения элементарных частиц в коллайдере внутри БАК элементарные частицы сталкиваются друг с другом, и этот процесс приводит последовательному образованию других частиц. Ученые искали такие цепочки превращений в данных, собранных детектором CMS. Второй вариант подразумевает не поиск новых частиц, а обнаружение «недостатка» энергии при определенных типах столкновений. Согласно положениям гипотезы суперсимметрии, за такой недостаток «ответственны» нейтралино — один из типов гипотетических суперсимметричных частиц. По итогам анализа части данных, собранных на детекторах CMS и ATLAS в течение 2010 года, ученые не обнаружили событий, которые соответствовали бы проявлениям гипотезы суперсимметрии. Однако исследователи отмечают, что пока рано полностью исключать ее — с их точки зрения, новые результаты только устанавливают более высокие энергетические пределы для проявления суперсимметрии. Зачем нужен большой адронный коллайдер Большой адронный коллайдер — ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее.

Многомерное пространство Калаби-Яу В частности, суперсимметрия может укрепить теорию струн. Суперсимметрия часто описывается как трамплин для теории струн — чтобы она стала возможной, необходима некоторая версия суперсимметрии. Теория струн остается одним из ведущих кандидатов на «теорию всего», которая объединит всю физику. Тем не менее проверить ее экспериментально чрезвычайно трудно.

Тем не менее открытие суперсимметрии по крайней мере даст апологетам теории струн знать, что они идут в правильном направлении. Как разлетаются бозоны Физики думают, что мы найдем доказательства суперсимметрии? Несмотря на десятилетия поисков, никто не нашел никаких доказательств суперсимметрии. Впрочем, великие теории открывались не за два-три года.

К примеру, почти полвека понадобилось на то, чтобы открыть бозон Хиггса с момента теоретического предположения его существования. Потому, хотя мы и не видим доказательств суперсимметрии, эта теория остается очень мощной. Тем не менее Вселенной абсолютно все равно, насколько идеальными наши теории ни казались бы, говорит Линкольн. Многие физики говорят, что мы должны были найти доказательства суперсимметричных частиц уже в первый запуск БАК, поэтому теория вполне может быть не ахти.

Но только потому, что мы не видели каких-либо суперсимметричных частиц, еще не означает, что их нет. Может быть, есть что-то в том, как суперсимметрия проявляется, чего мы пока не понимаем. Может, нужен более мощный коллайдер, чтобы частицы-суперпартнеры проявили себя. Мы не узнаем этого, пока БАК не заработает.

Большой адронный коллайдер подорвал позиции теории суперсимметрии 136 0 В данных, собранных детекторами Большого адронного коллайдера, не было обнаружено подтверждений гипотезы суперсимметрии, которая, в частности, предполагает, что у каждой элементарной частицы существует суперсимметричный «двойник». Новые результаты, детализированные в двух статьях, не исключают эту гипотезу полностью, но устанавливают новые пределы для ее обнаружения. Теория суперсимметрии под угрозой Сотрудники Европейского центра ядерных исследований ЦЕРН , работающие на Большом адронном коллайдере, обнаружили чрезвычайно редкий случай распада элементарных частиц. Это наблюдение наносит значительный урон теории суперсимметрии. Она основана на предположении, что существует гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга.

Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие, и наоборот. Теория суперсимметрии выдвигалась многими физиками-теоретиками в качестве средства объяснения некоторых несоответствий в Стандартной модели Вселенной. Эти физики очень рассчитывали получить с помощью Большого адронного коллайдера первое экспериментальное подтверждение этой теории.

Как заявила 27 августа 2011 года профессор Ливерпульского университета Тара Ширс [en] , эксперименты не подтвердили основные положения теории [16] [17]. При этом Тара Шиарс уточнила, что не нашла подтверждения и упрощённая версия теории суперсимметрии, однако полученные результаты не опровергают более сложный вариант теории. К концу 2012 года на детекторе LHCb Большого адронного коллайдера была накоплена статистика по распаду странного B-мезона на два мюона [18].

Таким образом, вероятность этого крайне редкого события статистически достоверна и хорошо согласуется с предсказанием Стандартной модели. Результаты проверки электрического дипольного момента электрона 2013 также не подтвердили варианты суперсимметричных теорий [20]. Тем не менее суперсимметричные теории могут быть подтверждены другими экспериментами, в частности, наблюдениями за распадом нейтрального B0-мезона. После перезапуска весной 2015 года, БАК планирует начать работу на мощности 13 ТэВ и продолжит поиск отклонений от статистических предсказаний Стандартной модели. Информация в этой статье или некоторых её разделах устарела. Вы можете помочь проекту, обновив её и убрав после этого данный шаблон.

Данные, полученные на БАК, поставили под сомнение теорию суперсимметрии

Однако Тара Шиарс отказалась полностью отвергнуть теорию суперсимметрии и заметила, что не нашли подтверждения выводы ее упрощенной версии, а не более сложного варианта. К примеру, ученым очень хотелось, но не удалось найти подтверждения суперсимметрии — теории о том, что у каждой элементарной частицы есть гораздо более тяжелый «суперпартнер». ОКО ПЛАНЕТЫ» Наука и техника» Новость дня» Крах теории суперсимметрии: большой адронный коллайдер ничего не нашел. Зачем физики ищут симметрию между элементарными частицами, и почему для работы теории струн нужно двадцать шесть измерений. На днях теория суперсимметрии получила еще один удар от Большого адронного коллайдера (БАК). особенностями обладают различные элементарные частицы? Когда была была предложена теория, предполагающая связь.

Адронный коллайдер подтвердил теорию суперсимметрии

Теория Суперсимметрии имеет дело с Суперпространством, в котором трехмерие дополняется принципиально ненаблюдаемыми измерениями. активно развивающейся области теоретической физики, которая вполне может оказаться в центре будущего развития физики. На днях теория суперсимметрии получила еще один удар от Большого адронного коллайдера (БАК). Теория Суперсимметрии имеет дело с Суперпространством, в котором трехмерие дополняется принципиально ненаблюдаемыми измерениями.

Похожие новости:

Оцените статью
Добавить комментарий