Суперсимметрия часто описывается как трамплин для теории струн — чтобы она стала возможной, необходима некоторая версия суперсимметрии. Самая амбициозная теория – теория струны, претендующая на единое описание всех сил природы, требует суперсимметрии для непротиворечивости и устойчивости.
Симметрия, суперсимметрия и супергравитация
Иконка канала Математические теоремы: между теорией и практикой. С ней должна уйти на покой теория расширения пространства, из которой происходят теории тёмной материи и энергии. SIS’23 привлекло ведущих специалистов в квантовой теории поля и современной математической физики. На днях теория суперсимметрии получила еще один удар от Большого адронного коллайдера (БАК). Одна из задач, которую ученые пытаются решить с помощью БАК, – это получение экспериментального подтверждения теории Суперсимметрии. Спонтанное нарушение суперсимметрии (общая теория). Механизм Файе — Илиопулоса спонтанного нарушения суперсимметрии.
Где же эти частицы-суперпартнёры?
- «Уродливая Вселенная: как поиски красоты заводят физиков в тупик»
- Экзамены суперсимметричной модели вселенной 1978 - Помощь в подготовке к экзаменам и поступлению
- Загадка темной материи
- Суперсимметрия | это... Что такое Суперсимметрия?
- Гляжусь, как в зеркало: есть ли шансы у суперсимметрии? | Futurist - будущее уже здесь
Данные, полученные на БАК, поставили под сомнение теорию суперсимметрии
Названы в честь Д. Бозе и А. Эйнштейна, рассмотревших их свойства. Кварки — по современным представлениям, шесть «истинно элементарных», то есть бесструктурных частиц, из которых состоят адроны. Глюоны от англ. В отличие от нейтральных фотонов — переносчиков электромагнитного взаимодействия — глюоны несут цветовой заряд и поэтому непосредственно взаимодействуют между собой. Барионы от греч.
Барионы участвуют во всех фундаментальных взаимодействиях — сильном, слабом, электромагнитном и гравитационном. Барионный заряд — внутренняя характеристика частиц, равная 1 у барионов, —1 у антибарионов и 0 у всех остальных частиц. Читайте в любое время о — они всегда рождаются парами. Эти сравнительно долгоживущие частицы успевают пролететь почти 0,5 мм, прежде чем распасться на более лёгкие частицы. Очевидно, что эти реакции получаются одна из другой посредством СР-преобразования. Поэтому СР-симметрия требует того, чтобы число тех и других было одинаково.
Но оказалось, что первый распад происходит примерно на 10 процентов чаще. Источник Доказательство суперсимметрии полностью изменит наше понимание Вселенной Большой адронный коллайдер очень скоро снова заработает с удвоенной скоростью. Физики полагают, что столкновения частиц на околосветовых скоростях помогут раскрыть целый набор новых частиц, открывающих изнанку физики: суперсимметрию. В прошлый раз мы немного затронули эту тему, пришло время обсудить, что это за суперсимметрия и зачем она нам. На данный момент главенствующей теорией физики элементарных частиц является Стандартная модель. Она отлично объясняет, как взаимодействуют основные строительные блоки материи, создавая Вселенную, которую мы видим вокруг.
Стандартная модель — лучшее описание, которое у нас есть, но оно далеко от совершенства. Неполная теория Стандартная модель образовалась в 1970-х годах. Это набор уравнений, который описывает, как все известные элементарные частицы взаимодействуют с четырьмя фундаментальными силами: сильным и слабым взаимодействием, электромагнетизмом и гравитацией. Стандартная модель отлично связывает первые три из этих четырех фундаментальных сил, но не касается гравитации. Гравитация настолько слабая сила, что даже игрушечный магнит может ее побороть. Остальные три силы намного сильнее.
Гравитация имеет крайне важное значение для физики, и ее поведение описывает общая теория относительности Эйнштейна. Стандартная модель также не может объяснить присутствие таинственного вещества под названием темная материя, которое удерживает галактики вместе. И не может объяснить, почему во Вселенной намного больше материи, чем антиматерии, хотя должно быть равное количество. Суперсимметрия — это расширение Стандартной модели, которое могло бы помочь заполнить некоторые из этих недостатков. Она прогнозирует, что каждая частица в Стандартной модели может обладать пока не обнаруженным партнером. Это касается даже знакомых нам частиц вроде электронов.
Суперсимметрия предсказывает, что у электронов есть партнеры «селектроны», у фотонов — «фотино» и так далее. Вот все пробелы в физике, которые может исправить суперсимметрия. Суперсимметрия может объяснить, почему бозон Хиггса такой легкий Несмотря на то, что Стандартная модель предсказала существование бозона Хиггса, его обнаружение проделало еще одну трещину в теории. Хиггс, который физики наблюдали на БАК в 2012 году, намного легче, чем ожидалось. Стандартная модель предсказывает, что бозон Хиггса в триллионы раз тяжелее, чем тот, что наблюдали физики во время первого запуска БАК, как говорит Дон Линкольн, физик из Лаборатории Ферми. Читайте также: Состояние сингулярности как начала вселенной Будучи частицей, которая дает массу другим частицам, Хиггс должен быть очень тяжелым, поскольку взаимодействует с огромным числом частиц.
Частицы-партнеры, предсказываемые суперсимметрией, могли бы поправить это.
Сабин Хоссенфельдер, физик-теоретик Франкфуртского института перспективных исследований, опасается, что суперсимметрии предначертано остаться лишь мечтой. В прошлом году Сабин стала одним из самых громких критиков состояния современной физики, выпустив книгу с провокационным названием «Заблудшие в математике: куда ведет физику поиск красоты». Хоссенфельдер утверждает, что современные физики сбились с пути в погоне за математической грацией: «Они поверили, что матушка природа следовала простому и элегантному замыслу и обязательно даст нам знак. Они думали, что слышат ее шепот, а в действительности говорили сами с собой». Физики не согласны с этими обвинениями: они полвека гонялись за бозоном Хиггса и уже почти опустили руки, пока матушка природа чуть ли не вложила его им в ладони. Тем временем космологи весьма разношерстная группа ученых , наконец сошлись во мнениях о стандартной модели нашей Вселенной. О ней мы тоже больше ничего не знаем.
В целом о существовании этой темной стороны вселенной мы знаем только по аномальной скорости вращения звезд и галактик. Вряд ли это может означать конец науке. В конце концов, мы можем заблуждаться в наших представлениях о гравитации. Лучший подарок для любого современного физика — это новые неожиданные свидетельства, которые могли бы пошатнуть «стандартные модели». Возможно, прорыв случится, когда мы выясним природу темной материи. Возможно, что-то новенькое нам подкинет Большой адронный коллайдер, где каждое зарегистрированное столкновение частиц — новый шаг в неизвестность. Во вселенной может быть 11 измерений. А может быть, она — лишь плод чьей-то фантазии.
Хотя они может ещё про неё и вспомнят. Почему "однобокая", да потому что "привязана" только к восприятию исключительно "нашего" мира, который определяется "на ощуп". В "нашем" мире точно нет суперсимметрии. И темная материя с темной энергией, а также с виртуальными частицами никак в этот "однобокий" мир не вписываются. Главное понять, что есть реальный физический мир. Но сразу надо определиться с так называемой темной энергией. Её просто надо выбросить в корзину как выдуманную мифическую сущность для объяснения несуществующего всемирного вздутия Вселенной. И к вопросу суперсимметрии темная энергия вообще не имеет никакого отношения, в отличие от темной материи, которая гравитационно детерминируется, но больше никаких взаимодействий с барионной материей не имеет.
Я не намерен тут приводить ни нобелевскую лекцию П. Суть СРТ-теоремы в том, что в рамках квантовой теории поля Людерсом и Паули была доказана фундаментальная теорема о том, что "Квантовые системы инвариантны относительно СРТ- преобразования в любой последовательности. Максаков Александр Николаевич Материя это и есть энергия, эта энергия меняет состояние материи, вид, распад квантовый это выделение энергии.
Данное требование не выполняется для известных в природе частиц. Предполагается, тем не менее, что существует энергетический лимит, за пределами которого поля подчиняются суперсимметричным преобразованиям, а в рамках лимита — нет. В таком случае частицы-суперпартнёры обычных частиц оказываются очень тяжёлыми по сравнению с обычными частицами. Поиск суперпартнёров обычных частиц — одна из основных задач современной физики высоких энергий. Ожидается, что Большой адронный коллайдер, запуск которого планируется осенью 2008 года [1], сможет открыть и исследовать суперсимметричные частицы, если они существуют, или поставить под большое сомнение суперсимметричные теории, если ничего не будет обнаружено.
Гляжусь, как в зеркало: есть ли шансы у суперсимметрии?
Зачем физики ищут симметрию между элементарными частицами, и почему для работы теории струн нужно двадцать шесть измерений. Самая амбициозная теория – теория струны, претендующая на единое описание всех сил природы, требует суперсимметрии для непротиворечивости и устойчивости. В чем заключается «кризис суперсимметрии», как «поделить» физику высоких энергий и для чего нужно строить у себя установки класса megascience, в интервью. Теория Суперсимметрии имеет дело с Суперпространством, в котором трехмерие дополняется принципиально ненаблюдаемыми измерениями. Многие думают, что даже если большинство теорий суперсимметрии не подтвердились, появятся новые, которые будут включать этот принцип, но в другой концепции. Спонтанное нарушение суперсимметрии (общая теория). Механизм Файе — Илиопулоса спонтанного нарушения суперсимметрии.
Вы точно человек?
Сотрудники Европейского центра ядерных исследований ЦЕРН , работающие на Большом адронном коллайдере, обнаружили чрезвычайно редкий случай распада элементарных частиц. Это наблюдение наносит значительный урон теории суперсимметрии. Она основана на предположении, что существует гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие, и наоборот. Теория суперсимметрии выдвигалась многими физиками-теоретиками в качестве средства объяснения некоторых несоответствий в Стандартной модели Вселенной. Эти физики очень рассчитывали получить с помощью Большого адронного коллайдера первое экспериментальное подтверждение этой теории. Однако новое наблюдение, о котором было доложено на конференции по физике адронного коллайдера в Киото, противоречит многим моделям в рамках теории суперсимметрии. Профессор Крис Паркс, который является представителем британской части эксперимента под кодовым обозначением LHCb, говорит: "Суперсимметрия, возможно, не умерла как теория, но эти последние результаты свидетельствуют, что она тяжело больна".
Увы, первый сеанс работы коллайдера охладил этот пыл : многочисленные поиски прямых или косвенных проявлений суперсимметрии по-прежнему дают отрицательные результаты см. Но прежде чем рассказывать о них самих, стоит кратко обрисовать, как вообще ищут проявления суперсимметрии на коллайдере. Сложность тут в том, что у суперсимметрии нет какого-то одного конкретного, железобетонного предсказания, проверяемого прямо сейчас. Имеется большое количество вариантов суперсимметричных теорий, а в них есть неизвестные численные параметры. В результате предсказания для коллайдера могут получиться самые разнообразные — и физики стараются, по возможности, охватить их все.
Среди них выделяется главное направление поисков см. Считается, что вначале в столкновении протонов рождаются сильновзаимодействующие суперчастицы — скварки или глюино. Они тяжелые и распадаются на другие, те — распадаются дальше, и т. Так идет до тех пор, пока не появится легчайшая суперсимметричная частица в зависимости от варианта теории, это может быть нейтралино, гравитино или другие суперчастицы. Главное, что она уже ни на что не распадается, а просто улетает прочь, не будучи даже пойманной детектором.
Эта частица уносит большой поперечный импульс, который — в силу неуловимости частицы — не отслеживается детектором. Детектор регистрирует все обычные частицы, измеряет их импульсы и видит, что они не складываются в нуль, то есть заметная часть импульса «теряется». Такой дисбаланс в поперечном импульсе указывает на то, что в столкновении родилась какая-то неуловимая частица высокой энергии. Конечно, одного лишь дисбаланса поперечного импульса мало для открытия Новой физики. В Стандартной модели тоже есть частицы, не регистрируемые детектором, — нейтрино, — и они запросто могут породить похожую картину столкновений.
Вдобавок, детекторы неидеальны, и иногда они ошибаются при измерении энергий и импульсов особенно когда приходится мерять адронные струи , целые потоки адронов или даже могут неправильно идентифицировать пролетевшую частицу. Поэтому в реальности физикам приходится тщательно сравнивать полученные данные с предсказаниями Стандартной модели и пытаться найти не просто какую-то статистику событий, а их превышение над фоном Стандартной модели. Так что каждый поиск, каждый анализ — это кропотливая работа десятков и сотен исследователей в течение месяцев или даже лет. Более подробный рассказ о том, как изучают частицы на коллайдере, читайте в статье Анатомия одной новости. Сейчас, в преддверии нового запуска LHC, экспериментальные группы «подчищают хвосты» — доделывают трудоемкие анализы на основе данных, набранных во время первых трех лет работы коллайдера.
Регулярно появляются и статьи о тех или иных поисках суперсимметрии, но все они пока приводят к отрицательным результатам. Однако за последний месяц обе крупнейшие коллаборации, работающие на LHC, сообщили о наблюдении любопытных отклонений в похожих — но не идентичных! В обеих работах физики изучали события следующего типа: наблюдаются как минимум две адронные струи, лептонная пара электрон-позитрон или мюон-антимюон и потерянный поперечный импульс. На рис. Конечно, существуют и обычные фоновые процессы, которые дают такой же сигнал.
Например, в столкновении протонов может просто родиться Z-бозон, который распадется на лептонную пару, а уж адроны всегда рождаются в избытке. Если детектор неправильно сосчитает энергию адронных струй, вполне может появиться дисбаланс поперечного импульса.
В ходе них установлено, что распад В-мезона происходит не столь часто, как если бы существовал его суперсимметричный партнер, наличие которого предполагает теория. Однако Тара Шиарс отказалась полностью отвергнуть теорию Суперсимметрии и заметила, что не нашли подтверждения выводы ее упрощенной версии, а не более сложного варианта.
Теория струн объединяет в себе представления о гравитации, которая опоясывает космос, с квантовой механикой, которая описывает существующий в нем хаос. В теории струн фундаментальные компоненты всего существующего представлены в виде крошечных струн энергии квантовых струн , испускающих колебания в 11 измерениях.
XX век был совершенно не готов к появлению теории струн, XXI век позволил ей получить значительный толчок в развитии. Но чтобы теория струн показала свою полную мощь, понадобятся умы математиков XXII столетия. Какая-то из этих них — наша, но это не точно. Такие дела. Доктор Дийкграаф пишет: «Если наш мир — лишь один из многих, что нам делать с остальными? Взгляд современной физики на Вселенную — это полная противоположность представлениям Эйнштейна о едином космосе». Дийкграаф, кстати, сказал, что название своей статье придумывал не он, и считает его излишне громогласным.
Возможно, за теорией струн всё же есть некий единый фундаментальный принцип. Однако никто, в том числе и создатели теории, даже предположить не могут, каким может быть этот принцип. Что привело ученых к теории струн? Открытие загадочной силы, «темной энергии» , которая ускоряет расширение Вселенной, отдаляя галактики друг от друга всё с большей скоростью. Темная энергия имеет все признаки космологической постоянной , которую Эйнштейн вводил в свои уравнения теории относительности столетней давности, но потом от нее отказался. Это явление даже получило название «проблемы космологической постоянной».
Теория суперсимметрии под угрозой
- Теория суперсимметрии
- Теория суперсимметрии под угрозой
- ВЗГЛЯД / «Вселенная удваивается» :: Общество
- Подписка на дайджест
🔸 Доказательство суперсимметрии полностью изменит наше понимание Вселенной🔸
На рис. Конечно, существуют и обычные фоновые процессы, которые дают такой же сигнал. Например, в столкновении протонов может просто родиться Z-бозон, который распадется на лептонную пару, а уж адроны всегда рождаются в избытке. Если детектор неправильно сосчитает энергию адронных струй, вполне может появиться дисбаланс поперечного импульса. Однако в этом случае дисбаланс будет небольшим, порядка десятков ГэВ. Есть и другие источники фона, но все их физики аккуратно учли. Два примера событий с рождением и распадом суперсимметричных частиц.
Частицы Стандартной модели показаны темным цветом, гипотетические суперсимметричные частицы — красным. В обоих вариантах легчайшая суперсимметричная частица считается стабильной. Она улетает, не оставляя след в детекторе, и приводит к дисбалансу поперечного импульса, который детектор измеряет. Два типа процесса отличаются тем, как рождаются лептоны, — независимо вверху или резонансно внизу. В детекторе они будут сильно отличаться по распределению инвариантной массы лептонной пары Два типа сигналов, показанные на рис. На верхней картинке показано нерезонансное рождение лептонов, в котором они излучаются независимо друг от друга.
В этом случае энергии двух лептонов не связаны друг с другом, а значит, инвариантная масса этой пары mll может быть самой разной, и большой, и маленькой. На нее имеется лишь ограничение сверху, поскольку эти лептоны получаются из распадов тяжелых частиц. С точки зрения эксперимента, характерный сигнал таких событий выглядит так: имеется широкое распределение по mll, которое вдруг обрывается выше некоторого значения. Именно этот «обрыв распределения» и искали физики. На нижней картинке на рис. Здесь лептоны рождаются не сами по себе, а получаются в результате распада Z-бозона.
Поэтому их энергии скоррелированы, а инвариантная масса пары близка к массе Z-бозона 91 ГэВ. Поэтому в поисках такого типа событий можно сфокусироваться на области от 81 до 101 ГэВ, а участок распределения вне ее, наоборот, использовать для оценки фона. Но вот результаты у них получились разными. CMS сообщает , что в случае нерезонансного рождения рис. Эффект, конечно, не слишком впечатляющий, но тем не менее заслуживает интереса, тем более что это был один из первых поисков суперсимметрии методом обрыва распределения. В случае резонансного рождения коллаборация CMS не видит никаких отклонений.
Нерезонансный поиск ничего существенного не выявил, зато в резонансном рождении было найдено любопытное отклонение. Бросается в глаза то, насколько малый тут фон и насколько сильным оказался сигнал.
Когда на умирающем "Теватроне" вдруг нашли намеки на существование, команда "Красотки LHC" решила это проверить. Эксперимент заключался в беспрецедентно детальном изучении распада Б-мезонов, возможном сегодня только на LHC. По данным команды "Теватрона" и еще нескольких других ускорительных лабораторий, на ход наблюдаемого ими распада Б-мезонов, возможно, влияло присутствие суперсимметричных частиц. Куда более чувствительный эксперимент, проведенный на суперколлайдере, этого влияния не обнаружил. Если учесть, что и на других детекторах LHC никакого следа суперсимметричных частиц до сих пор не встречалось, хотя по теории вероятностей это уже должно было произойти, это ставит крест на теории суперсимметрии в его сегодняшнем виде.
По данным команды "Теватрона" и еще нескольких других ускорительных лабораторий, на ход наблюдаемого ими распада Б-мезонов, возможно, влияло присутствие суперсимметричных частиц. Куда более чувствительный эксперимент, проведенный на суперколлайдере, этого влияния не обнаружил. Если учесть, что и на других детекторах LHC никакого следа суперсимметричных частиц до сих пор не встречалось, хотя по теории вероятностей это уже должно было произойти, это ставит крест на теории суперсимметрии в его сегодняшнем виде.
Один из участников команды LHC профессор Джордан Нэш из Имперского Лондонского колледжа, комментируя результаты "Красотки LHC", заявил: "Это означает, что либо мы не полностью понимаем происходящее, либо суперчастицы неамножко другие, чем мы о них думаем, либо их нет вообще". Еще не все потеряно, есть усложненные теории суперсимметрии, по которым суперсимметричных частиц так просто не обнаружишь, но молодые физики уже начинают говорить о том, что пора придумывать что-нибудь еще, такое же красивое, но более реалистичное.
Загадка связана с несоразмерностью гравитации и слабым ядерным взаимодействием, которое в 100 миллионов триллионов триллионов 1032 раз сильнее, и действует на гораздо меньших масштабах, управляя взаимодействием внутри атомного ядра. Частицы, переносящие слабое взаимодействие, W и Z-бозоны, получают массу из хиггсовского поля, поля энергии, пропитывающего пространство. Но непонятно, почему энергия поля Хиггса, и соответственно массы W и Z-бозонов, такие небольшие. Поскольку другие частицы связаны с полем Хиггса, их энергии должны влиться в него в момент квантовых флюктуаций. Это должно сильно поднять энергию хиггсовского поля, делая W и Z-бозоны более массивными и приводя к тому, что слабое взаимодействие ослабеет до уровня гравитации.
Суперсимметрия решает проблему иерархии, предполагая наличие суперпартнёра-близнеца для каждой элементарной частицы. Согласно теории, у фермионов, из которых состоит материя, есть суперпартнёры-бозоны, переносящие взаимодействия, а у существующих бозонов есть суперпартнёры-фермионы. Поскольку типы частиц и их суперпартнёров противоположны, вклады их энергии в хиггсовское поле обладают противоположными знаками — один его увеличивает, второй уменьшает. Вклады пар взаимоуничтожаются, и никаких катастроф не происходит. А в качестве бонуса один из неоткрытых суперпартнёров может быть составной частью тёмной материи. Со временем, поскольку суперпартнёры не появились, суперсимметрия стала менее красивой. По популярным моделям, чтобы избежать обнаружения, частицам-суперпартнёрам приходиться быть сильно тяжелее своих двойников, и вместо симметрии появляется какое-то кривое зеркало.
Физики выдвинули огромное количество идей о том, как симметрия может быть сломана, и породили тысячи версий суперсимметрии.
СУПЕРСИММЕ́ТРИ́Я
Согласно положениям гипотезы суперсимметрии, за такой недостаток «ответственны» нейтралино — один из типов гипотетических суперсимметричных частиц. По итогам анализа части данных, собранных на детекторах CMS и ATLAS в течение 2010 года, ученые не обнаружили событий, которые соответствовали бы проявлениям гипотезы суперсимметрии. Однако исследователи отмечают, что пока рано полностью исключать ее — с их точки зрения, новые результаты только устанавливают более высокие энергетические пределы для проявления суперсимметрии. Зачем нужен большой адронный коллайдер Большой адронный коллайдер — ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее. Суть работ на коллайдере заключается в изучении столкновения двух пучков протонов с суммарной энергией 14 ТэВ на один протон. Эта энергия в миллионы раз больше, чем энергия, выделяемая в единичном акте термоядерного синтеза. Кроме того, будут проводиться эксперименты с ядрами свинца, сталкивающимися при энергии 1150 ТэВ. Ускоритель БАК обеспечит новую ступень в ряду открытий частиц, которые начались столетие назад. Тогда ученые еще только обнаружили всевозможные виды таинственных лучей: рентгеновские, катодное излучение.
Фактически, гипотеза суперсимметрии позволяет при помощи преобразований связать воедино вещество и излучение. На сегодня эта гипотеза не была подтверждена экспериментально. Для того чтобы фактически проверить ее, существует несколько возможностей. Одна из них заключается в поиске определенных цепочек превращения элементарных частиц в коллайдере внутри БАК элементарные частицы сталкиваются друг с другом, и этот процесс приводит последовательному образованию других частиц. Ученые искали такие цепочки превращений в данных, собранных детектором CMS. Второй вариант подразумевает не поиск новых частиц, а обнаружение «недостатка» энергии при определенных типах столкновений. Согласно положениям гипотезы суперсимметрии, за такой недостаток «ответственны» нейтралино — один из типов гипотетических суперсимметричных частиц. По итогам анализа части данных, собранных на детекторах CMS и ATLAS в течение 2010 года, ученые не обнаружили событий, которые соответствовали бы проявлениям гипотезы суперсимметрии. Однако исследователи отмечают, что пока рано полностью исключать ее — с их точки зрения, новые результаты только устанавливают более высокие энергетические пределы для проявления суперсимметрии.
Суперсимметрия — это симметрия между частицами с целым и полуцелым спином. Идея суперсимметрии была предложена в теоретических работах Гольфанда и Лихтмана, Волкова и Акулова, а также Весса и Зумино около 40 лет назад. Вкратце она заключается в построении теорий, уравнения которых не изменялись бы при преобразовании полей с целым спином в поля с полуцелым спином и наоборот. С тех пор были написаны тысячи статей, суперсимметризации были подвергнуты все модели квантовой теории поля, был разработан новый математический аппарат, позволяющий строить суперсимметричные теории. Стандартную модель фундаментальных взаимодействий, рассмотренную ранее, тоже можно сделать суперсимметричной. При этом решается ряд ее проблем. Рассмотрим некоторые из них. Мотивировка суперсимметрии Несмотря на огромные успехи Стандартной модели в объяснении экспериментальных данных, она обладает рядом теоретических трудностей, которые не позволяют Стандартной модели быть окончательной теорией, описывающей наш мир. Оказывается, часть этих трудностей может быть преодолена при суперсимметричном расширении Стандартной модели. Объединение констант связи Гипотеза великого объединения, которой придерживаются многие физики, говорит, что различные фундаментальные взаимодействия есть проявления одного, более общего, взаимодействия. Это взаимодействие должно проявляться при огромных энергиях по различным оценкам, энергия великого объединения в 1013 или даже в 1016 раз превосходит энергию, доступную современным ускорителям элементарных частиц. При понижении энергии от объединенного взаимодействия «отщепляется» сначала гравитационное взаимодействие, потом сильное, а в завершение электрослабое взаимодействие распадается на слабое и электромагнитное. Нейтралино — одна из гипотетических частиц, предсказываемых теориями, включающими суперсимметрию. Так как суперпартнёры Z-бозона, фотона и бозона Хиггса соответственно: зино, фотино и хиггсино имеют одинаковые квантовые числа, они смешиваются, образуя собственные состояния массового оператора, называемые нейтралино. Свойства нейтралино зависят от того, какая из составляющих зино, фотино, хиггсино доминирует. Легчайшее нейтралино стабильно, если оно легче гравитино, а R-чётность сохраняется. Нейтралино участвует только в слабом и гравитационном взаимодействиях. Если нейтралино является стабильной или долгоживущей частицей, то при рождении в ускорительных экспериментах оно будет ускользать от детекторов частиц; однако большие потери энергии и импульса в событии такого рода могут служить экспериментальным проявлением рождения этой частицы. Стабильные реликтовые нейтралино могут быть обнаружены по рассеянию на ядрах в неускорительных экспериментах по поиску частиц тёмной материи. Легчайшее нейтралино массой 30-5000 ГэВ является основным кандидатом в составляющие холодной тёмной материи из слабовзаимодействующих массивных частиц вимпов. В Стандартной модели, однако, электрослабое и сильное взаимодействия объединены лишь формально. Они могут оказаться разными проявлениями общего взаимодействия, а могут и не оказаться. Тем не менее, анализ экспериментальных результатов дает некоторые подсказки к вопросу о существовании великого объединения. У каждого из фундаментальных взаимодействий есть величина, которая характеризует его интенсивность. Эта величина называется константой взаимодействия. Константа электромагнитных взаимдействий просто равна заряду электрона. В случае сильных и слабых взаимодействий ситуация несколько сложнее. Одно из интересных свойств квантовой теории поля состоит в том, что константа взаимодействия на самом деле не константа — она меняется при изменении характерных энергий процессов с участием элементарных частиц, причем теория может предсказать характер этой зависимости. В частности, это означает, что при приближении к электрону на расстояния, гораздо меньшие размеров атома, начинает меняться его заряд! Причем такое изменение, обусловленное квантовыми эффектами, подтверждено экспериментальными данными, например, небольшим изменением уровней энергии электронов в атоме водорода лэмбовский сдвиг. Константы электромагнитного, слабого и сильного взаимодействий измерены с достаточной точностью для того, чтобы можно было вычислить их изменение с ростом энергии. Результаты изображены на рисунке. В Стандартной модели графики слева нет таких энергий, где произошло бы объединение констант взаимодействий. А в минимальном суперсимметричном расширении Стандартной модели графики справа такая точка имеется. Это значит, что суперсимметрия в физике элементарных частиц обладает приятным свойством — в ее рамках возможно великое объединение! Объединение с гравитацией Стандартная модель не включает гравитационное взаимодействие. Оно совершенно незаметно в ускорительных экспериментах из-за малых масс элементарных частиц. Однако при больших энергиях гравитация может стать существенной. Современная теория гравитационных взаимодействий — общая теория относительности — является классической теорией. Квантовое обобщение этой теории, без сомнения, стало бы самой общей физической теорией, если бы было построено. Помимо отсутствия каких бы то ни было экспериментальных данных, имеются серьезные теоретические препятствия в построении теории квантовой гравитации. В объединении гравитации с остальными взаимодействиями также есть трудности. Переносчик гравитационного взаимодействия, гравитон, должен иметь спин 2, в то время как спин переносчиков остальных взаимодействий фотон, W- и Z-бозоны, глюоны равен 1. Чтобы «перемешать» эти поля, нужно преобразование, меняющее спин. А преобразование суперсимметрии как раз и есть такое преобразование. Таким образом, объединение с гравитацией в рамках суперсимметрии вполне естественно. Природа темной материи Вселенной Суперсимметрия может объяснить некоторые результаты исследований в космологии. Один из таких результатов заключается в том, что видимая светящаяся материя составляет не всю материю во Вселенной. Значительное количество энергии приходится на так называемую темную материю и темную энергию. Прямым указанием на существование темной материи являются зависимости скоростей звезд в спиральных галактиках от их расстояния до центра. Эту зависимость легко вычислить. Оказывается, экспериментальные данные существенно расходятся с предсказаниями теории. Расхождение объясняют тем, что галактики находятся в «облаках» темной материи. Частицы темной материи взаимодействуют только гравитационно. Поэтому они группируются вокруг галактик правильнее было бы сказать, что обычная материя группируется вокруг сгустков темной материи и искажают распределение масс в галактике. В 1964 году физики Арно Пензиас и Роберт Вилсон, сотрудники Веll Laboratories, занимавшиеся обслуживанием радиоантенны слежения за американским космическим спутником «Эхо» в Холмделе Нью-Джерси , решили проверить некоторые свои научные гипотезы о радиоизлучении тех или иных объектов Вселенной. Антенна была самым чувствительным на тот момент детектором СВЧ-волн, а потому сначала ее надо было правильно настроить, чтобы исключить возможные помехи. Реликтовое излучение — равновесное тепловое излучение, заполняющее Вселенную. Это излучение отделилось от вещества на ранних этапах расширения Вселенной, когда электроны объединились с протонами и образовали атомы водорода рекомбинация. Тогда Вселенная была в 1000 раз моложе, чем сейчас. Нынешняя температура реликтового излучения составляет примерно 3 K. В Стандартной модели нет подходящих частиц для объяснения темной материи. В то же время в некоторых суперсимметричных моделях есть прекрасный кандидат на роль холодной темной материи, а именно нейтралино — легчайшая суперсимметричная частица.
Это наблюдение наносит значительный урон теории суперсимметрии. Она основана на предположении, что существует гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие, и наоборот. Теория суперсимметрии выдвигалась многими физиками-теоретиками в качестве средства объяснения некоторых несоответствий в Стандартной модели Вселенной. Эти физики очень рассчитывали получить с помощью Большого адронного коллайдера первое экспериментальное подтверждение этой теории. Однако новое наблюдение, о котором было доложено на конференции по физике адронного коллайдера в Киото, противоречит многим моделям в рамках теории суперсимметрии. Теория суперсимметрии Гипотеза суперсимметрии была впервые сформулирована в 1973 году австрийским физиком Юлиусом Вессом и итальянским физиком Бруно Зумино и постулирует существование определенного рода симметрии между двумя основными классами частиц — бозонами и фермионами. Фактически, гипотеза суперсимметрии позволяет при помощи преобразований связать воедино вещество и излучение.
«Уродливая Вселенная: как поиски красоты заводят физиков в тупик»
Теория суперсимметрии возникла в 1970-х годах как способ исправить существенные недостатки Стандартной модели физики высоких энергий. ОКО ПЛАНЕТЫ» Наука и техника» Новость дня» Крах теории суперсимметрии: большой адронный коллайдер ничего не нашел. Для завершения обоснования суперсимметрии природы инфраструктурной динамикой -позитрония в «условиях резонанса» остаётся напомнить о возможности представления. Суперсимметрия доминировала над физикой частиц десятилетиями, и исключила почти все альтернативные физические теории, выходившие за рамки СМ. Во всех теориях суперсимметрии предполагается, что персимметрию уже на основе первых данных с БАК. Если рассмотреть квантовую электродинамику, то это теория с не очень большим, по сравнению с суперсимметрией, количеством симметрий.
[Перевод] Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи
Суперсимметрия для пешеходов | Спонтанное нарушение суперсимметрии (общая теория). Механизм Файе — Илиопулоса спонтанного нарушения суперсимметрии. |
«В настоящее время мы не можем описать Вселенную» | Суперсимметрия доминировала над физикой частиц десятилетиями, и исключила почти все альтернативные физические теории, выходившие за рамки СМ. |
Физики в Копенгагене подвели итоги 15-летнего пари о теории суперсимметрии – Новости науки | 28 апреля - 43672616965 - Медиаплатформа МирТесен. |
Теория суперструн популярным языком для чайников | Суперсимметрия — Это статья о физической гипотезе. Об одноимённом альбоме группы «Океан Эльзы» см. статью Суперсиметрія (альбом). За пределами Стандартной модели Стандартная модель Свидетельства Проблема иерархий • Тёмная материя Проблема. |