Сформулированная в 1973 году, теория Суперсимметрии предполагает наличие у каждой известной науке элементарной частицы двойника, отличающегося своими характеристиками. Нужно построить теорию, которая будет инвариантна относительно преобразований суперсимметрии, а также относительно. Несмотря на кажущуюся катастрофу, изначальная теория суперсимметрии даёт нам простой и правдоподобный выход из ситуации.
Суперсимметрия и суперкоординаты
Учёный сообщил о работе по созданию детектора тёмной материи, которая ведётся в ИЯФ: физики надеются засечь её присутствие по энергии, которая выделится при столкновении тёмных частиц с ядрами аргона. Расскажите подробнее, что такое тёмная материя, согласно современным научным представлениям. Есть лишь ряд экспериментальных данных, которые косвенно говорят о том, что тёмная материя действительно присутствует во Вселенной. Таким образом, имеется некая скрытая пока от нас материя. Подтверждает существование тёмной материи и такой феномен, как гравитационное линзирование. Это явление, при котором фотоны лучи света отклоняются от своего движения по прямой при прохождении рядом с массивным космическим телом.
В основе линзирования лежит эффект искривления пространства вблизи массивного тела. Наблюдая за объектами, находящимися на большом удалении от Земли, учёные заметили, что происходит искажение направления распространения фотонов, причём это искажение нельзя объяснить только лишь наблюдаемой массой «обычной» материи. Искажение возникает под влиянием некой скрытой массы объектов, то есть тёмной материи. Что касается природы тёмной материи, то условно можно выделить два её типа: барионная, состоящая из обычного вещества, но невидимая по каким-то причинам, и небарионная, состоящая из не обнаруженных пока частиц. Возможный кандидат на роль барионной тёмной материи — первичные чёрные дыры.
Такие чёрные дыры образовывались не за счёт гравитационного коллапса крупной звезды, как обычные чёрные дыры, а из сверхплотной материи в момент начального расширения Вселенной. Наши коллеги из Новосибирского государственного университета активно занимаются этим направлением. Учёные предполагают, что при столкновении подобных частиц может родиться частица тёмной материи. Но непосредственно зарегистрировать частицы неизвестного вещества вряд ли получится, так как они должны иметь крайне низкую вероятность регистрации системами детектора. С помощью...
Однако при помощи детектора можно проанализировать все другие частицы, появившиеся при столкновении, и определить, что объём детектора покинула какая-то частица, которая, предположительно, может быть связана с частицами тёмной материи. Однако не факт, что частицы, рождённые в коллайдерах, — это те самые, которые отвечают за скрытую массу во Вселенной. Существуют и методы регистрации тёмной материи с помощью регистрации излучения от массивных объектов.
Затем суперсимметричные частицы стали намного тяжелее обычного вещества и распались, а их «остатки» образовали «темную материю», из которой почти на четверть состоит Вселенная. Суперсимметрия дает способ объединить электрослабое и сильные взаимодействия и в конечном счете создать единую теорию поля. В экспериментах на коллайдере ученые рассчитывают увидеть рождение суперсимметричных частиц, которые пока не были обнаружены ни в одном эксперименте. Члены коллаборации CMS пытались обнаружить «суперпартнеров» кварков и глюонов. Если бы эти частицы рождались в столкновениях протонов на коллайдере, они распадались бы на «обычные» кварки и глюоны, а также легкие стабильные частицы нейтралино, из которых, согласно, теории может состоять «темная материя». Кварки и глюоны, в свою очередь, создавали бы потоки джеты других частиц, а нейтралино, не взаимодействующие с обычной материей, «улетали» бы незамеченными. Детектор CMS мог бы видеть джеты, и ученые, обнаружив «недостачу» энергии, унесенной нейтралино, могли бы сделать вывод о рождении суперсимметричных частиц.
Одна безмассовая, вторая массивная. Почему две? Оказывается, в суперсимметричном мире необходимо наличие двух частиц для того, чтобы у верхних и нижних кварков масса появлялась обычным способом. Второй аргумент — два хиггсино необходимы для математической непротиворечивости. Но, очевидно, что этот идеально суперсимметричный мир — не наш. Мы бы уже более ста лет назад знали о существовании частиц, у которых был бы такой же электрический заряд и такая же масса, как у электронов, но при этом они бы электронами не являлись. Например, у нас были бы атомы с электронами, атомы с сэлектронами, и атомы с их смесью. Количество типов атомов было бы намного большим наблюдаемого, и поскольку бозоны в атомах вели бы себя совершенно не так, как фермионы, химия новых атомов была бы совершенно другой. Данные и повседневный опыт исключают эту возможность.
Нет никаких сэлектронов с массой электронов, и точка. Так что точная суперсимметрия не является корректной теорией природы, и мы это знали ещё до того, как её задумывали. Конец суперсимметрии? Не так быстро. Несмотря на кажущуюся катастрофу, изначальная теория суперсимметрии даёт нам простой и правдоподобный выход из ситуации. В физике распространена идея о том, что симметрии могут быть спрятаны от нашего взора физики говорят, спонтанно нарушаться, но это не очень хороший интуитивный пример — симметрия есть, её просто сложно распознать. Законы природы не зависят от того, каким образом будет ориентирован эксперимент см. Это так и есть, но это сложно увидеть на Земле, где имеет значение, повёрнут ли ваш эксперимент нужной стороной вверх, или он находится вверх ногами, или он наклонён. Но в далёком космосе, далеко от планет, лун и звёзд, законы природы обладают вращательной симметрией.
Ваш эксперимент даст один и тот же ответ вне зависимости от его ориентации. Кстати, измерения света, испущенного очень удалёнными атомами, подтверждают эту теорию. Земля нас запутывает. Она заставляет нас думать, что направление вниз отличается от направления вверх или влево. Но это явное различие не является свойством законов природы. Различие возникает из-за близости Земли, прячущей от нашего взора вращательную симметрию. Вопрос в том, что если какой-то аспект нашего мира не такой грубый, как Земля, но какой-нибудь незаметный, вроде поля Хиггса прячет от нашего взора суперсимметрию по всей Вселенной? Что тогда? Оказывается, что довольно легко получить такой же мир, как наш, где суперпартнёры известных части существуют, просто стали тяжелее — слишком тяжёлыми для того, чтобы мы обнаружили их в экспериментах.
Если все "красивые" гипотезы подтверждались, то давно всё было бы открыто, и, естественно, развитие на этом кончилось бы, и всё бы закончилось. И ничего не было бы больше. Хорошо, что науке предстоит ещё такое открывать, что мы пока и не представляем себе этого!
Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи
Экзамены суперсимметричной модели вселенной 1978 | Суперсимметрия является одним из основных кандидатов на роль новой теории в физике элементарных частиц за рамками Стандартной модели. |
Большой адронный коллайдер подорвал позиции теории суперсимметрии | Суперсимметрия доминировала над физикой частиц десятилетиями, и исключила почти все альтернативные физические теории, выходившие за рамки СМ. |
Откройте свой Мир! | особенностями обладают различные элементарные частицы? Когда была была предложена теория, предполагающая связь. |
Теория суперструн популярным языком для чайников | Суперсимме́трия, или симме́трия Фе́рми — Бо́зе, — гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает. |
Суперсимметрия — Википедия | Суперсимметрия важна для теории струн, но наличие суперсимметрии в природе само по себе не означает, что последняя — правильная физическая теория. |
Теория суперсимметрии
- Теория суперсимметрии не получила подтверждения – Естествознание, пользователь | My World Groups
- [Перевод] Суперсимметрия не подтверждается экспериментами, и физики ищут новые идеи
- Доказательство суперсимметрии полностью изменит наше понимание Вселенной -
- Доказательство суперсимметрии полностью изменит наше понимание Вселенной
- Где же эти частицы-суперпартнёры?
- Суперсимметрия — Википедия
СУПЕРСИММЕТРИЯ
Вполне возможно, что гравитационные волны помогут нам заглянуть в самые ранние эпохи жизни Вселенной, когда она еще не была прозрачной для света. Может быть, наши коллеги найдут там что-то, что перевернет не только космологию, но и выведет физику частиц на новый уровень. Как показывают примеры темной материи и темной энергии, проблемы макро- и микромира неразрывно связаны между собой. Есть, конечно, и более пессимистический сценарий — не исключено и то, что мы просто достигли пределов человеческого знания и способности познавать мир. Кто-то из великих физиков, кажется, Леонард Сасскинд, любит говорить, что коту можно объяснять квантовую механику до посинения, но он никогда не поймет, как решать уравнение Шредингера. Мне вот кажется, что котик просто отлично понимает, что его покормят колбаской и без всякого уравнения Шредингера. Лично я, как простой советский человек, усердно конспектировавший "Материализм и эмпириокритицизм", верю в бесконечность познания и неисчерпаемость наших возможностей расширять пределы науки. К сожалению, этого не произошло и не понятно, произойдет ли в будущем. Вероятность этого, на мой взгляд, крайне мала, но экспериментаторы скрипят зубами, но продолжают эти поиски.
Что касается гравитационных волн от астрофизических черных дыр, ситуация тут сложнее, так как эти волны больше касаются классической физики, нежели квантовой гравитации. Могут ли они дать нам что-то принципиально новое в смысле обобщений теории гравитации, я не знаю. Их изучение было бы интересным, однако тут мы столкнемся с теми же ограничениями и проблемами, которые накладываются теорией струн и отсутствием надежных предсказаний. Схема ускорительного комплекса проекта NICA К примеру, если попытаться оценить космологическую постоянную Эйнштейна из соображений размерности — она обратно пропорциональна квадрату планковской длины, то у нас получится значение, на 120 порядков превышающее то, что мы наблюдаем в реальности. Это, как часто говорят, худшее предсказание теоретической физики за всю ее историю. Почему это так, и почему космологическая постоянная так мала, но не равна нулю, мы не знаем, и это еще одна из демонстраций того, что теоретическая физика высоких энергий находится в кризисе. Кстати, в этом году Кумрун Вафа, знаменитый физик-теоретик из Гарвардского университета, и его коллеги опубликовали работу, из которой вроде бы следует, что теория струн не совместима с существованием космологической модели с положительной космологической постоянной. К их числу относится и наша Вселенная.
Правда, там есть разные допущения. Жаркие споры по этому поводу сейчас сотрясают научное сообщество. Этого не произошло, и сама судьба коллайдера сейчас стала довольно туманной. Почему ILC? Иными словами, нам хотелось перенести хотя бы часть переднего края науки на территорию нашей страны. Сам факт существования подобной установки очень сильно стимулирует развитие науки и новых технологий. В последние 30 лет сложилась ситуация, при которой во многих отраслях научного знания реальные открытия и их обсуждение происходит где-то "там", а не здесь, в России. Это демотивирует всех и прежде всего молодых ученых.
Введение Я расскажу в этой статье о современных теориях в физике элементарных частиц, о некоторых идеях и следствиях этих теорий. В отдельных местах изложение построено в предположении о том, что читатель не забыл школьную математику и физику. Среди рассмотренных тем следующие: Стандартная модель фундаментальных взаимодействий описывает практически все экспериментальные данные в физике элементарных частиц , ее достоинства и недостатки, решение многих проблем Стандартной модели при ее суперсимметричном обобщении, некоторые особенности минимальной суперсимметричной Стандартной модели МССМ , экспериментальный статус суперсимметрии.
Теоретические основы физики элементарных частиц Физика элементарных частиц — одна из немногих областей человеческого знания, где удалось проникнуть глубже всего в тайны материи и объяснить ее свойства. До сих пор сокращение числа законов, описывающих мир, было одной из основных тенденций при построении научных теорий. При этом главной целью всегда оставалось и остается построение единой теории поля, которая бы объединила все знания человечества о природе, и из которой можно было бы вывести хотя бы в принципе все законы как частные случаи такой теории.
Фундаментальные взаимодействия В настоящее время известно четыре фундаментальных взаимодействия: гравитационное, электромагнитное, сильное и слабое. Первые два обладают дальнодействием и проявляются в повседневной жизни. Гравитация, например, управляет движением небесных тел.
Все мы испытываем гравитационное притяжение Земли. Электромагнетизм объясняет большинство явлений, с которыми сталкивается человек в повседневной жизни. Два других взаимодействия короткодействующие.
Они проявляются только на масштабах атомного ядра объясняют альфа- и бета-распад и становятся определяющими на более мелких масштабах. В микромире ключевую роль играют квантовые свойства частиц. Для описания фундаментальных взаимодействий, однако, недостаточно обычной квантовой механики.
Во-первых, квантовая механика является нерелятивистской теорией, то есть она верна для малых скоростей по сравнению со скоростью света. Во-вторых, квантовая механика не описывает процессы рождения и уничтожения частиц, которые происходят при взаимодействии частиц высоких энергий. Релятивистским обобщением согласующимся с идеями специальной теории относительности квантовой механики является квантовая теория поля.
Квантовая теория поля В квантовополевых теориях частицы материи являются «квантами» возмущениями соответствующих полей. Взаимодействие между частицами переносится специальными полями. Предполагается, что частицы материи в процессе взаимодействия испускают и поглощают другие частицы — кванты поля-переносчика.
Первый успешный пример квантовой теории поля — квантовая электродинамика — был построен в работах Фейнмана, Швингера и Томонаги в середине двадцатого века, за что они были удостоены Нобелевской премии в 1965 году. Квантовая электродинамика рассматривает взаимодействие между заряженными частицами например, электронами и позитронами , возникающее вследствие обмена фотонами — квантами электромагнитного поля. Вплоть до настоящего времени квантовая электродинамика остается самой точной физической теорией.
Симметрия в физике элементарных частиц Под симметрией физики понимают неизменность чего-либо при выполнении определенных преобразований. При этом большую роль играет симметрия законов, или уравнений. Дмитрий Васильевич Волков 1925-1996 : историческая справка Д.
Волков — выдающийся физик-теоретик, академик Национальной академии наук Украины, крупный специалист в области элементарных частиц, квантовой электродинамики, ядерной физики, квантовой теории поля, физики твердого тела. В этом году ему должно было исполниться 80 лет. Двадцатипятилетним молодым человеком приехал в Харьков Дмитрий Волков и на протяжении 45 лет его деятельность была связана с этим городом.
В 1951 году он приехал сюда с группой студентов из разных вузов страны он — из Ленинградского университета по приказу Министерства высшего образования для продолжения учебы в Харьковском университете на вновь организованном отделении ядерной физики при физико-математическом факультете. Родился Д. Волков 3 июля 1925 года в Ленинграде в семье рабочего-слесаря и учительницы.
В семье было двое сыновей: старший Левушка и младший Митенька, названные так в честь героев произведений Л. Толстого, большой поклонницей которого была мать, Ольга Ивановна. Она занималась духовным воспитанием детей, прививая им любовь к литературе, музыке.
Отец, Василий Николаевич, старался закалить их физически, занимаясь с ними спортом, но он всячески поощрял стремление мальчиков и к знаниям. Великая Отечественная война 1941-1945 гг. Дмитрий окончил восьмой класс средней школы, отец, не подлежавший мобилизации по возрасту, ушел добровольцем в народное ополчение и в феврале 1942 года пропал без вести.
Старший брат Лева, став курсантом Ленинградского воинского подразделения, в декабре 1941 года был ранен и умер. Но горе, обрушившееся на семью Волковых, не сломило их. Участвовал в боях на Карельском и на 1-м Дальневосточном фронтах в качестве связиста, радиста, артиллерийского разведчика.
За проявленное в боях мужество награжден несколькими медалями, в 1965 г. После войны Дмитрий Волков возвращается в родной Ленинград с твердым намерением учиться. В течение года он экстерном сдает экзамены за 9-й и 10-й классы и в 1947 году поступает на физический факультет Ленинградского университета.
В процессе учебы профессорско-преподавательский коллектив не только дал ему знания и сформировал интерес к профессии, но и привил глубокое уважение и любовь к науке. И эту любовь Волков пронес через всю жизнь. В Харьковском университете ему тоже повезло.
Здесь читали лекции известные всему научному миру физики, академики А. Вальтер, К. Синельников, А.
Ахиезер — ведущие ученые УФТИ. В 1956 году по окончании аспирантуры Д. Здесь он сложился и вырос как ученый, защитив кандидатскую 1958 г.
Научные интересы Дмитрия Васильевича охватывают широкий круг исследований в теоретической физике. Довольно рано сформировался его научный стиль, отличающийся глубоким и оригинальным подходом к исследуемым вопросам. Уже в первых его работах проявилась нестандартность подхода к фундаментальным проблемам квантовой теории поля.
Международное признание ученый получил сразу — открытая им парастатистика, названная впоследствии статистикой Грина-Волкова и обобщая известные статистики Бозе-Эйнштейна и Ферми-Дирака, сыграла важную роль в развитии представлений о кварковой структуре адронов. В 1960 году Д. Волков, молодой еще физик, в составе советской делегации впервые принимал участие в конгрессе по физике элементарных частиц в США.
Обмениваясь в аэропорту с американскими коллегами новостями науки, глава делегации М. Марков спросил: «Что у вас нового? Ли ответил: «Это у вас новости!
Будучи частицей, которая дает массу другим частицам, Хиггс должен быть очень тяжелым, поскольку взаимодействует с огромным числом частиц. Частицы-партнеры, предсказываемые суперсимметрией, могли бы поправить это. Если они существуют, эти дополнительные частицы отменяли бы вклад партнеров в массу Хиггса. Потому бозон Хиггса был бы легким, как мы его и наблюдали. Это естественное объяснение куда более желательно, чем внесение корректировок в существующую Стандартную модель. Когда вы вынуждены править теории, объясняющие то, что вы в действительности наблюдаете, это знак того, что «вы на самом деле не знаете, что делаете», говорит Линкольн, а эта теория, по всей видимости, неправильная или неполная. Самые легкие суперсимметричные частицы, предсказываемые в рамках теории, могут быть неуловимыми частицами темной материи, на которые охотятся физики десятилетиями. Суперсимметрия предсказывает, что у этой частицы будет нейтральный заряд и она едва ли будет взаимодействовать с любой другой частицей. Примерно такое описание физики ждут от частиц темной материи. Темная материя невидима, поэтому частицы, из которых она состоит, должны быть нейтральными, иначе будут рассеивать свет и станут видимыми.
Эти частицы также ни с чем не взаимодействуют, иначе мы бы их уже обнаружили. Суперсимметрия указала бы в направлении универсальной теории в физике Главная цель физики — постоянно конденсировать наше понимание вселенной все более простыми терминами. К примеру, теперь мы понимаем, что гравитация, которая привела к падению яблока на голову Ньютона, — это та же гравитация, которая управляет планетами и звездами. И теперь мы знаем, что законы электричества и законы магнетизма — просто два закона, которые определяют единую фундаментальную силу электромагнетизма. Если суперсимметричные частицы включены в Стандартную модель, они бы тесно связали три из четырех фундаментальных сил, которые описываются Стандартной моделью: электромагнетизм, сильное и слабое взаимодействие. Суперсимметрия будет означать, что все эти три силы будут обладать одной и той же силой на очень высоких энергетических уровнях.
Главное, проводить прецизионные измерения, которые позволяют увидеть отклонения от предсказаний Стандартной модели. По величине этих отклонений можно судить, где находится «новая физика». Если по косвенным измерениям окажется, что для наблюдения следующих событий нужны колоссально высокие энергии, недостижимые для современной науки, то строить что-то с энергией больше LHC необходимости нет. Если же будет видно, что такая энергия нам доступна, тогда человечество будет создавать установку следующего уровня. Я думаю, что сейчас лучше вкладываться в точные эксперименты на относительно низкой энергии. Это только мое мнение, его далеко не все разделяют. В нем с очень высокой точностью измеряется аномальный магнитный момент мюона. Это важно, так как сейчас мы наблюдаем расхождение между теорией и экспериментом. Замечу, что в теоретические предсказания аномального момента входит и вклад от сильного взаимодействия, который в настоящее время невозможно вычислить, основываясь на «чистой» теории. Обойти эти сложности можно, используя результаты других экспериментов. ВЭПП-2000 — коллайдер Института ядерной физики СО РАН в Новосибирске — предоставил необходимую информацию об адронных взаимодействиях, которая используется в вычислениях аномального магнитного момента мюона. Другой эксперимент — Mu2e — нацелен на поиск безнейтринного распада мюона. Он использует то же самое накопительное кольцо, что и g-2, и начнется сразу после окончания g-2, примерно через два года. Согласно Стандартной модели, мюон распадается на два нейтрино и электрон или позитрон в случае положительно заряженного мюона. Когда я учился в университете, все было просто. Есть электрон, к нему привязано электронное нейтрино. Если у вас образовалось электронное нейтрино, вместе с ним должен образоваться электрон или позитрон в случае антинейтрино , но не может — мюон. А сейчас мы точно знаем, что принцип сохранения лептонного заряда нарушается в секторе нейтрино, а значит, и безнейтронный распад мюона, который запрещен законом сохранения лептонного заряда, возможен, хотя и с очень маленькой вероятностью. Мы ожидаем, что эксперимент достигнет чувствительности порядка 10-16, то есть мы сможем зарегистрировать один безнейтронный распад мюона на 1016 распадов мюона. Такой чувствительности невозможно достигнуть в коллайдерных экспериментах. Но динамичнее всего развивается астрофизика. Если раньше все эксперименты в астрономии проводились при помощи телескопов и фотоаппаратов, то сейчас — при помощи компьютеров и цифровых изображений, и это стало стимулом колоссального прогресса. Теория от безысходности — По какому пути будет развиваться физика высоких энергий? Поэтому основные усилия будут направлены на прецизионные измерения, и LHC — один из самых главных участников. Один из важнейших вопросов к физике высоких энергий — существует ли темная материя. Мы «видим» ее в астрономических наблюдениях, но пока никто не увидел ее в прямых измерениях. Само по себе утверждение, что темная материя и энергия существуют, не является безальтернативным. В настоящее время мы не можем описать Вселенную в том виде, в котором мы ее наблюдаем, используя общую теорию относительности ОТО. Есть два пути. Первый — предположить, что уравнения ОТО здесь не работают. Но это не так просто, если вы хотите удовлетворить «эстетические» требования к теории. Это одно из направлений исследований. Второй путь — внести в существующее описание Вселенной темную материю и темную энергию. Для многих это выглядит более привлекательно, и поэтому большая часть ученых поддерживает второй выбор. Вопрос, кто прав, должен быть разрешен экспериментом. Физика — наука экспериментальная, поэтому, если темная материя существует, значит, мы должны ее найти. На данный момент в мире проводятся более десяти экспериментов по поиску темной материи, но результата пока нет.
Суперсимметрия и суперкоординаты
Победителями были признаны скептики — ученые, не поверившие в обнаружение новых частиц. Расчеты обещают быть простыми благодаря равному числу победителей и проигравших — по 20. Издание отмечает, что на мероприятии присутствовал знаменитый британский физик Стивен Хокинг, который в свое время воздержался от участия пари.
Однако необходимых подтверждений мы не получили". Сформулированная в 1973 году, теория Суперсимметрии предполагает наличие у каждой известной науке элементарной частицы двойника, отличающегося своими характеристиками. Данная теория позволяла ответить на вопрос, почему наша Вселенная имеет значительно большую массу, нежели ее дает сложение всех наблюдаемых в ней космических объектов.
Детектор CMS мог бы видеть джеты, и ученые, обнаружив «недостачу» энергии, унесенной нейтралино, могли бы сделать вывод о рождении суперсимметричных частиц. Однако на данный момент число столкновений, которые бы удовлетворяли всем этим условиям, относительно невелико.
Участники коллаборации CMS в статье, опубликованной в электронной библиотеке Корнеллского университета, говорят лишь о новых ограничениях, которые накладываются на один из вариантов теории суперсимметрии. Ученые, работающие с детектором ATLAS, пытаются обнаружить рождение суперпартнеров, фиксируя рождение электронов и мюонов с потерей энергии. Таких событий фиксировалось еще меньше. Исследователям удалось исключить варианты теории, согласно которым масса суперпартнера глюона — глюино — меньше 700 гигаэлектронвольт. Вместе с тем, многие ученые полагают, что отсутствие признаков суперсимметрии в данных коллайдера не является дурным предзнаменованием для этой теории, которая сама по себе состоит из сотен разных вариантов, зависящих от сочетаний десятков возможных параметров.
К концу года он достигнет 1000 ГэВ, что потенциально исключит некоторые вариации теории суперсимметрии, которым отдавалось наибольшее предпочтение. Это создает серьезную проблему для теории суперсимметрии. Поскольку суперчастицы оказываются более тяжелыми, чем предполагалось, они уже не так хорошо уравновешивают квантовые колебания. Теоретики все еще могут заставить теорию работать, но только при определенных значениях масс суперчастиц. Получается, что нужна та самая "тонкая настройка", для устранения которой теория была изобретена. Но для физики элементарных частиц в целом это будет очень интересно". Не забываем поделиться записью!
Нобелевская премия по физике 2008 года. Нобелевская асимметрия
Теория суперсимметрии не получила подтверждения – Естествознание, пользователь | My World Groups | Во всех теориях суперсимметрии предполагается, что персимметрию уже на основе первых данных с БАК. |
Суперсимметрия и суперкоординаты — все самое интересное на ПостНауке | Однако Тара Шиарс отказалась полностью отвергнуть теорию суперсимметрии и заметила, что не нашли подтверждения выводы ее упрощенной версии, а не более сложного варианта. |
Физики в Копенгагене подвели итоги 15-летнего пари о теории суперсимметрии | Физики со всего мира на встрече в Копенгагене подвели итоги пари, касающегося теории суперсимметрии, пишет научно-популярное издание Quanta. |
Обнаруженные частицы Хиггса подтверждают теорию суперсимметрии | Зачем физики ищут симметрию между элементарными частицами, и почему для работы теории струн нужно двадцать шесть измерений. |
С теорией суперсимметрии придётся расстаться | Андрей Орлов | Дзен | Самая амбициозная теория – теория струны, претендующая на единое описание всех сил природы, требует суперсимметрии для непротиворечивости и устойчивости. |
С теорией суперсимметрии придётся расстаться
Это набор уравнений, который описывает, как все известные элементарные частицы взаимодействуют с четырьмя фундаментальными силами: сильным и слабым взаимодействием, электромагнетизмом и гравитацией. Стандартная модель отлично связывает первые три из этих четырех фундаментальных сил, но не касается гравитации. Гравитация настолько слабая сила, что даже игрушечный магнит может ее побороть. Остальные три силы намного сильнее. Гравитация имеет крайне важное значение для физики, и ее поведение описывает общая теория относительности Эйнштейна. Стандартная модель также не может объяснить присутствие таинственного вещества под названием темная материя, которое удерживает галактики вместе. И не может объяснить, почему во Вселенной намного больше материи, чем антиматерии, хотя должно быть равное количество. Суперсимметрия — это расширение Стандартной модели, которое могло бы помочь заполнить некоторые из этих недостатков. Она прогнозирует, что каждая частица в Стандартной модели может обладать пока не обнаруженным партнером. Это касается даже знакомых нам частиц вроде электронов. Суперсимметрия предсказывает, что у электронов есть партнеры «селектроны», у фотонов — «фотино» и так далее.
Вот все пробелы в физике, которые может исправить суперсимметрия. Хиггс, который физики наблюдали на БАК в 2012 году, намного легче, чем ожидалось. Стандартная модель предсказывает, что бозон Хиггса в триллионы раз тяжелее, чем тот, что наблюдали физики во время первого запуска БАК, как говорит Дон Линкольн, физик из Лаборатории Ферми.
К примеру, мне вместе с Дейвом Таккер—Смитом, ученым из Колледжа Уильямса, удалось найти отличный от вышеописанного — но родственный — способ поиска скварка. Наш метод опирается на измерение только импульса и энергии получающихся кварков; в нем не нужно точно измерять недостающий импульс а это очень непросто и не дает надежных результатов. Метод вызвал среди ученых БАКа заметное оживление; экспериментаторы CMS сразу же приняли его и не только показали, что метод работает, но и в течение всего нескольких месяцев обобщили и улучшили его. Теперь это часть стандартной стратегии поиска суперсимметрии; метод, предложенный нами так недавно, был использован в первом же сеансе поиска суперсимметрии на CMS. Два скварка, одновременно возникшие в БАКе, распадутся на кварк и LSP каждый и оставят после себя сигнатуру в виде дефицита энергии Если суперсимметрия будет обнаружена, экспериментаторы на этом не остановятся.
Они попытаются определить весь спектр суперсимметричных частиц, а теоретики будут работать над интерпретацией полученных результатов. Под идеей суперсимметрии и частиц, способных вызывать ее спонтанное нарушение, скрывается интереснейшая теория. Мы знаем, какие суперсимметричные частицы должны существовать, если суперсимметрия существенна для проблемы иерархии, но мы пока не знаем ни их точных масс, ни того, как эти массы возникают. То, что увидит БАК, очень сильно зависит от спектра масс суперсимметричных частиц, который, вероятно, отличается от спектра масс обычных частиц. Мы знаем, что частицы могут распадаться только на более легкие. Цепочка распадов — последовательность возможных распадов суперсимметричных частиц — определяется их массами, тем, какие из них легче, а какие тяжелее. Скорости различных процессов также зависят от массы частиц. Более тяжелые частицы в среднем распадаются быстрее.
Кроме того, их обычно сложнее получить, потому что они возникают только при высокоэнергетических столкновениях. Все это дало бы нам важную информацию о том, что лежит в основе Стандартной модели и что ожидает нас на следующих энергетических масштабах. Естественно, это относится к анализу любых новых данных, которые нам удастся получить. Тем не менее следует помнить, что, несмотря на популярность теории суперсимметрии среди физиков, существует несколько поводов для беспокойства и оснований сомневаться в том, что эта теория действительно применима в реальном мире и решает проблему иерархии. Во—первых, и это, возможно, самое главное, мы пока не видели никаких экспериментальных свидетельств в пользу этой теории. Если суперсимметрия существует, то единственным оправданием для полного отсутствия доказательств может быть тот факт, что все суперпартнеры тяжелые. Но естественное решение проблемы иерархии требует, чтобы суперпартнеры были относительно легкими. Чем тяжелее суперпартнеры, тем менее адекватным средством решения проблемы иерархии представляется суперсимметрия.
Потребуется подгонка, определяемая отношением массы бозона Хиггса к масштабу масс, при которых нарушается суперсимметрия. Чем больше это отношение, тем сильнее придется «настраивать» теорию. В суперсимметричной модели есть единственный способ сделать Хиггса достаточно тяжелым, чтобы его не обнаружили до сих пор, а именно — включить в его массу значительные квантовомеханические поправки, для которых опять же необходимы тяжелые суперпартнеры. Их массы должны быть настолько большими, что естественное решение проблемы иерархии вновь невозможно, несмотря на суперсимметрию. Еще одна проблема с суперсимметрией — проблема поиска непротиворечивой модели, которая предусматривала бы нарушение суперсимметрии и была согласована со всеми полученными до сего дня экспериментальными данными. Суперсимметрия — очень специфическая симметрия, она устанавливает связи между многими взаимодействиями и запрещает некоторые из них, которые, вообще говоря, квантовая механика допускает. При нарушении суперсимметрии берет верх «принцип анархии» и все, что может случиться, случается. Большинство моделей предсказывают типы распадов, которые либо никогда не регистрировались в эксперименте, либо встречаются слишком редко по сравнению с прогнозом.
В общем, стоит суперсимметрии нарушиться, и квантовая механика не упустит случая разворошить осиное гнездо. Возможно, физики просто не замечают верных ответов. Мы, разумеется, не можем точно сказать, что хороших моделей не существует или что некоторой подгонки не потребуется. Конечно, если суперсимметрия — верное решение проблемы иерархии, то доказательства ее существования скоро будут получены на БАКе. Так что этот вариант, безусловно, стоит исследовать. Открытие суперсимметрии означало бы, что эта новая симметрия пространства—времени применима не только в теоретических изысканиях, но и в реальном мире. Однако пока суперсимметрия не доказана, имеет смысл рассмотреть и альтернативные варианты. И первой в очереди стоит модель, известная как техницвет.
Есть шесть разных типов кварков: верхний, нижний, очарованный, странный, прелестный и истинный. Ученые особенно наблюдали за прелестным кварком, который тяжелее и способен менять форму. Прелестный кварк обычно переходит в очарованный кварк, но в редких случаях может превращаться и в верхний кварк. Это могло стать расширением для стандартной модели, - объясняет сатклифф. В выводах, опубликованных в журнале Nature Physics, измерения не показали никакого правостороннего вращения. В конечном счете ученые получили результат, который был в соответствии со стандартной моделью: прелестный кварк распадается только на верхний кварк, если имеет левосторонний спин.
Суперсимметрия или SUSY — это теория, в которой считается, что каждая из элементарных частиц, составляющих Вселенную, имеет почти одинокого, но не совсем идентичного, «суперпартнера». Его существование подтвердило предполагаемое открытие Хиггса, с которым, по словам физиков, он неразрывно связан.
Суперсимметрия — это сопряженная симметрия пространства и времени. Ее можно интегрировать с теорией относительности Эйнштейна для предоставления полной информации о законах природы.
Суперсимметрия для пешеходов
- Данные, полученные на БАК, поставили под сомнение теорию суперсимметрии
- 🔸 Доказательство суперсимметрии полностью изменит наше понимание Вселенной🔸
- Суперсимметрия в свете данных LHC: что делать дальше?
- Данные, полученные на БАК, поставили под сомнение теорию суперсимметрии - | Новости
- Российский физик — о поисках тёмной материи и её роли во Вселенной
- СОДЕРЖАНИЕ
"Теория проигрывает эксперименту": новый кризис в физике высоких энергий?
В пятидесятых годах Янг и Миллс построили модель, уравнения которой не менялись под действием более сложных локальных калибровочных преобразований. Сначала интерес был исключительно математическим. Однако потом на основе теории Янга — Миллса были созданы важнейшие теории взаимодействия элементарных частиц — теория электрослабых взаимодействий и квантовая хромодинамика. Эти теории, обладающие калибровочной симметрией, получили экспериментальное подтверждение. Стандартная модель фундаментальных взаимодействий В шестидесятых годах удалось объединить электромагнетизм и слабые взаимодействия. Салам, Глэшоу и Вайнберг построили теорию электрослабых взаимодействий. В 1979 году им была присуждена Нобелевская премия. Новая теория предсказала существование новых частиц, так называемых W- и Z-бозонов. Они отвечают за «перенос» слабого взаимодействия. Эти бозоны были открыты на протонном суперсинхротроне в 1983 году. Казалось бы, каким образом можно объединить электромагнитные и слабые взаимодействия, если у первых радиус взаимодействия бесконечен действительно, мы видим свет — электромагнитное излучение — от удаленных галактик и других астрономических объектов , а у вторых он не превышает размеры атомного ядра?
Оказывается, такая «несимметричность» связана с тем, что масса фотонов равна нулю, а масса W- и Z-бозонов очень большая, они примерно в 100 раз тяжелее протона. Нарушение так называемой электрослабой симметрии является важным свойством теории электрослабых взаимодействий этой симметрией обладают уравнения теории. В результате нарушения W- и Z-бозоны и некоторые другие частицы например, электроны приобретают массы. В рамках модели Янга — Миллса калибровочные бозоны нельзя сделать массивными, не разрушив калибровочную симметрию. Для нарушения электрослабой симметрии был придуман механизм Хиггса. Основная идея заключается в том, что все пространство пронизывает специальное хиггсовское поле, которое взаимодействует с остальными полями и нарушает симметрию, хотя уравнения теории остаются симметричными. Возмущения хиггсовского поля должны проявляться на эксперименте как новые частицы — хиггсовские бозоны. Бозон Хиггса — очень тяжелая частица, тяжелее W- и Z-бозонов. Поэтому она пока не открыта экспериментально. Теория сильных взаимодействий, квантовая хромодинамика, тоже основана на уравнениях Янга — Миллса.
Квантовая хромодинамика говорит, что многие элементарные частицы — мезоны и барионы например, протон — состоят из кварков. Однако изолированные кварки никогда не наблюдались это явление называется конфайнментом. Из-за сложности уравнений квантовой хромодинамики конфайнмент до сих пор не выведен из них напрямую. Кстати, решение уравнений Янга — Миллса и объяснение конфайнмента является одной из семи проблем тысячелетия, за которые институт Клэя назначил приз в миллион долларов. Квантовая хромодинамика также находит подтверждение в ускорительных экспериментах. Стандартная модель фундаментальных взаимодействий включает в себя модель электрослабых взаимодействий и квантовую хромодинамику. Стандартная модель оказалась в состоянии объяснить практически все экспериментальные данные, полученные к настоящему времени в физике элементарных частиц. Суперсимметрия Идея суперсимметрии Перед тем, как перейти к обсуждению суперсимметрии, рассмотрим понятие спина. Спин — это собственный момент импульса, присущий каждой частице. Он измеряется в единицах постоянной Планка и бывает целым или полуцелым.
Спин является исключительно квантовомеханическим свойством, его нельзя представить с классической точки зрения. Наивная попытка трактовать элементарные частицы как маленькие «шарики», а спин — как их вращение, противоречит специальной теории относительности, так как точки на поверхности шариков должны в таком случае двигаться быстрее света. Суперсимметрия — это симметрия между частицами с целым и полуцелым спином. Идея суперсимметрии была предложена в теоретических работах Гольфанда и Лихтмана, Волкова и Акулова, а также Весса и Зумино около 40 лет назад. Вкратце она заключается в построении теорий, уравнения которых не изменялись бы при преобразовании полей с целым спином в поля с полуцелым спином и наоборот. С тех пор были написаны тысячи статей, суперсимметризации были подвергнуты все модели квантовой теории поля, был разработан новый математический аппарат, позволяющий строить суперсимметричные теории. Стандартную модель фундаментальных взаимодействий, рассмотренную ранее, тоже можно сделать суперсимметричной. При этом решается ряд ее проблем. Рассмотрим некоторые из них. Мотивировка суперсимметрии Несмотря на огромные успехи Стандартной модели в объяснении экспериментальных данных, она обладает рядом теоретических трудностей, которые не позволяют Стандартной модели быть окончательной теорией, описывающей наш мир.
Оказывается, часть этих трудностей может быть преодолена при суперсимметричном расширении Стандартной модели. Объединение констант связи Гипотеза великого объединения, которой придерживаются многие физики, говорит, что различные фундаментальные взаимодействия есть проявления одного, более общего, взаимодействия. Это взаимодействие должно проявляться при огромных энергиях по различным оценкам, энергия великого объединения в 1013 или даже в 1016 раз превосходит энергию, доступную современным ускорителям элементарных частиц. При понижении энергии от объединенного взаимодействия «отщепляется» сначала гравитационное взаимодействие, потом сильное, а в завершение электрослабое взаимодействие распадается на слабое и электромагнитное. Нейтралино — одна из гипотетических частиц, предсказываемых теориями, включающими суперсимметрию. Так как суперпартнёры Z-бозона, фотона и бозона Хиггса соответственно: зино, фотино и хиггсино имеют одинаковые квантовые числа, они смешиваются, образуя собственные состояния массового оператора, называемые нейтралино. Свойства нейтралино зависят от того, какая из составляющих зино, фотино, хиггсино доминирует. Легчайшее нейтралино стабильно, если оно легче гравитино, а R-чётность сохраняется. Нейтралино участвует только в слабом и гравитационном взаимодействиях. Если нейтралино является стабильной или долгоживущей частицей, то при рождении в ускорительных экспериментах оно будет ускользать от детекторов частиц; однако большие потери энергии и импульса в событии такого рода могут служить экспериментальным проявлением рождения этой частицы.
Стабильные реликтовые нейтралино могут быть обнаружены по рассеянию на ядрах в неускорительных экспериментах по поиску частиц тёмной материи. Легчайшее нейтралино массой 30-5000 ГэВ является основным кандидатом в составляющие холодной тёмной материи из слабовзаимодействующих массивных частиц вимпов. В Стандартной модели, однако, электрослабое и сильное взаимодействия объединены лишь формально. Они могут оказаться разными проявлениями общего взаимодействия, а могут и не оказаться. Тем не менее, анализ экспериментальных результатов дает некоторые подсказки к вопросу о существовании великого объединения. У каждого из фундаментальных взаимодействий есть величина, которая характеризует его интенсивность. Эта величина называется константой взаимодействия. Константа электромагнитных взаимдействий просто равна заряду электрона. В случае сильных и слабых взаимодействий ситуация несколько сложнее. Одно из интересных свойств квантовой теории поля состоит в том, что константа взаимодействия на самом деле не константа — она меняется при изменении характерных энергий процессов с участием элементарных частиц, причем теория может предсказать характер этой зависимости.
В частности, это означает, что при приближении к электрону на расстояния, гораздо меньшие размеров атома, начинает меняться его заряд! Причем такое изменение, обусловленное квантовыми эффектами, подтверждено экспериментальными данными, например, небольшим изменением уровней энергии электронов в атоме водорода лэмбовский сдвиг.
И теория суперсимметрии является одним из лучших кандидатов на замену СМ. К примеру, из частиц-суперпартнеров могла бы получиться темная материя», — говорит Уильям Сатклифф, доктор философии Имперского колледжа в Лондоне. Сатклифф вошел в крупный международный коллектив ученых, которые наблюдали за поведением кварков, субатомных частиц, составляющих протоны и нейтроны. Есть шесть разных типов кварков: верхний, нижний, очарованный, странный, прелестный и истинный. Ученые особенно наблюдали за прелестным кварком, который тяжелее и способен менять форму.
Прелестный кварк обычно переходит в очарованный кварк, но в редких случаях может превращаться и в верхний кварк.
Существование этих двух частиц позволяет объяснить озадачивающие ученых свойства симметрии сильных ядерных взаимодействий, связывающих кварки в протоны и нейтроны, а протоны и нейтроны — в ядра атомов. Современная теория сильных взаимодействий, известная как квантовая хромодинамика, допускает наличие некоторых разногласий в симметрии фундаментальных сильных взаимодействий, так называемой CP-симметрии, хотя эти разногласия пока еще не наблюдались экспериментальным путем.
Существование одной из частиц новой теории позволяет решить проблему CP-симметрии, убирая разногласия и делая сильные взаимодействия полностью симметричными. Более того, эта же дополнительная частица может являться частицей темной материи, загадочной субстанции, на долю которой приходится подавляющая часть материи нашей Вселенной. Естественно, сейчас еще нет и не может существовать единого мнения насчет того, какая именно из теорий, объясняющих малую массу бозона Хиггса или проблему CP-симметрии сильных взаимодействий, является истинной, а какие теории не имеют шанса на существование.
Боле того, наша новая теория предсказывает некоторые особенности, которые могут облегчить жизнь ученым, производящим поиски частиц темной материи».
Теория привлекательна по трём причинам. Она предсказывает существование частиц, из которых может состоять «тёмная материя», невидимая субстанция, пронизывающая окраины галактик. Она объединяет три фундаментальных взаимодействия при высоких энергиях. И, самое большое преимущество,— она решает загадку физики под названием «проблема калибровочной иерархии». Загадка связана с несоразмерностью гравитации и слабым ядерным взаимодействием, которое в 100 миллионов триллионов триллионов 1032 раз сильнее, и действует на гораздо меньших масштабах, управляя взаимодействием внутри атомного ядра.
Частицы, переносящие слабое взаимодействие, W и Z-бозоны, получают массу из хиггсовского поля, поля энергии, пропитывающего пространство. Но непонятно, почему энергия поля Хиггса, и соответственно массы W и Z-бозонов, такие небольшие. Поскольку другие частицы связаны с полем Хиггса, их энергии должны влиться в него в момент квантовых флюктуаций. Это должно сильно поднять энергию хиггсовского поля, делая W и Z-бозоны более массивными и приводя к тому, что слабое взаимодействие ослабеет до уровня гравитации. Суперсимметрия решает проблему иерархии, предполагая наличие суперпартнёра-близнеца для каждой элементарной частицы. Согласно теории, у фермионов, из которых состоит материя, есть суперпартнёры-бозоны, переносящие взаимодействия, а у существующих бозонов есть суперпартнёры-фермионы.
Поскольку типы частиц и их суперпартнёров противоположны, вклады их энергии в хиггсовское поле обладают противоположными знаками — один его увеличивает, второй уменьшает. Вклады пар взаимоуничтожаются, и никаких катастроф не происходит.
Физики думают, что мы найдем доказательства суперсимметрии?
- «Вселенная удваивается»
- Гляжусь, как в зеркало: есть ли шансы у суперсимметрии?
- Теория суперсимметрии не получила подтверждения – Естествознание, пользователь | My World Groups
- "Теория проигрывает эксперименту": новый кризис в физике высоких энергий?
- Где же эти частицы-суперпартнёры?
Новые методы в классической и квантовой теории поля с расширенной суперсимметрией
Спонтанное нарушение суперсимметрии (общая теория). Механизм Файе — Илиопулоса спонтанного нарушения суперсимметрии. Еще не все потеряно, есть усложненные теории суперсимметрии, по которым суперсимметричных частиц так просто не обнаружишь. Теория суперсимметрии предполагает, что физические законы должны оставаться неизменными при перестановке бозонных и фермионных частиц. суперсимметрия. Во всех теориях суперсимметрии предполагается, что персимметрию уже на основе первых данных с БАК.
Большой адронный коллайдер подорвал позиции теории суперсимметрии
Левин Б.М. Реализация суперсимметрии в атоме дальнодействия и конфайнмент, барионная асимметрия, тёмная материя/тёмная энергия. Возвращаясь к эпизоду "Теории большого взрыва", предлагаемым объяснением наблюдаемого в настоящее время несоответствия является суперсимметрия. Знаменитая теория Суперсимметрии, объясняющая основы мироздания, не нашла подтверждения в ходе исследований в Европейском центре ядерных исследований (ЦЕРН) на. Одна из задач, которую ученые пытаются решить с помощью БАК, – это получение экспериментального подтверждения теории Суперсимметрии. Иконка канала Математические теоремы: между теорией и практикой. Одним из преимуществ суперсимметрии является то, что она значительно упрощает уравнения, позволяя исключить некоторые переменные.
Нобелевская премия по физике 2008 года. Нобелевская асимметрия
Сформулированная в 1973 году, теория Суперсимметрии предполагает наличие у каждой известной науке элементарной частицы двойника, отличающегося своими характеристиками. Нужно построить теорию, которая будет инвариантна относительно преобразований суперсимметрии, а также относительно. Теория суперсимметрии обобщает часто встречающееся в природе явление симметрии на уровень элементарных частиц и утверждает, что существует некоторое преобразование.