Немногим более сорока лет назад появилась суперсимметрия – теория, в которой каждому существующему фермиону в пару полагается бозон, и наоборот. Нужно построить теорию, которая будет инвариантна относительно преобразований суперсимметрии, а также относительно.
Гляжусь, как в зеркало: есть ли шансы у суперсимметрии?
Альтернатив ей пока не предложено — это первый и пока единственный пример конечной то есть не имеющей расходимостей теории квантовой гравитации. Теория суперструн включает известные квантовые теории поля как свои низкоэнергетические пределы. В основе теории суперструн лежит суперсимметрия — гипотетическая симметрия, связывающая фермионы и бозоны и введенная как математическая конструкция в 60—70 годах прошлого века. В природе есть два типа частиц: бозоны с целым спином и фермионы с полуцелым спином. Они обладают кардинально разными свойствами.
В частности, согласно принципу Паули, два фермиона не могут находиться в одном квантовом состоянии, у них должны быть обязательно разные квантовые числа, поэтому из идентичных фермионов, в отличие от бозонов, нельзя построить новые частицы. Все другие известные виды симметрий реализуются раздельно на бозонах и на фермионах. В рамках одной симметрии поля и частицы объединяются в мультиплеты группы , причем все взаимодействия состояний внутри данного мультиплета одинаковы. Такова симметрия группы Пуанкаре, симметрия относительно вращений и сдвигов в четырехмерном пространстве-времени Минковского, характеризуемом векторными координатами тремя пространственными и одной временной.
Суперсимметрия же объединяет в единые мультиплеты бозоны вместе с фермионами. Согласно теории суперструн, у всех известных фермионов должны существовать предполагаемые суперпартнеры — бозоны, а у бозонов — фермионы. Поскольку в природе не наблюдается вырождение по массам у фермионов и бозонов, суперсимметрия с необходимостью должна быть нарушена, и поиск адекватных механизмов такого нарушения является актуальной задачей. Те энергии, которые сейчас достижимы на ускорителях, считаются с точки зрения теории суперструн совсем малыми.
В результате теория предсказывает большое число суперчастиц частиц-суперпартнеров обычных частиц , массы и взаимодействие которых могут быть почти произвольными. Теория не говорит, какие из частиц будут легче, какие тяжелее, сколько времени какие из них будут жить, какие у них будут наиболее вероятные процессы рождения и распада. Подчеркнем, что даже перечисление всех сколько-нибудь различающихся вариантов суперсимметричных теорий является совершенно неподъемной задачей. Например, в самой простой реализации идеи суперсимметрии — минимальном суперсимметричном расширении Стандартной модели MSSM — имеется 105 свободных параметров см. Даже если попытаться «просканировать» весь набор их возможных комбинаций в самом грубом приближении например, предположив, что каждый параметр может принимать либо нулевое, либо какое-то одно ненулевое значение , мы получим 2105 комбинаций. Ясно, что ни о каком перечислении всех моделей не может быть и речи. К счастью, подавляющая часть всех таких вариантов сильно расходится с опытными данными.
Но задача выбрать все те, которые согласуются, не проще. Выходом будет попытка сформулировать и тщательно проанализировать нескольких конкретных и очень ограниченных вариантов суперсимметричных теорий. Эти модели должны, с одной стороны, удерживать основные черты суперсимметрии и при этом не входить в явное противоречие с опытом, а с другой стороны, должны предоставить свободу лишь очень малому количеству параметров. Только в этом случае появляется разумный шанс просканировать всё пространство параметров, разбить его на области, различающиеся по физическим последствиям, провести подробные вычисления и сделать предсказания для эксперимента. Они характеризуются предположением об исключительной универсальности всех скалярных частиц и всех фермионов частиц до момента нарушения суперсимметрии и содержат всего 5 свободных параметров в довесок к параметрам Стандартной модели. Именно в рамках этих моделей делалось множество предсказаний для LHC, на основании которых затем разрабатывалась стратегия экспериментального поиска суперсимметрии. NUHM модель с неуниверсальными хиггсами — чуть более свободная разновидность MSSM, в которой снято предположение о жесткой универсальности между хиггсовскими полями; 6 свободных параметров.
Она обладает более сложным набором хиггсовских полей и в простейшем варианте содержит 7 свободных параметров. Подчеркнем, что вариация свободных параметры в каждой модели не просто слегка меняет предсказания для рождения и распада суперчастиц. Она может полностью перекроить всю картину процессов.
Для того чтобы фактически проверить ее, существует несколько возможностей. Одна из них заключается в поиске определенных цепочек превращения элементарных частиц в коллайдере внутри БАК элементарные частицы сталкиваются друг с другом, и этот процесс приводит к последовательному образованию других частиц. Ученые искали такие цепочки превращений в данных, собранных детектором CMS. Второй вариант подразумевает не поиск новых частиц, а обнаружение недостатка энергии при определенных типах столкновений. Согласно положениям гипотезы суперсимметрии, за такой недостаток «ответственны» нейтралино — один из типов гипотетических суперсимметричных частиц. По итогам анализа части данных, собранных на детекторах CMS и ATLAS в течение 2010 года, ученые не обнаружили событий, которые соответствовали бы проявлениям гипотезы суперсимметрии.
Однако исследователи отмечают, что пока рано полностью ее исключать — с их точки зрения, новые результаты только устанавливают более высокие энергетические пределы для проявления суперсимметрии. Зачем нужен большой адронный коллайдер Большой адронный коллайдер — ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее. Суть работ на коллайдере заключается в изучении столкновения двух пучков протонов с суммарной энергией 14 ТэВ на один протон.
Теория суперсимметрии предлагает альтернативное решение проблемы. Теория постулирует, что у фундаментальных частиц есть более тяжелые суперсимметричные партнеры, многие из которых неустойчивы и редко взаимодействуют с обычной материей. Квантовые флуктуации суперсимметричных частиц отлично уравновешивают таковые у обычных частиц, что возвращает диапазон масс бозона Хиггса к приемлемым значениям. Теоретики также обнаружили, что теория суперсимметрии может решить другие проблемы. Некоторые из самых легких суперсимметричных частиц могут оказаться темной материей, за которой астрофизики охотятся с 1930-х годов. Теория суперсимметрии может быть использована для объединения всех взаимодействующих сил во Вселенной, кроме гравитации — это был бы большой шаг к единой теории поля, объединяющей и объясняющей всю известную физику.
Пока что коллайдеры не дали подтверждения теории суперсимметрии. Частицы-суперпартнеры должны оказаться намного тяжелее обычных частиц.
Суперсимметрия
Эта теория, предложенная в 1973 году Юлиусом Вессом и Бруно Зумино, предполагает наличие у каждой известной науке элементарной частицы двойника, отличающегося своими характеристиками. Теория позволяет ответить на вопрос, почему Вселенная имеет значительно большую массу, нежели ее дает сложение всех наблюдаемых в ней космических объектов. Однако необходимых подтверждений мы не получили», — сказала она. Впрочем, Шиарс оговорилась, что опровергать теорию она бы пока не взялась, и отметила, что не нашли подтверждения выводы ее упрощенной версии, а не более сложного варианта. По словам профессора Воробьева, о результатах экспериментов можно будет точно говорить в конце 2012 года Фото: hepd. Алексей Воробьев: В ходе эксперимента сталкиваются два протона больших энергий.
На данном этапе определенности нет, все упирается в стоимость. Решение может быть принято как через 5 лет, так и через 50. Для понимания: мы говорим про установки, стоимость которых колеблется в пределах от 5 до 20 млрд долларов и которые потребляют 0,5—1ГВт. Даже по меркам физики высоких энергий — это огромные затраты.
Если мы делаем машину на порядок больше по энергии, то потребляемая мощность и стоимость будут в три-четыре раза выше. Гигаватт энергии расходует солидный город. А стоимость также зависит от того, что учитывать. В американской системе подсчета, которая учитывает все, стоимость будет раза в два больше, чем в европейской. В CERN финансирование фиксировано правительствами европейских стран. На этот бюджет они ничего заметно большего, чем LHC, построить не могут. До сих пор стоимости были более или менее посильными. Tevatron в современных деньгах стоит шесть млрд долларов, у LHC — сопоставимая цифра. LHC в четыре раза длиннее, но за счет развития технологий, массового производства и накопленного опыта стоимость LHC получилась дешевле на метр, однако полные стоимости сопоставимы.
Если говорить про строительство следующей машины, на мой взгляд, правильно было бы вкладываться в эксперименты с высокой светимостью. Их можно проводить на LHC его параметры позволяют это сделать , можно создавать новые установки на гораздо меньших энергиях. Главное, проводить прецизионные измерения, которые позволяют увидеть отклонения от предсказаний Стандартной модели. По величине этих отклонений можно судить, где находится «новая физика». Если по косвенным измерениям окажется, что для наблюдения следующих событий нужны колоссально высокие энергии, недостижимые для современной науки, то строить что-то с энергией больше LHC необходимости нет. Если же будет видно, что такая энергия нам доступна, тогда человечество будет создавать установку следующего уровня. Я думаю, что сейчас лучше вкладываться в точные эксперименты на относительно низкой энергии. Это только мое мнение, его далеко не все разделяют. В нем с очень высокой точностью измеряется аномальный магнитный момент мюона.
Это важно, так как сейчас мы наблюдаем расхождение между теорией и экспериментом. Замечу, что в теоретические предсказания аномального момента входит и вклад от сильного взаимодействия, который в настоящее время невозможно вычислить, основываясь на «чистой» теории. Обойти эти сложности можно, используя результаты других экспериментов. ВЭПП-2000 — коллайдер Института ядерной физики СО РАН в Новосибирске — предоставил необходимую информацию об адронных взаимодействиях, которая используется в вычислениях аномального магнитного момента мюона. Другой эксперимент — Mu2e — нацелен на поиск безнейтринного распада мюона. Он использует то же самое накопительное кольцо, что и g-2, и начнется сразу после окончания g-2, примерно через два года. Согласно Стандартной модели, мюон распадается на два нейтрино и электрон или позитрон в случае положительно заряженного мюона. Когда я учился в университете, все было просто. Есть электрон, к нему привязано электронное нейтрино.
Если у вас образовалось электронное нейтрино, вместе с ним должен образоваться электрон или позитрон в случае антинейтрино , но не может — мюон. А сейчас мы точно знаем, что принцип сохранения лептонного заряда нарушается в секторе нейтрино, а значит, и безнейтронный распад мюона, который запрещен законом сохранения лептонного заряда, возможен, хотя и с очень маленькой вероятностью. Мы ожидаем, что эксперимент достигнет чувствительности порядка 10-16, то есть мы сможем зарегистрировать один безнейтронный распад мюона на 1016 распадов мюона. Такой чувствительности невозможно достигнуть в коллайдерных экспериментах. Но динамичнее всего развивается астрофизика. Если раньше все эксперименты в астрономии проводились при помощи телескопов и фотоаппаратов, то сейчас — при помощи компьютеров и цифровых изображений, и это стало стимулом колоссального прогресса.
Хиггс, который физики наблюдали на БАК в 2012 году, намного легче, чем ожидалось. Стандартная модель предсказывает, что бозон Хиггса в триллионы раз тяжелее, чем тот, что наблюдали физики во время первого запуска БАК, как говорит Дон Линкольн, физик из Лаборатории Ферми. Будучи частицей, которая дает массу другим частицам, Хиггс должен быть очень тяжелым, поскольку взаимодействует с огромным числом частиц. Частицы-партнеры, предсказываемые суперсимметрией, могли бы поправить это. Если они существуют, эти дополнительные частицы отменяли бы вклад партнеров в массу Хиггса. Потому бозон Хиггса был бы легким, как мы его и наблюдали. Это естественное объяснение куда более желательно, чем внесение корректировок в существующую Стандартную модель. Когда вы вынуждены править теории, объясняющие то, что вы в действительности наблюдаете, это знак того, что «вы на самом деле не знаете, что делаете», говорит Линкольн, а эта теория, по всей видимости, неправильная или неполная. Самые легкие суперсимметричные частицы, предсказываемые в рамках теории, могут быть неуловимыми частицами темной материи, на которые охотятся физики десятилетиями. Суперсимметрия предсказывает, что у этой частицы будет нейтральный заряд и она едва ли будет взаимодействовать с любой другой частицей. Примерно такое описание физики ждут от частиц темной материи. Темная материя невидима, поэтому частицы, из которых она состоит, должны быть нейтральными, иначе будут рассеивать свет и станут видимыми. Эти частицы также ни с чем не взаимодействуют, иначе мы бы их уже обнаружили. Суперсимметрия указала бы в направлении универсальной теории в физике Главная цель физики — постоянно конденсировать наше понимание вселенной все более простыми терминами. К примеру, теперь мы понимаем, что гравитация, которая привела к падению яблока на голову Ньютона, — это та же гравитация, которая управляет планетами и звездами. И теперь мы знаем, что законы электричества и законы магнетизма — просто два закона, которые определяют единую фундаментальную силу электромагнетизма.
Она основана на предположении, что существует гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие и наоборот. Теория суперсимметрии выдвигалась многими физиками-теоретиками в качестве средства объяснения некоторых несоответствий в Стандартной модели Вселенной. Физики очень рассчитывали получить с помощью Большого адронного коллайдера первое экспериментальное подтверждение этой теории. Однако новое наблюдение, о котором было доложено на конференции по физике адронного коллайдера в Киото, противоречит многим моделям в рамках теории суперсимметрии. Теория суперсимметрии Гипотеза суперсимметрии была впервые сформулирована в 1973 году австрийским физиком Юлиусом Вессом и итальянским физиком Бруно Зумино и постулирует существование определенного рода симметрии между двумя основными классами частиц — бозонами и фермионами. Фактически, гипотеза суперсимметрии позволяет при помощи преобразований связать воедино вещество и излучение. На сегодня эта гипотеза не была подтверждена экспериментально.
Гляжусь, как в зеркало: есть ли шансы у суперсимметрии?
Теория Суперсимметрии имеет дело с Суперпространством, в котором трехмерие дополняется принципиально ненаблюдаемыми измерениями. С момента ввода в обиход теории суперсимметрии и до настоящего времени эта теория являлась лишь только неподтвержденной физической гипотезой. Самая амбициозная теория – теория струны, претендующая на единое описание всех сил природы, требует суперсимметрии для непротиворечивости и устойчивости. Теория суперсимметрии обобщает часто встречающееся в природе явление симметрии на уровень элементарных частиц и утверждает, что существует некоторое преобразование. суперсимметрия.
Экзамены суперсимметричной модели вселенной 1978
Одно из возможных объяснений того, почему Вселенная до сих пор существует и в ней почти нет антиматерии — гипотеза, что свойства частиц материи и антиматерии не являются полностью симметричными". Эта гипотеза очередной раз не подтвердилась, что влечёт за собой отказ от теории Большого Взрыва. С ней должна уйти на покой теория расширения пространства, из которой происходят теории тёмной материи и энергии. А это, согласитесь, огромный и практически основной пласт современной астрофизики. Но и это ещё не всё. Виртуальные частицы вакуума - электроны и позитроны, на которые тот должен постоянно распадаться и схлопываться назад, должны были бы вносить изменения в форму зарядов исследуемых электронов. Но этого не обнаружено, как и самих виртуальных частиц вакуума. А на этой гипотезе тоже уже успели понастроить различных теорий и предположений. Весь этот мусор, наконец, пойдёт в корзину истории и я рад этому, потому что давно пишу об ошибочности этих теорий. Но у официальной физики нет им альтернативы.
Вернее, альтернативных теорий довольно много, но они не признавались и не проверялись, так как противоречили общепризнанным и сколько теперь понадобится времени на отсев, проверку, а главное объединение других теорий сказать сложно.
В понедельник участники пари встретились в Международной академии имени Нильса Бора. Победителями были признаны скептики — ученые, не поверившие в обнаружение новых частиц. Расчеты обещают быть простыми благодаря равному числу победителей и проигравших — по 20.
Ефетов 1997 [15]. Экспериментальная проверка[ править править код ] В 2011 году на Большом адронном коллайдере БАК была проведена серия экспериментов, в ходе которых проверялись фундаментальные выводы теории Суперсимметрии, а также верность описания ею физического мира.
Как заявила 27 августа 2011 года профессор Ливерпульского университета Тара Ширс [en] , эксперименты не подтвердили основные положения теории [16] [17]. При этом Тара Шиарс уточнила, что не нашла подтверждения и упрощённая версия теории суперсимметрии, однако полученные результаты не опровергают более сложный вариант теории. К концу 2012 года на детекторе LHCb Большого адронного коллайдера была накоплена статистика по распаду странного B-мезона на два мюона [18]. Таким образом, вероятность этого крайне редкого события статистически достоверна и хорошо согласуется с предсказанием Стандартной модели. Результаты проверки электрического дипольного момента электрона 2013 также не подтвердили варианты суперсимметричных теорий [20]. Тем не менее суперсимметричные теории могут быть подтверждены другими экспериментами, в частности, наблюдениями за распадом нейтрального B0-мезона.
После перезапуска весной 2015 года, БАК планирует начать работу на мощности 13 ТэВ и продолжит поиск отклонений от статистических предсказаний Стандартной модели.
Эксперимент заключался в беспрецедентно детальном изучении распада Б-мезонов, возможном сегодня только на LHC. По данным команды "Теватрона" и еще нескольких других ускорительных лабораторий, на ход наблюдаемого ими распада Б-мезонов, возможно, влияло присутствие суперсимметричных частиц.
Куда более чувствительный эксперимент, проведенный на суперколлайдере, этого влияния не обнаружил. Если учесть, что и на других детекторах LHC никакого следа суперсимметричных частиц до сих пор не встречалось, хотя по теории вероятностей это уже должно было произойти, это ставит крест на теории суперсимметрии в его сегодняшнем виде. Один из участников команды LHC профессор Джордан Нэш из Имперского Лондонского колледжа, комментируя результаты "Красотки LHC", заявил: "Это означает, что либо мы не полностью понимаем происходящее, либо суперчастицы неамножко другие, чем мы о них думаем, либо их нет вообще".
Суперсимметрия в свете данных LHC: что делать дальше?
му же, в этом случае у нас исчезают расходимости в первом порядке теории возмущений, что тоже является одним из плюсов суперсимметрии. Во всех теориях суперсимметрии предполагается, что персимметрию уже на основе первых данных с БАК. Если рассмотреть квантовую электродинамику, то это теория с не очень большим, по сравнению с суперсимметрией, количеством симметрий.
Адронный коллайдер подтвердил теорию суперсимметрии
Нобелевская премия по физике 2008 года. Нобелевская асимметрия | Наука и жизнь | С момента ввода в обиход теории суперсимметрии и до настоящего времени эта теория являлась лишь только неподтвержденной физической гипотезой. |
Суперсимметрия — Википедия | Когда суперсимметрия задана как местный симметрия, теория Эйнштейна общая теория относительности включается автоматически, и результат называется теорией супергравитация. |
Эксперимент на Большом адронном коллайдере опроверг современную теорию мироздания | Суперсимметрия дает способ объединить электрослабое и сильные взаимодействия и в конечном счете создать единую теорию поля. |
Данные, полученные на БАК, поставили под сомнение теорию суперсимметрии | 28 апреля - 43672616965 - Медиаплатформа МирТесен. |
СУПЕРСИММЕ́ТРИ́Я
Нужно построить теорию, которая будет инвариантна относительно преобразований суперсимметрии, а также относительно. Зачем физики ищут симметрию между элементарными частицами, и почему для работы теории струн нужно двадцать шесть измерений. Знаменитая теория Суперсимметрии, объясняющая основы мироздания, не нашла подтверждения в ходе исследований в Европейском центре ядерных исследований (ЦЕРН) на. Так что суперсимметрия должна нарушаться в том смысле, что отношения, предсказанные теорией суперсимметрии, не могут быть строгими. Немногим более сорока лет назад появилась суперсимметрия – теория, в которой каждому существующему фермиону в пару полагается бозон, и наоборот. Это позволяет связать суперсимметрии и деформации пространственно-временной метрики, которые, согласно общей теории относительности, и есть причина тяготения.
Откройте свой Мир!
Первые два обладают дальнодействием и проявляются в повседневной жизни. Гравитация, например, управляет движением небесных тел. Все мы испытываем гравитационное притяжение Земли. Электромагнетизм объясняет большинство явлений, с которыми сталкивается человек в повседневной жизни.
Два других взаимодействия короткодействующие. Они проявляются только на масштабах атомного ядра объясняют альфа- и бета-распад и становятся определяющими на более мелких масштабах. В микромире ключевую роль играют квантовые свойства частиц.
Для описания фундаментальных взаимодействий, однако, недостаточно обычной квантовой механики. Во-первых, квантовая механика является нерелятивистской теорией, то есть она верна для малых скоростей по сравнению со скоростью света. Во-вторых, квантовая механика не описывает процессы рождения и уничтожения частиц, которые происходят при взаимодействии частиц высоких энергий.
Релятивистским обобщением согласующимся с идеями специальной теории относительности квантовой механики является квантовая теория поля. Квантовая теория поля В квантовополевых теориях частицы материи являются «квантами» возмущениями соответствующих полей. Взаимодействие между частицами переносится специальными полями.
Предполагается, что частицы материи в процессе взаимодействия испускают и поглощают другие частицы — кванты поля-переносчика. Первый успешный пример квантовой теории поля — квантовая электродинамика — был построен в работах Фейнмана, Швингера и Томонаги в середине двадцатого века, за что они были удостоены Нобелевской премии в 1965 году. Квантовая электродинамика рассматривает взаимодействие между заряженными частицами например, электронами и позитронами , возникающее вследствие обмена фотонами — квантами электромагнитного поля.
Вплоть до настоящего времени квантовая электродинамика остается самой точной физической теорией. Симметрия в физике элементарных частиц Под симметрией физики понимают неизменность чего-либо при выполнении определенных преобразований. При этом большую роль играет симметрия законов, или уравнений.
В физике симметрии играют двоякую роль. Во-первых, каждому типу симметрии физической системы соответствует сохраняющаяся величина. Во-вторых, от новых физических теорий можно требовать выполнения различных симметрий.
Чем больше таких требований — тем меньше произвол в построении теории. Примером физической теории, обладающей симметрией, является обычная квантовая механика, оперирующая волновыми функциями. Волновая функция частицы — это комплексная функция, например, пространственных координат грубо говоря, комплексное число в каждой точке.
Ее можно рассчитать из уравнения Шрёдингера. Физический смысл имеет не сама волновая функция, а квадрат ее модуля, который показывает вероятность нахождения частицы в каком-либо месте. Если все волновые функции умножить на одно и то же комплексное число с модулем 1, никакие предсказания теории не изменятся.
Действительно, модуль произведения комплексных чисел равен произведению модулей, и от такого домножения никакие вероятности не изменяются. Это пример так называемой глобальной симметрии глобальной — потому, что волновая функция умножалась в разных точках на одно и то же число. Суть этой симметрии заключается в том, что теория не изменяется относительно некоторого класса преобразований в нашем случае эти преобразования — умножение на произвольное комплексное число с модулем, равным 1.
Квантовая электродинамика обладает симметрией относительно преобразований, называемых калибровочными. Эти преобразования заключаются в домножении поля электронов на комплексное число с модулем 1 правда, чтобы теория не изменялась, одновременно с преобразованием поля электронов нужно выполнить и некоторые другие преобразования электромагнитного поля. В отличие от рассмотренного выше случая квантовой механики, это число уже может быть в каждой точке различным локальная симметрия.
Интересно отметить следующий момент. Как было сказано выше, с каждой симметрией связана сохраняющаяся величина. В случае калибровочных преобразований квантовой электродинамики такой сохраняющейся величиной является обычный электрический заряд.
В пятидесятых годах Янг и Миллс построили модель, уравнения которой не менялись под действием более сложных локальных калибровочных преобразований. Сначала интерес был исключительно математическим. Однако потом на основе теории Янга — Миллса были созданы основные теории взаимодействия элементарных частиц — теория электрослабых взаимодействий и квантовая хромодинамика.
Эти теории, обладающие калибровочной симметрией, получили экспериментальное подтверждение. Стандартная модель фундаментальных взаимодействий В шестидесятых годах удалось объединить электромагнетизм и слабые взаимодействия. Салам, Глэшоу и Вайнберг построили теорию электрослабых взаимодействий.
В 1979 году им была присуждена Нобелевская премия. Новая теория предсказала существование новых частиц, так называемых W- и Z-бозонов. Они отвечают за «перенос» слабого взаимодействия.
Эти бозоны были открыты на протонном суперсинхротроне в 1983 году. Казалось бы, каким образом можно объединить электромагнитные и слабые взаимодействия, если у первых радиус взаимодействия бесконечен действительно, мы видим свет — электромагнитное излучение — от удаленных галактик и других астрономических объектов , а у вторых он не превышает размеры атомного ядра? Оказывается, такая «несимметричность» связана с тем, что масса фотонов равна нулю, а масса W- и Z-бозонов очень большая, они примерно в 100 раз тяжелее протона.
Нарушение так называемой электрослабой симметрии является важным свойством теории электрослабых взаимодействий этой симметрией обладают уравнения теории. В результате нарушения W- и Z-бозоны и некоторые другие частицы например, электроны приобретают массы. В рамках модели Янга — Миллса калибровочные бозоны нельзя сделать массивными, не разрушив калибровочную симметрию.
Для нарушения электрослабой симметрии был придуман механизм Хиггса. Основная идея заключается в том, что все пространство пронизывает специальное хиггсовское поле, которое взаимодействует с остальными полями и нарушает симметрию, хотя уравнения теории остаются симметричными. Возмущения хиггсовского поля должны проявляться на эксперименте как новые частицы — хиггсовские бозоны.
Бозон Хиггса — очень тяжелая частица, тяжелее W- и Z-бозонов. Поэтому она пока не открыта экспериментально. Теория сильных взаимодействий, квантовая хромодинамика, тоже основана на уравнениях Янга — Миллса.
Победителями были признаны скептики — ученые, не поверившие в обнаружение новых частиц. Расчеты обещают быть простыми благодаря равному числу победителей и проигравших — по 20. Издание отмечает, что на мероприятии присутствовал знаменитый британский физик Стивен Хокинг, который в свое время воздержался от участия пари.
Рольф Хойер, генеральный директор ЦЕРН, регулярно включает его в качестве одной из целей «новой физики» для ускорителя. Но в некоторых прогнозах, перед тем, как гигантская машина начала свою работу в марте 2010 предполагалось, что сигналы SUSY окажутся быстрее. Существует много споров об этой теории, но суперсимметрия является одним из наиболее привлекательно возможных расширений Стандартной модели и ведущим претендентом в новых принципах природы, которые можно открыть только при большой энергии коллайдеров. Поэтому суперсимметричные частицы скорее всего можно будет заметить в начале 2015 года, когда мощность коллайдера, а следовательно столкновение частиц будет в два раза сильнее.
Потому, хотя мы и не видим доказательств суперсимметрии, эта теория остается очень мощной.
Тем не менее Вселенной абсолютно все равно, насколько идеальными наши теории ни казались бы, говорит Линкольн. Многие физики говорят, что мы должны были найти доказательства суперсимметричных частиц уже в первый запуск БАК, поэтому теория вполне может быть не ахти. Но только потому, что мы не видели каких-либо суперсимметричных частиц, еще не означает, что их нет. Может быть, есть что-то в том, как суперсимметрия проявляется, чего мы пока не понимаем. Может, нужен более мощный коллайдер, чтобы частицы-суперпартнеры проявили себя. Мы не узнаем этого, пока БАК не заработает. Если суперсимметрия была вне досягаемости по уровню энергии во время последнего запуска, данные этого года могут быть совершенно неописуемыми. Конечно, мы можем ничего и не найти.
Но это тоже пойдет нам на пользу. Если суперсимметрия ошибочна, это откроет дверь к новому набору теорий. Также появится больше доверия к другим теориям, вроде идеи о мультивселенной, к которой никогда не было особого доверия. Ждем запуска.