40-летний мужчина смог снова ходить благодаря "цифровому мосту", который беспроводным способом соединяет головной мозг с участком спинного мозга, сообщает Sky News. В большинстве случаев инсульт спинного мозга бывает спровоцирован нарушениями работы сосудов, а не самого позвоночника.
Починить спинной мозг: новые терапии на грани фантастики
Клетки микроглии при травме спинного мозга активируются, то есть возникает иммунный ответ, и его степень напрямую зависит от тяжести травмы. РИА Новости: Бойцы ВС РФ спаслись от дронов ВСУ на машине с "Волнорезом". Сайт для специалистов и больных по проблеме травматической болезни спинного мозга. Клиника, диагностика, лечение, реабилитация. Новейшие достижения и перспективы исследования. Шейные позвонки зажали спинной мозг. Спинной мозг был полностью просмотрен, в результате нами был поставлен диагноз – острый миелит, – рассказала врач-невролог Кировской областной детской клинической больницы Ирина Крутихина. Главная Новости НаукаИзраильская компания представила инновационный метод лечения травм спинного мозга.
Симптоматика
- Ученых заинтересовал спинной мозг в контексте проблем с памятью после COVID-19 - новости медицины
- Важная победа над природой: как скоро можно будет чинить спинной мозг
- Главный онколог «СМ-Клиника» об опухолях спинного мозга
- Ученые создали имплант спинного мозга — он вылечил 80 процентов случаев хронического паралича мышей
- Спинной мозг также может обучаться и запоминать
- Спинной мозг. Секреты наружного строения
Ученые разработали новый метод лечения травмы спинного мозга
ФГБНУ «Аналитический центр» - 29 мая 2023 г. - EPFL: встать на ноги после травмы спинного мозга | Эти детали могут быть полезны для понимания принципов регенерации поврежденных аксонов спинного мозга", — рассказывает Роман Борисюк из Института математических проблем биологии РАН, чьи слова приводит пресс-служба заведения. |
Ученые КФУ изучают эффективные способы помощи пациентам с травмой спинного мозга | Первых испытателей компания отберет из числа пациентов с параличом из-за травмы шейного отдела спинного мозга или бокового амиотрофического склероза, говорится в сообщении Neuralink. |
Ученых заинтересовал спинной мозг в контексте проблем с памятью после COVID-19
Но и без помощи машинного обучения не обошлось — необходимо было ещё суметь распознать мысли о движении. Помощь была оказана 38-летнему человеку, повредившему шейный отдел позвоночника десять лет назад в результате падения с велосипеда. Ранее он участвовал в программе помощи в реабилитации людей с травмами позвоночника. В частности, к нему применяли процедуру эпидуральной стимуляции спинного мозга, когда в позвоночник устанавливается имплантат с электродами, а под кожу вшивается стимулятор. Такая платформа на основе показаний датчиков движения в стимуляторе создаёт импульсы в ответственных зонах спинного мозга и заставляет мышцы конечностей совершать работу, а человеку передвигаться, правда, очень и очень ограниченно. Поскольку у пациента остались электроды в позвоночнике на спинном мозге , учёные решили подавать на них управляющий сигнал из головного мозга.
Предлагаются различные стратегии восстановления нейронных связей, как биологические активация роста аксонов нейронов, трансплантация клеток нейроглии, поддерживающих рост, и т. Однако пока что ни одна стратегия не признана достаточно эффективной и безопасной. Подобную конструкцию они исследовали на обезьянах еще в прошлом десятилетии. Имплантированный чип в головном мозге получал сигналы от нейронов моторной коры, контролирующих движения задних лап, и с помощью беспроводного интерфейса передавал декодированные сигналы на другой имплантат, расположенный ниже повреждения спинного мозга эпидуральная электростимуляция.
В результате животные снова смогли ходить. В новой работе представлены результаты эксперимента, в котором участвовал человек с травмой спинного мозга. Два беспроводных регистратора, каждый из которых содержит 64 электрода, в ходе операции были размещены на твердой мозговой оболочке одна из трех оболочек, покрывающих мозг, самая внешняя , над областями, которые участвуют в контроле движений ног. Такой метод отведения потенциалов, при котором электроды располагаются на мозге, называется электрокортикографией, или ЭКоГ; потенциалы имеют большую амплитуду и разрешение, чем при ЭЭГ.
Участки, сильнее всего реагирующие на намерение пошевелить ногами, выбрали с помощью компьютерной томографии и магнитоэнцефалографии. В имплантате также есть две антенны: одна питает его за счет индуктивной связи, а другая, сверхвысокочастотная, транслирует сигналы ЭкоГ в режиме реального времени на портативную базовую станцию ее пока приходится носить в рюкзаке. Третью многоэлектродную решетку имплантировали в твердую оболочку спинного мозга, чтобы сигналы поступали на входные зоны задних корешков.
Однако оказалось, что в выражении «думать спинным мозгом» есть рациональное зерно, что является хорошей новостью для людей с травмами этого органа Основные функции спинного мозга — это управление простыми двигательными рефлексами, связанными с работой скелетных мышц, некоторыми вегетативными рефлексами, такими как сосудодвигательные и дыхательные, и др. При этом давно предполагалось, что спинной мозг активно участвует в обучении двигательным навыкам: об этом свидетельствовали данные, что двигательную активность, курируемую спинным мозгом, можно менять без помощи головного мозга.
Яркое доказательство — результаты экспериментов на насекомых с удаленной головой, в которых их ноги «обучали» избегать неприятного внешнего воздействия. Эти опыты говорят о важности для обучения не только центральной, но и периферической нервной системы. Но как это происходит на уровне клеток и нейронных связей, оставалось непонятным. Сейчас исследователи из Японии и Бельгии разработали похожую экспериментальную схему, где подопытными были уже не насекомые, а млекопитающие — лабораторные мыши.
До сих пор не удавалось выяснить, как именно это происходит, а без такого понимания феномен оставался не более чем любопытным фактом. Как объясняет Такеока, «понимание основного механизма очень важно, если мы хотим понять основы автоматизма движений у здоровых людей и использовать эти знания для реабилитации пациентов с травмами позвоночника». Прежде чем перейти к изучению нейронных связей, исследователи разработали экспериментальную установку, которая позволила им изучить процесс адаптации спинного мозга мыши. Под процессом понимается как обучение, так и запоминание без участия головного мозга. В каждом тесте участвовали экспериментальная и контрольная мыши, чьи задние лапы свободно свисали. Если задняя лапа экспериментальной мыши опускалась слишком низко, она получала электрическую стимуляцию, импульс, которого мышь хотела бы избежать. Контрольная мышь получала такую же стимуляцию в то же время, но без привязки к положению ее задней лапы. Уже через 10 минут наблюдались результаты моторного обучения, но только у подопытных мышей: их лапки оставались высоко поднятыми, избегая электрической стимуляции.
Человеческому мозгу вернули контроль над парализованными ногами
Им удалось определить две критические группы нейронов: одна была задействована при обучении, другая необходима для «вспоминания» усвоенного. При этом обучение не происходило у мышей с «отключенными» дорсальными задними нейронами спинного мозга, у которых активен ген Ptf1a. А «память» переставала работать при «отключении» расположенных спереди клеток Реншоу — эти нейроны, у которых активен ген En1, входят в состав контуров возвратного торможения. Кстати сказать, у обычных, нетрансгенных мышей искусственное возбуждение этих нейронов увеличивало скорость реакции животных на удар током при повторном тестировании — лапы животных принимали позу избегания еще быстрее! Таким образом, очевидно, что не только у насекомых, но и у млекопитающих двигательное обучение и память не ограничиваются исключительно работой центральной нервной системы. И возможность манипулировать двигательной памятью периферической нервной системы может оказаться важной при разработке терапии для восстановления двигательных функций при травмах спинного мозга.
Проще говоря, в позвоночник устанавливали специальные импланты с электродами, а стимулятор вшивался под кожу. Именно это — а точнее, сохранившиеся на спинном мозге электроды — позволило ученым подавать на них управляющий сигнал прямиком из головного мозга. Каким образом? Установкой «цифрового беспроводного моста»: в череп мужчины внедрили датчики с собственным массивом электродов.
Ученые надеются, что клинические испытания их разработки начнутся в течение нескольких лет. В будущем она может помочь людям, прикованным к кровати или коляске. О разработке: При создании имплантов ученые использовали жировые клетки, взятые из живота. Их отделили от внеклеточного матрикса, а затем вернули в состояние, напоминающее эмбриональные стволовые клетки.
В результате пациент смог ходить и даже подниматься по лестнице, пока на костылях, но уже без инвалидной коляски. Из-за повреждения позвоночника, а с ним и спинного мозга, нарушается связь между головным и спинным мозгом. Нейроны двух органов не могут обмениваться сигналами, поэтому человек перестает двигаться ниже места повреждения, возникает паралич. Теперь же с помощью цифрового моста — электродов, помещаемых между спинным мозгом и позвоночником и имитирующих сигналы, которые поступают от головного мозга — был совершен прорыв в медицине.
Впервые в мире: ученые Университета «Сириус» разработали мягкий нейроимплант спинного мозга
Они выяснили, что клетки иммунной системы мозга играют значительную роль в процессах воспаления и восстановления при тяжелой травме спинного мозга. После травмы происходит активация множества биохимических реакций и взаимодействий между клетками, результаты которых определяют возможность восстановления нервной ткани и сохранения ее функций. Важнейшими участниками этих процессов являются клетки микроглии — иммунные клетки центральной нервной системы», — пояснила первый автор статьи, младший научный сотрудник НИЛ «Генные и клеточные технологии» Эльвира Ахметзянова. Сотрудниками лаборатории было изучено поведение клеток микроглии в условиях моделирования травмы спинного мозга in vitro различной степени тяжести в различные посттравматические периоды острый, подострый и хронический. Клетки микроглии при травме спинного мозга активируются, то есть возникает иммунный ответ, и его степень напрямую зависит от тяжести травмы. В результате активации эти клетки приобретают нейротоксический или нейропротективный фенотип — происходит процесс их поляризации.
Установкой «цифрового беспроводного моста»: в череп мужчины внедрили датчики с собственным массивом электродов. Блок управления получил внешнее беспроводное питание на частоте в 13,56 МГц, считанная мозговая активность транслировалась антенной на частоте в 405 МГц. Впрочем, без дешифратора не обошлось — его мужчине пришлось носить с собой. Алгоритм научили распознавать активность головного мозга и в ответ на команды совершать действия.
У пациентов с «мозговым туманом» ученые обнаружили в образцах повышенный уровень белка, что говорит о воспалении в мозгу. Также и в крови, и в спинномозговой жидкости исследователи нашли антитела: это говорит о том, что процесс системный, то есть протекает во всем организме. Хотя цель этих антител неизвестна, вполне возможно, что это могут быть антитела-перебежчики, атакующие сам организм. Чтобы подтвердить, что у участников эксперимента есть когнитивные нарушения, исследователи дали им стандартные тесты. Обычно их используют для определения проблем с мышлением, связанных с осложнениями при ВИЧ-инфекции.
Эти устройства, разработанные CEA, позволяют декодировать электрические сигналы. Восстановление неврологических функций Реабилитация, поддерживаемая цифровым мостом, позволила Герту-Яну Gert-Jan восстановить неврологические функции, утраченные после аварии. Исследователи смогли количественно оценить значительные улучшения в его сенсорном восприятии и двигательных навыках, даже когда цифровой мост был выключен.
Регенерация нейронов: ученые вернули ходьбу мышам, парализованным после травмы
Однако, новое исследование — это настоящий прорыв. Немецкие ученые научились восстанавливать спинной мозг: последние новости 2021 года Немецкие ученые в значительной степени продвинулись в вопросах генной инженерии. Человеку с травмой шейного отдела спинного мозга имплантировали электроды в головной и спинной мозг, чтобы заменить разорванные нейронные связи «цифровым мостом» — BSI (brain-spine interface). Однако оказалось, что в выражении «думать спинным мозгом» есть рациональное зерно, что является хорошей новостью для людей с травмами этого органа. Основные функции спинного мозга – это управление простыми двигательными рефлексами. Здесь Технологии Долголетия публикуют наиболее важные и актуальные новости о продлении жизни человека и событиях, связанных с этой тематикой. А в участок спинного мозга, контролирующий движения ног, был имплантирован электронный нейростимулятор, который, стимулируя спинной мозг, заставляет его активизировать мышцы нижних конечностей.
Science: Ученые заставили мышей пойти после повреждения спинного мозга
Практически для всех заболеваний в большей или меньшей степени характерен дисбаланс определенных макро- и микроэлементов, рассказал о сути разработки директор Центра биоэлементологии и экологии человека, д. Так, например, при сердечно-сосудистых заболеваниях отмечается дефицит калия, магния, фосфора, цинка, меди и селена на фоне повышенных показателей натрия, свинца, ртути, кадмия и мышьяка. При сахарном диабете 2 типа наблюдается недостаток калия, магния, цинка, марганца, хрома и ванадия, который нередко сочетается с избытком ртути, селена и мышьяка. При аутизме у детей доминирует дефицит йода, кобальта, селена, марганца, цинка, хрома и магния. А болезни опорно-двигательного аппарата сопровождаются нарушением фосфорно-кальциевого обмена, недостатком меди, марганца, бора и кремния при повышенном содержании алюминия, стронция, свинца и кадмия. По словам профессора Скального, исследования, проведенные в Сеченовском Университете, также показали, что дефицит некоторых жизненно важных химических элементов объединяет и онкологические заболевания.
Результатом таких нарушений становится полная или частичная инвалидность человека из-за паралича или невозможности двигаться и жить полноценной жизнью. Группа ученых из Университета Техаса, работающих в области клеточной инженерии и регенеративной медицины провели серию успешных экспериментов на животных моделях, в результате которых удалось вызвать формирования новых нейронов спинного мозга взамен поврежденных. Особого внимания заслуживает то, что за основу для формирования новой нейронной сети исследователи взяли зрелые клетки глии, извлеченные непосредственно из позвоночника самих подопытных мышей. Ранее считалось невозможным настолько хорошо восстановить поврежденные участки спинного мозга, чтобы добиться полной регенерации травмированных тканей позвоночника и спинномозгового корда с возвратом всех двигательных и сенситивных функций. Для такого эффективного лечения соответствующих технологий пока не существует. Результаты исследований Исследователи сфокусировали свое внимание на клетках глии, которые в изобилии присутствуют в центральной нервной системе.
Через другой имплант, который находился в спинном мозге, эти сигналы благодаря алгоритму преобразовывались в инструкции для мышц ног. Таким образом, учёные смогли обойти повреждённый участок спинного мозга в шейном отделе позвоночника и восстановить связь между мозгом и телом. По сути, был создан беспроводной интерфейс между головным и спинным мозгом, используя технологию интерфейса мозг-компьютер, которая преобразует мысли в действия. Помимо того, что импланты позволили восстановить повреждённые связи в центральной нервной системе, они выполняли ещё одну важную роль. Чем больше они использовались пациентом, тем лучше была его способность ходить. По мнению исследователей, это хороший признак того, что по крайней мере некоторые из его нейронов реорганизовались для восстановления связи.
Проще говоря, в позвоночник устанавливали специальные импланты с электродами, а стимулятор вшивался под кожу. Именно это — а точнее, сохранившиеся на спинном мозге электроды — позволило ученым подавать на них управляющий сигнал прямиком из головного мозга. Каким образом? Установкой «цифрового беспроводного моста»: в череп мужчины внедрили датчики с собственным массивом электродов.
Ученые КФУ разработали новый метод восстановления спинного мозга
Новости 16 апреля. — Исследования цитокинов при травме спинного мозга помогают лучше понять патофизиологию повреждения и могут предоставить ценную информацию для разработки новых методов лечения и диагностики, — цитирует ведущего научного сотрудникоа НИЛ «Генные и. По сути дела, спинной мозг — это нервная трубка, которая выросла, достигла размера 40–45 сантиметров и выполняет в нашем организме очень важные функции, связанные с управлением телом. Ученые Курчатовского института с коллегами из Казанского федерального университета разработали модель, которую можно использовать для создания нейропротезов для пациентов с повреждением спинного мозга.
Молодой нейрохирург РКБ впервые в Татарстане провел уникальную операцию на спинном мозге
Ученые КФУ изучают эффективные способы помощи пациентам с ТСМ — Реальное время | Новости науки и техники/. |
Спинной мозг также может обучаться и запоминать | Эти детали могут быть полезны для понимания принципов регенерации поврежденных аксонов спинного мозга", — рассказывает Роман Борисюк из Института математических проблем биологии РАН, чьи слова приводит пресс-служба заведения. |
Спинной мозг | Ученые предложили чаще использовать нейростимуляцию спинного мозга электричеством с помощью небольшого вживляемого стимулятора. |
Ученые вернули возможность ходить мышам с травмами спинного мозга | Сайт для специалистов и больных по проблеме травматической болезни спинного мозга. Клиника, диагностика, лечение, реабилитация. Новейшие достижения и перспективы исследования. |
Вести с полей: спинной мозг и движение
Суть заключается в многоуровневой стимуляции спинного мозга в сочетании со специальными упражнениями. До начала разработки импланта изначально они обнаружили новое место для стимуляции, которое располагается очень близко к важнейшим мотонейронам спинного мозга и одновременно доступно без хирургического вмешательства. Столь необычный способ управления кресла в первую очередь предназначен для страдающих повреждением спинного мозга, передают американские СМИ. Немецкие ученые научились восстанавливать спинной мозг: последние новости 2021 года. Они создали из стволовых клеток каркасы, которые можно успешно имплантировать в спинной мозг с целью восстановления повреждений нервов.
Сейчас на главной
- Впервые в мире с помощью стволовых клеток восстановили спинной мозг - Здоровье
- Важная победа над природой: как скоро можно будет чинить спинной мозг
- Информация
- Регенерация нейронов: ученые вернули ходьбу мышам, парализованным после травмы |
- Спинной мозг: истории из жизни, советы, новости, юмор и картинки — Горячее | Пикабу
Science: Ученые заставили мышей пойти после повреждения спинного мозга
На информационном ресурсе применяются рекомендательные технологии информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации ". Полный перечень лиц и организаций, находящихся под судебным запретом в России, можно найти на сайте Минюста РФ.
Это одно из главных осложнений после тяжелых травм позвоночника с частичным перерывом спинного мозга, которое приводит к ухудшению состояния пациента и сильно ограничивает возможности реабилитации. Реклама Более 800 тысяч человек в мире каждый год получает сочетанную травму позвоночника с перерывом спинного мозга. Выживает среди них только треть.
В основном это молодые люди в возрасте 20-25 лет.
Авторы ввели клетки-предшественники нейронов в поврежденный спинной мозг животных. Клетки начали функционировать подобно другим клеткам спинного мозга — они формировали полноценную ткань, что помогло вернуть крысам подвижность. При проведении предыдущих экспериментов способность двигаться к животным не возвращалась. Ученые считают, что новая методика поможет и парализованным людям, потерявшим подвижность после травм.
В работе задействованы ресурсы и накопленный опыт нескольких научных центров страны — СПбГУ, Института физиологии им. Российские ученые разработали технологию изготовления нейроимплантов из композитного материала на основе углеродных нанотрубок и силикона. Предложенный состав материала характеризуется высоким уровнем биосовместимости, долговременной биостабильностью, выдающейся прочностью на растяжение, высокими значениями емкости для хранения электрического заряда. Таким образом, ученым удалось получить одновременно мягкий и прочный материал — то есть при движении имплант будет повторять механику движений и не травмировать ткани вокруг.
Предложенный специалистами способ изготовления нейроимплантов основан на традиционных технологиях изготовления и экономичен в производстве, а значит, это делает его перспективным для массового производства имплантируемой электроники.
Спинной мозг
Россиянин Спиридонов оценил новость о пересадке мозга хирургом Канаверо. В Университете МИСИС разработали прототип нейроимплантата, который поможет восстанавливать функции спинного мозга после травм и повреждений. Статья Спинной мозг, Травмы, Выпущено вживляемое в тело устройство для реабилитации людей с травмами спинного мозга, Вышло портативное устройство для поддержки дыхания пациентов с травмами спинного мозга. MedAboutMe Новости. Целью исследователей было заставить расти в нужном направлении аксоны – отростки нервных клеток, которые и составляют спинной мозг.