Новости сколько кадров видит человек в секунду

Новые исследования показывают, что некоторые люди способны видеть больше “изображений в секунду”, чем другие, а это означает, что они от природы лучше замечают или отслеживают быстро движущиеся объекты, такие как теннисные мячи. Узнайте больше о том, сколько кадров может видеть человеческий глаз в секунду, можете ли вы проверить человеческий FPS и многое другое. Ирландские ученые провели исследование, в рамках которого выяснилось, что некоторые люди способны видеть больше кадров в секунду, чем остальные. Человек привык к частоте кадров от 24 до 30. Новые исследования показывают, что некоторые люди способны видеть больше “изображений в секунду”, чем другие, а это означает, что они от природы лучше замечают или отслеживают быстро движущиеся объекты, такие как теннисные мячи.

Сколько FPS видит человек? Сколько FPS нужно для игр?

Сколько кадров в секунду может видеть человеческий глаз. Получается 1 500 кадров / 12 кадров в секунду = 125 секунд Значит, нам достаточно 1 500 кадров, что создать двухминутный фильм. «Элитные» спортсмены по-другому видят этот мир: они замечают больше кадров в секунду.

Плавнее, еще плавнее: о 24 кадрах в секунду и выше

Соответственно оптимальным для вас будет 60 кадров в секунду. Также важно время отклика вашего дисплея — минимальное время, необходимое пикселю для изменения своей яркости. Этот процесс измеряется в миллисекундах. Более низкие числа означают более быстрые переходы и, соответственно, меньшие видимые искажения изображения.

Посмотри еще.

Тут вроде становится понятно — мы и сейчас используем 24 FPS. Тогда зачем нам 25, 30 и тем более 29,97? Телевизор Когда решили транслировать изображение по телевизору возникли новые проблемы. Показывать два раза один и тот же кадр было не вариант, да и технически это было сложновато. Ещё надо передать аналоговый сигнал по радиоволнам. И чем больше кадров, тем больше вес файла — значит канал передачи должен быть шире, а значит и дороже. Поэтому стали передавать кадры по половинкам — полукадрами. Разбиваем изображение на полосы и показываем сначала все нечётные, а потом все чётные. Инертность зрения делает своё дело и мы видим целый кадр.

Кадр из людей в чёрном 3 В телевизоре происходит то же самое, только намного быстрее. По-умному, это называется чересстрочная развёртка и обозначается буквой «i», от слова «interlaced». А такой же ролик с прогрессивной развёрткой — 1080p. Это означает «progressive» или то, что кадры передаются целиком. Чтобы не было лишних шумов и конструкция телевизора была проще, полукадры решили обновлять с частотой электросети. Для Европы это 50 Гц. Получилось 50 полукадров в секунду или 25 целых кадров в секунду. В США частота электросетей 60 Гц, значит полукадров будет 60, а кадров соответственно 30. И вот вроде как всё хорошо, но тут появляется цвет. Цвет Теперь через тот же канал нужно донести больше информации.

Мы должны передать чёрно-белое изображение для старых телевизоров, цветное изображение и звук. И сделать это было довольно сложно. Потому что как только мы добавляем в электромагнитный спектр информацию о цвете его частота пересекается со звуком и создаёт помехи. В Европе таких сложностей не было, в качестве стандарта сразу взяли PAL, который был создан, чтобы решить проблемы с цветом. Поэтому как было 25 кадров в секунду, так и осталось. Дело в том, что камера размывает любое резкое движение в сторону направления объекта. Величина размытия зависит от расстояния, которое объект прошёл за 1 кадр. И чем больше количество кадров в секунду, тем меньше размытие. Резкие движения в фильме выглядят менее размытыми. За счёт этого картинка кажется более реалистичной.

Нет, это совсем не так! Зачем нужны мониторы с высокой частотой смены кадров Большее количество герц не просто означает, что экран покажет больше кадров в секунду. Ведь очень важно не только само количество кадров, но и качество этих самых кадров, которые мы увидим. Поскольку время реакции матрицы у высокочастотных мониторов ниже, при отображении динамических сцен на таких мониторах мы визуально наблюдаем более естественное и плавное отображение событий в динамике.

То есть, банально видим менее «смазанные» и более четкие кадры из-за меньшей инерционности матрицы. Изображение на экране становится более реалистичным и менее «мыльным», особенно что касается движущихся объектов — будь то прокручиваемый в окне браузера текст или окружающие персонажа предметы в игровой 3D сцене. У меня есть дисплеи и с частотой 60Гц, и с частотой 75Гц, и с частотой 144Гц. А уж работа за 144Гц монитором и вовсе не идет ни в какое сравнение с 60Гц случаем.

Замечу, что когда я сидел только за 60Гц монитором, то, конечно, не замечал его недостатков. Однако после появления в доме 144Гц дисплея, как только я снова садился за старый 60Гц монитор, то буквально сразу замечал, как неприятно он «мылит картинку» даже при банальном скроллинге текста и изображений, не говоря уже за игры. В общем, работать за 60Гц монитором после 144Гц дисплея уже не хочется. За 75Гц монитор со 144Гц дисплея пересаживаться уже легче, хотя и там разница ощущается.

Итак, первое важное преимущество мониторов с высокой частотой смены кадров — они позволяют достичь намного лучшего визуального качества изображения, благодаря снижению размытости движущихся объектов и лучшей четкости динамичного изображения.

Вот почему почти все люди воспринимают монитор 60 Гц как постоянное изображение, а не как мерцающий свет , что и есть на самом деле. Но это лишь часть головоломки, когда дело доходит до восприятия плавных образов в игре. Это потому, что игры генерируют движущиеся изображения и, следовательно, вызывают различные визуальные системы, которые просто обрабатывают свет. Пример можно найти в так называемом законе Блоха.

Этот закон гласит, что существует компромисс между интенсивностью и продолжительностью вспышки света, которая длится менее 100 мс. Он может иметь невероятно яркую наносекунду света и будет выглядеть так же, как десятая часть секунды тусклого света. Как правило, люди не могут различить слабые, короткие, яркие и длинные раздражители в течение десятых долей секунды. Но хотя человеческому глазу трудно различать световые вспышки длительностью менее 10 мс, мы можем воспринимать артефакты и движения невероятно быстро. Это будет зависеть от того, как воспринимаются различные формы движения: если вы сидите неподвижно и начинаете наблюдать, как вещи движутся перед вами, вы будете воспринимать это намного лучше, чем если бы вы делали это во время ходьбы, поскольку стимулы Они разные.

Также стоит подумать о некоторых вещах, которые мы делаем во время игры; например, в игре типа «шутер» мы постоянно отслеживаем взаимосвязь между движением мыши и взглядом в петле восприятия двигательной обратной связи. Другими словами, когда мы перемещаем мышь, зрение уже знает, что экран будет двигаться, что позволяет нам быстрее реагировать. Поэтому во время игры мы постоянно обновляем представление об игровом мире с помощью визуальной информации. Эксперты говорят, что мы увидим гораздо более плавную игру, когда у нас будет восприятие движения в большом масштабе, а не в определенной точке; Другими словами, когда мы играем, глядя на весь экран в целом, у нас будет лучшее ощущение плавности, чем если бы мы указывали на определенную часть экрана.

Создана самая быстрая камера в мире: снимает со скоростью 156 триллионов кадров в секунду

Сколько кадров в секунду видит глаз человека? Почему на ТВ используют 24 кадра. Вы можете посмотреть в настройках сколько кадров в секунду выдаёт тот монитор в который вы сейчас смотрите. Обычно это от 60 до 160 Hz (кадров в секунду). Новая технология сверхскоростной фотографии (T-CUP) со скоростью 10 триллионов кадров в секунду позволяет захватывать любое событие с интервалом кадра 100 фемтосекунд. Сегодня я вам расскажу сколько кадров в секунду видит глаз человека! Из-за этого, количество кадров, которые человек видит за одну секунду, может значительно различаться. Выяснилось, что некоторые люди способны видеть больше «изображений в секунду», что позволяет им лучше отслеживать быстродвижущиеся объекты, будь то теннисные мячи или противники в Fortnite.

Сколько кадров в секунду видит человеческий глаз в кино и играх.

Сколько кадров в секунду видит глаз человека? Почему на ТВ используют 24 кадра. Исследователи сообщают о том, что некоторые люди обладают способностью воспринимать мир с более высокой "частотой кадров" по сравнению с другими. Шведская суперкамера за одну секунду может сделать в 2000 раз больше кадров, чем количество секунд, которое мы проживаем за всю жизнь. Большинство людей не видит особой разницы в плавности движений при съемке выше 60 кадров в секунду. Но сколько именно кадров может видеть глаз за секунду? На самом деле, пределы зрения человеческого глаза воспринимают несколько кадров в секунду.

Выявлена суперспособность некоторых людей видеть больше изображений каждую секунду

Нет, это совсем не так! Зачем нужны мониторы с высокой частотой смены кадров Большее количество герц не просто означает, что экран покажет больше кадров в секунду. Ведь очень важно не только само количество кадров, но и качество этих самых кадров, которые мы увидим. Поскольку время реакции матрицы у высокочастотных мониторов ниже, при отображении динамических сцен на таких мониторах мы визуально наблюдаем более естественное и плавное отображение событий в динамике. То есть, банально видим менее «смазанные» и более четкие кадры из-за меньшей инерционности матрицы. Изображение на экране становится более реалистичным и менее «мыльным», особенно что касается движущихся объектов — будь то прокручиваемый в окне браузера текст или окружающие персонажа предметы в игровой 3D сцене.

У меня есть дисплеи и с частотой 60Гц, и с частотой 75Гц, и с частотой 144Гц. А уж работа за 144Гц монитором и вовсе не идет ни в какое сравнение с 60Гц случаем. Замечу, что когда я сидел только за 60Гц монитором, то, конечно, не замечал его недостатков. Однако после появления в доме 144Гц дисплея, как только я снова садился за старый 60Гц монитор, то буквально сразу замечал, как неприятно он «мылит картинку» даже при банальном скроллинге текста и изображений, не говоря уже за игры. В общем, работать за 60Гц монитором после 144Гц дисплея уже не хочется.

За 75Гц монитор со 144Гц дисплея пересаживаться уже легче, хотя и там разница ощущается. Итак, первое важное преимущество мониторов с высокой частотой смены кадров — они позволяют достичь намного лучшего визуального качества изображения, благодаря снижению размытости движущихся объектов и лучшей четкости динамичного изображения.

Кроме того, способность различать разницу в частоте кадров зависит от множества факторов — включая чувствительность человека, условия просмотра и тип просматриваемого контента. Например, разница между 30 и 60 кадрами в секунду довольно заметна с точки зрения плавности и чёткости изображения, особенно в насыщенных экшеном видеоиграх или в процессе просмотра «высокоскоростных» видеоматериалов.

Но при переходе к более высокой частоте кадров, например, от 220 до 250 FPS, улучшение качества изображения становится гораздо менее заметным. Некоторые люди замечают смену кадра даже при 500 Гц Острота зрения и чувствительность к движению существенно варьируются в зависимости от конкретного человека — это значит, что некоторые люди могут воспринимать повышение частоты кадров лучше, чем другие. Некоторые пользователи особенно чувствительны к изменениям в движении, из-за чего более высокая частота кадров для них более полезна, и этому способствует целый ряд факторов. Например, речь идёт о биологических особенностях в зрении или тренировках.

Также учёные провели ряд исследований, в рамках которых доказали, что некоторые люди в специальных условиях могут замечать формирование изображения на частоте в 500 Гц. Правда, воспроизвести это в типичных условиях повседневной среды достаточно проблематично, но это исследование полностью опровергает традиционное мнение о том, что человек не может видеть больше 50-90 Гц.

Методы с насосом-зондом не смогут обеспечить приличную точность и производительность. Чтобы преодолеть эти ограничения, в последние годы были созданы многочисленные методы однократной съемки захвата всего процесса в режиме реального времени без воссоздания события. Они могут захватывать двухмерные переходные сцены в оптическом диапазоне со скоростью более 100 миллионов кадров в секунду. Однако, чтобы эффективно фиксировать такие события, некоторые резкие изменения интенсивности и ширины ультракороткого лазерного импульса требуют воздействия фемтосекундного масштаба. Пока что существующие методы сверхбыстрой визуализации требуют повторения события или борьбы за достижение необходимого времени экспозиции.

Мировой рекорд скорости обработки изображений в реальном времени Чтобы усовершенствовать эту концепцию, ученые из Исследовательского института в Квебеке, Канада, создали однократную сверхскоростную фотографию со скоростью 10 триллионов кадров в секунду T-CUP , которая фиксирует любое событие с интервалом кадра 100 фемтосекунд.

Кроме того, способность различать разницу в частоте кадров зависит от множества факторов — включая чувствительность человека, условия просмотра и тип просматриваемого контента. Например, разница между 30 и 60 кадрами в секунду довольно заметна с точки зрения плавности и чёткости изображения, особенно в насыщенных экшеном видеоиграх или в процессе просмотра «высокоскоростных» видеоматериалов.

Но при переходе к более высокой частоте кадров, например, от 220 до 250 FPS, улучшение качества изображения становится гораздо менее заметным. Некоторые люди замечают смену кадра даже при 500 Гц Острота зрения и чувствительность к движению существенно варьируются в зависимости от конкретного человека — это значит, что некоторые люди могут воспринимать повышение частоты кадров лучше, чем другие. Некоторые пользователи особенно чувствительны к изменениям в движении, из-за чего более высокая частота кадров для них более полезна, и этому способствует целый ряд факторов.

Например, речь идёт о биологических особенностях в зрении или тренировках. Также учёные провели ряд исследований, в рамках которых доказали, что некоторые люди в специальных условиях могут замечать формирование изображения на частоте в 500 Гц. Правда, воспроизвести это в типичных условиях повседневной среды достаточно проблематично, но это исследование полностью опровергает традиционное мнение о том, что человек не может видеть больше 50-90 Гц.

Сколько кадров в секунду видит человеческий глаз в кино и играх.

СКОЛЬКО ФПС ВИДИТ ГЛАЗ? 24 30 60 144 244 ? :: STEELKOCH_TV В итоге было выяснено, что разные люди могут видеть разное количество мерцаний в секунду.
Сколько кадров в секунду реально видит человеческий глаз? Какова максимальная частота кадров в секунду, которую может увидеть человеческий глаз?
Иллюзия движения / Хабр обо всем этом читайте в нашей статье.
Сколько кадров в секунду видит человеческий глаз в кино и играх. Сколько кадров в секунду может видеть человеческий глаз.
FPS и человеческий глаз | Пикабу Сегодня я вам расскажу сколько кадров в секунду видит глаз человека!

Какое количество кадров в секунду воспринимает человеческий глаз

Гц это количество сигналов поступающих на матрицу. Казалось бы а ни «одна ли фигня»? Нет, ни одна. Артефакты матриц Человеческий глаз воспринимает 60 FPS.

Но мы забываем, что изображение, которое выводится на монитор не является «идеальным»: оно содержит артефакты. Взгляните на график ниже. На нем изображена зависимость светимости пикселя от времени.

Сначала он был темным. Затем пришла команда изменить цвет 40 мс. Современные игровые матрицы заточены на максимальную скорость, которая достигается усиленным сигналом.

В результате цвет пикселя «перескакивает» нужное значение и выравнивается следующие 50!!! Вдумайтесь, значение достаточно большое, ведь при FPS 60 на 1 кадр приходится всего 16 мс. Потому что им нужно 50 мс что бы попасть точно в заданное значение, а кадр сменится уже через 16.

Иными словами формально мы можем получить 60 кадров в секунду. Но физические это не «чистые» и «четкие» 60 кадров, а кадры со «шлейфом» «промахами» и артефактами. Что происходит на 120 Гц мониторе Представим, что мы наблюдаем за движущимся слева направо прямоугольником.

В играх же, в зависимости от происходящего, FPS меняется. Как только FPS резко падает, мозг сразу же замечает это. То же самое было бы и с фильмами, если бы кадров в секунду было то 25, то 60. FPS для игр важен не только для комфортного восприятия игры. Частота кадров равна частоте обновления физической модели. Это значит, чем больше FPS, тем чаще компьютер проверяет сделали вы выстрел или нет.

Иногда эти доли секунды важны. Похоже, что всё, что хотел рассказать — рассказал. Вот кратко все тезисы этой заметки. Читайте также: Патология органа зрения, этиология, механизм, классификация. Для разработчиков игр эта информация стала стимулом к проведению дальнейших исследований возможностей органов зрения человека. Поразительно, но глаз человека может воспринимать видеоряд со скоростью 60 кадров в секунду и более.

Способность к восприятию большего количества изображений увеличивается, когда вы концентрируетесь на чем-либо. В этом случае человек способен воспринимать до ста кадров в секунду, не теряя семантической нити видеоизображения. А в случае, когда внимание рассеивается, скорость восприятия может упасть до 10 кадров в секунду. Отвечая на вопрос о том, сколько fps видит человеческий глаз, можно смело назвать цифру 100. Звук Всё сложнее стало со звуком. Теперь нельзя крутить фильм быстрее или медленнее.

Нужно соблюдать постоянную кадровую частоту, чтобы скорость, а значит и тембр голоса не изменялся на протяжении фильма. С 16 FPS была проблема, звук не звучал точно, как задумывалось. Нужно было выбрать новую частоту, чтобы она была больше 16 и в итоге давала 48 проецируемых FPS. В итоге, вместо трёхлезвийного обтюратора стали использовать двулезвийный. И утвердили новый фрейм рейт — 24 FPS. Всё просто и удобно.

То есть мы знаем, что половина секунды — 12 FPS, треть — 8, а четверть — 6. Тут вроде становится понятно — мы и сейчас используем 24 FPS. Тогда зачем нам 25, 30 и тем более 29,97? Как проводят исследования? Эксперименты в области выявления возможностей органов зрения человека проводятся постоянно, и ученые не собираются останавливаться на достигнутом. Например, проводят такое тестирование: контрольная группа людей просматривает предложенные видеозаписи с различной частотой кадров.

В определенные фрагменты в разных промежутках времени вставлены кадры с каким—либо дефектом. Они изображают какой-то лишний, не вписывающийся в общую канву предмет. Это может быть быстро движущийся летящий объект. Это обстоятельство не вызывало бы такого удивления, если бы не знать, что это видео демонстрировали с частотой 220 кадров в секунду. Сколько кадров в секунду видит человек, интересно многим. Более любопытные подробности рассмотрим далее.

Цифровое кино 2. Сейчас перед цифровым кинематографом не стоит задача подражать технологиям прошлого, отныне перед ним открыты новые горизонты. После того, как Святой Грааль в виде пленки перестал быть ориентиром, цифровое кино несколько раз отправлялось по неверному пути, возвращалось назад и вновь искало нужное направление. Разрешение и человеческое зрение Лишь небольшое пространство нашей сетчатки содержит достаточное количество колбочек, чтобы обрабатывать изображение с максимальной детализацией. Этот участок называется центральной ямкой сетчатки глаза, который занимает менее одного процента ее поверхности и задействует более половины пространства зрительной коры головного мозга. Центральная ямка охватывает лишь два градуса зрительного поля — это примерно размер двух ногтей большого пальца на расстоянии вытянутой руки Когда вы смотрите на деталь, которая занимает ваше поле зрения более чем на два градуса, глаз самостоятельно сканирует изображение, а заполняет недостающие участки.

Несмотря на то, что по краям сетчатки ваше зрение обладает гораздо меньшим разрешением, мозг все равно воспроизводит изображение, основываясь на данных, который он получил, когда глаз «просканировал» пространство. Мозг запоминает все детали, на которые вы смотрите даже вскользь, благодаря чему вы в режиме реального времени знаете, что происходит вокруг. Мозг постоянно дорабатывает изображение перед вашими глазами, и практически все, что вы видите, — это не настоящая проекция окружающего мира. Алгоритм, благодаря которому мы видим, гораздо сложнее в человеческом организме, чем у камер, которые снимают изображение при заданных настройках фокусировки, количестве пикселей и частоте кадров. Именно этого ваши глаза двигаются, когда вы читаете этот текст: для того, чтобы в полной мере увидеть содержание другой области экрана, вам нужно остановиться и передвинуть глаза. Вы в курсе, где находится текст, как он расположен в пространстве, но чтобы узнать, что в нем написано, вам необходимо рассматривать фактически каждую деталь.

Движущееся изображение — это иллюзия.

Но как изначально появляется motion blur? Это значит, что выдержка закрыта в течение такого же времени, что и открыта. При быстром движении и действии перед камерой частота кадров недостаточно высока, чтобы успеть за ними, а изображения размываются в каждом кадре из-за времени экспозиции. Вот графика, упрощённо объясняющая процесс. Изображения Hugo Elias. Классические кинокамеры используют обтюратор вращающийся секционированный диск — прим. Вращая диск, вы открываете затвор на контролируемый промежуток времени под определённом углом и, в зависимости от этого угла, изменяете время экспозиции. Если выдержка маленькая, то на плёнку запишется меньше движения, то есть motion blur будет слабее; а если выдержка большая, то запишется больше движения и эффект проявится сильнее.

Обтюратор в действии. Via Википедия Если motion blur — такая полезная вещь, то почему кинематографисты стремятся от него избавиться? Ну, при добавлении motion blur вы теряете детализацию; а избавившись от него — теряете плавность движений. Так что когда режиссёры хотят снять сцену с большим количеством деталей, вроде взрыва с большим количеством вылетающих частиц или сложной сцены с действием, они часто выбирают маленькую выдержку, которая уменьшает размытие и создаёт чёткий эффект кукольной мультипликации. Визуализация захвата Motion Blur. Via Википедия Так почему бы его просто не добавить? Motion blur значительно улучшает анимацию в играх и на веб-сайтах даже на низких фреймрейтах. К сожалению, его внедрение слишком дорого обходится. Если для выпуска приемлемого материала на 24 FPS вам нужно делать рендеринг на 96 FPS, то вместо этого вы можете просто поднять фреймрейт, так что зачастую это не вариант для контента, который рендерится в реальном времени.

Исключениями являются видеоигры, где заранее известна траектория движения объектов, так что можно рассчитать приблизительный motion blur , а также системы декларативной анимации вроде CSS Animations и, конечно, CGI-фильмы как у Pixar. Чтобы не путать их, мы используем Гц для частоты обновления и FPS для фреймрейта. Если вы задаётесь вопросом, почему на вашем ноутбуке так некрасиво выглядит воспроизведение дисков Blu-Ray, то часто причина в том, что фреймрейт неравномерно делится на частоту обновления экрана в противоположность им, DVD конвертируются перед передачей. Да, частота обновления и фреймрейт — не одно и то же. Согласно Википедии, «[.. Так что фреймрейт соответствует количеству отдельных кадров на экране, а частота обновления соответствует числу раз, когда изображение на экране обновляется или перерисовывается. В идеальном случае частота обновления и фреймрейт полностью синхронизированы, но в определённых ситуациях есть причины использовать частоту обновления в три раза выше фреймрейта, в зависимости от используемой проекционной системы. Новая проблема у каждого дисплея Кинопроекторы Многие думают, что во время работы кинопроекторы прокручивают плёнку перед источником света. Но в таком случае мы бы наблюдали непрерывное размытое изображение.

Вместо этого для отделения кадров друг от друга здесь используется затвор , как и в случае с кинокамерами. После отображения кадра затвор закрывается и свет не проходит до тех пор, пока затвор не откроется для следующего кадра, и процесс повторяется. Затвор кинопроектора в действии. Из Википедии. Однако это не полное описание. Эти затемнения между кадрами разрушат иллюзию. Для компенсации проекторы на самом деле закрывают затвор два или три раза на каждом кадре. Конечно, это кажется нелогичным — почему в результате добавления дополнительных мерцаний нам кажется, что их стало меньше? Задача в том, чтобы уменьшить период затемнения, который оказывает непропорциональный эффект на зрительную систему.

Порог слияния мерцания тесно связанный с инерцией зрительного восприятия описывает эффект от этих затемнений. Вся концепция в целом немного сложнее, но на практике вот как можно избежать мерцания: Использовать иной тип дисплея, где нет затемнения между кадрами, то есть он постоянно отображает кадр на экране. Применить постоянные, неизменяемые фазы затемнений с продолжительностью менее 16 мс Мерцающие ЭЛТ Мониторы и телевизоры ЭЛТ работают, направляя электроны на флуоресцентный экран, где содержится люминофор с низким временем послесвечения. Насколько мало время послесвечения? Настолько мало, что вы никогда не увидите полное изображение! Вместо этого в процессе электронного сканирования люминофор зажигается и теряет свою яркость менее чем за 50 микросекунд — это 0,05 миллискунды! Для сравнения, полный кадр на вашем смартфоне демонстрируется в течение 16,67 мс. Так что единственная причина, почему ЭЛТ вообще работает — это инерция зрительного восприятия. Из-за длительных тёмных промежутков между подсветками ЭЛТ часто кажутся мерцающими — особенно в системе PAL, которая работает на 50 Гц, в отличие от NTSC, работающей на 60 Гц, где уже вступает в действие порог слияния мерцания.

Легче изменить конструкцию проектора. Поэтому вместо обычного обтюратора поставили трёхлезвийный. Теперь один кадр показывают три раза и только потом сменяют на новый. Получается частота кадров хоть и одинаковых увеличилась. Количество мерцания увеличилось по количеству, но в три раза сократилось по времени.

Таким образом инертность зрения стала «съедать» мерцание в кадре. Мы сменяем кадры со скоростью 16 FPS, но зрителям показываем один и тот же кадр три раза. Прямо как и хотел Эдисон, даже лучше. Мы взяли 16 FPS, а не 12 или 14, так как 16 — минимальное целое число, которое умножается на 3 и в результате даёт число больше 46. Вот мы и получили первую кадровую частоту — 16 FPS для немых фильмов.

Плюс немых фильмов в том, что мы можем легко увеличить или уменьшить количество кадров в секунду, это повлияет только на скорость воспроизведения. Ручку проектора крутил человек и мог варьировать скорость кадров от 14 до 26 FPS. Звук Всё сложнее стало со звуком. Теперь нельзя крутить фильм быстрее или медленнее. Нужно соблюдать постоянную кадровую частоту, чтобы скорость, а значит и тембр голоса не изменялся на протяжении фильма.

С 16 FPS была проблема, звук не звучал точно, как задумывалось. Нужно было выбрать новую частоту, чтобы она была больше 16 и в итоге давала 48 проецируемых FPS. В итоге, вместо трёхлезвийного обтюратора стали использовать двулезвийный. И утвердили новый фрейм рейт — 24 FPS. Всё просто и удобно.

То есть мы знаем, что половина секунды — 12 FPS, треть — 8, а четверть — 6. Тут вроде становится понятно — мы и сейчас используем 24 FPS. Тогда зачем нам 25, 30 и тем более 29,97? Телевизор Когда решили транслировать изображение по телевизору возникли новые проблемы. Показывать два раза один и тот же кадр было не вариант, да и технически это было сложновато.

Ещё надо передать аналоговый сигнал по радиоволнам. И чем больше кадров, тем больше вес файла — значит канал передачи должен быть шире, а значит и дороже. Поэтому стали передавать кадры по половинкам — полукадрами. Разбиваем изображение на полосы и показываем сначала все нечётные, а потом все чётные.

Сколько кадров в секунду видит человеческий глаз?

В прошлом эксперты утверждали, что максимальная способность большинства людей обнаруживать мерцание находится в диапазоне от 50 до 90 Гц или что максимальное количество кадров в секунду, которое может видеть человек, не превышает 60. Full HD видео при 120 кадрах в секунду может весить больше, чем 4K видео при 24 FPS. Миф о том, что человеческий глаз видит максимум 24 кадра в секунду, имеет вековую историю. Итак, сколько кадров в секунду может увидеть человеческий глаз? Учёные рассуждают об одном из главных предметов споров среди геймеров. Сколько кадров в секунду видит человеческий глаз? Получается 1 500 кадров / 12 кадров в секунду = 125 секунд Значит, нам достаточно 1 500 кадров, что создать двухминутный фильм.

С каким разрешением лучше снимать видео и важна ли частота кадров

Сегодня я вам расскажу сколько кадров в секунду видит глаз человека! Человек привык к частоте кадров от 24 до 30. Британские ученые, представляющие Тринити-колледж в Дублине, нашли необычных людей, способных видеть 60 кадров в секунду. «Мы можем анализировать более 1000 кадров в секунду.

Самая быстрая в мире камера делает 5 триллионов снимков в секунду

Еще начиная с 1920 года стандартная частота кадров видео в киноиндустрии составляет 24 кадра в секунду. Однако во многих других странах включая Северную Америку, Японию и др. В последнее время продюсеры часто используют комбинации различных частот кадров для получения оптимального результата в зависимости от того, какой тип сцены необходимо снимать. Какую частоту кадров видео следует использовать? Современные камеры предлагают множество вариантов частоты кадров — от 24 кадров в секунду до колоссальных 240 на некоторых моделях. Тут следует отметить, что каждый показатель существенно отличается. Следовательно, вы должны выбрать подходящую частоту кадров, которая была бы оптимальной для ролика. Дело в том, что данный показатель выглядит наиболее естественно для человеческого глаза.

Поэтому, если вы хотите снять обычный фильм или сцену, мы рекомендуем выставить 24 кадра в секунду. Обычно такая частота используется в прямых трансляциях, спорте или мыльных операх. Он всего лишь на шесть кадров в секунду быстрее по сравнению с предыдущим, но придает более плавное но менее кинематографическое ощущение, которое хорошо подходит для прямых эфиром. Отметим, что для обычного видео подойдут и 24 кадра, и 30. Но если вы хотите снять более кинематографический ролик, выберите 24 кадра в секунду. Для интервью или документальных фильмов же 30 FPS — то, что надо.

Например, возьмем скорость 60 кадров в секунду, которую многие приняли за верхний предел.

Некоторые исследования показывают, что ваш мозг на самом деле может распознавать изображения, которые вы видите, в течение гораздо более короткого периода времени, чем думали эксперты. Например, авторы исследования 2014 года из Массачусетского технологического института обнаружили, что мозг может обрабатывать изображение, которое видит ваш глаз, всего за 13 миллисекунд — это очень высокая скорость обработки. Это особенно быстро по сравнению с принятыми 100 миллисекундами, которые использовались в более ранних исследованиях. Тринадцать миллисекунд переводятся примерно в 75 кадров в секунду. Есть ли тесты, сколько кадров в секунду видит человеческий глаз? Некоторые исследователи показывают человеку быстрые последовательности изображений и просят дать ответы, чтобы увидеть, что они смогли обнаружить. Именно это сделали исследователи в исследовании 2014 года , чтобы определить, что мозг может обрабатывать изображение, которое глаз видел только в течение 13 миллисекунд.

Офтальмолог может изучить движения внутри вашего глаза, известные как внутриглазные движения, с помощью высокоскоростной кинематографии, чтобы узнать больше о том, насколько быстро работают ваши глаза. В наши дни даже смартфоны могут захватывать эти незаметные движения с помощью замедленного видео slow motion. Эта технология позволяет телефону записывать больше изображений за более короткое время. По мере развития технологий эксперты могут продолжать расширять диапазоны возможностей человеческого глаза. Как наше зрение сравнивается с зрением животных Возможно, вы слышали, как люди утверждают, что животные видят лучше людей. Оказывается, это не совсем так — острота зрения человека на самом деле лучше, чем у многих животных, особенно мелких.

Дорожка в те времена писалась на пленку рядом с картинкой в виде полосок, каждая из которых соответствовала определенной частоте. Малая длина пленки, прокручиваемой за секунду всего 30 см , не позволяла записать звук достаточно четко, поэтому длину нужно было увеличивать. Секундный расход пленки теперь составлял 1,5 фута, минутный — 90 футов или 30 ярдов. Эти цифры тоже оказались удобными для расчетов при планировании бюджета съемок. Частоту пытались увеличить и больше, до 30, 48 и даже 60 кадров за секунду, но возникли проблемы. Для такой скорости требовалось более точное и выносливое оборудование как для съемки, так и воспроизведения в кинотеатрах , а расход пленки существенно увеличивался. Помимо затрат на саму пленку, увеличивались также стоимость монтажа, время на его произведение. В итоге все так и остановились на 24 кадрах, эта частота стала отраслевым стандартом на много десятилетий. Окончательно утвердили частоту около 25 кадров в секунду тотальная электрификация Европы и появление телевидения. При частоте переменного тока 50 Гц смен направления в секунду 24-25 кадров удобно привязывать к параметрам тока. При таком подходе смена кадра происходит один раз на период синусоиды. Однако эксперименты показывают, что человек обрабатывает и видит в среднем до 150 кадров за обозначенный промежуток времени. Известны редкие случаи, когда при регулярных тренировках достигался уровень восприятия около 250 FPS. Но некоторые исследователи полагают, что человеческий глаз может воспринять даже 1000 и более кадров в секунду. Сколько кадров в секунду видит глаз человека? Если вы покажете человеку один кадр в секунду на протяжении длительного периода времени, со временем он станет воспринимать не изображения по отдельности, а картину движения в общем. Однако демонстрация видеоизображения в таком ритме дискомфортна для человека. Еще во времена немого кино частота кадров доходила до 16 в секунду. При сравнении кадров немого кино и современных фильмов остается ощущение, что в начале 20-го века снимали в замедленном темпе. При просмотре так и хочется немного поторопить экранных героев. В настоящее время стандарт для съемки — 24 кадра в секунду.

Джеймс Кэмерон, главный киноноватор на нашей планете, заставивший весь мир полюбить 3D, всерьёз пообещал совершить ещё одну революцию в индустрии. Его следующие проекты «Аватар-2» и «Аватар-3» будут сняты в формате 60 кадров в секунду и наглядно продемонстрируют человечеству все достоинства подобной технологии. Однако Питер Джексон со своим «Хоббитом» собрался опередить режиссёра «Титаника» — уже в конце этого года мы сможем посмотреть картину по роману Толкиена с 48 полноценными кадрами в секунду. Каждый имеет свои частоты, свойства передачи видеоряда и встречается в строго определённых регионах. Как и с обтюратором в кино, количество кадров в телевещании следует умножать на два. Это связано с использованием чересстрочной развёртки интерлейс , когда один кадр разбивается на два полукадра, каждый из которых состоит либо из чётных, либо из нечётных строчек. Если вы посмотрите один и тот же фильм на большом телевизоре с DVD-диска и в телеэфире, то легко заметите принципиальную разницу в изображении. При телевещании картинка будет более естественной и даже чем-то похожей на театральную постановку. Обратный эксперимент: попробуйте купить DVD-диск с футбольным или хоккейным матчем. Спортсмены будут двигаться как-то более резко, а трансляция удивит непривычной «рваностью», что особенно заметно при горизонтальном перемещении камеры вдоль стадиона. В цифровых форматах вроде DVD или Blu-Ray используются традиционные 24 кадра в секунду без обтюраторов или чересстрочных кадров, поэтому на телевизорах с большой диагональю в панорамных сценах легко заметить раздражающие подёргивания изображения, в частности по краям экрана — из-за особенностей периферийного зрения. К сожалению, цифровые носители с 48, 60 или 100 кадрами в секунду в наши дома пока не спешат. Зато насладиться красотами высокой частоты кадров можно с помощью современных телевизоров, поддерживающих технологию плавности изображения. Пионером в этой области стала компания Philips со своей патентованной системой Digital Natural Motion, которая позволяет выводить на экран 100 кадров в секунду. Принцип работы в общих чертах довольно прост: между исходными информативными кадрами видеопроцессор телевизора вставляет промежуточные кадры, которые обеспечивают высокие чёткость и плавность перехода. По заявлениям производителей сейчас некоторые устройства обладают частотой до 400 и даже 800 Гц, то есть рассчитываются несколько сотен искусственных кадров в секунду. Однако при длительном пользовании в домашних условиях вы заметите ряд неудобств, связанных с работой «уплавняловок» на вашем телевизоре. Во-первых, достаточно распространенной является проблема с подключением компьютера. Например, LED-панели Samsung предпочитают, чтобы частота входящего сигнала точно соответствовала количеству кадров в секунду в проигрываемом видеофайле. При выводе картинки на телевизор каждые несколько секунд будут появляться подёргивания и артефакты — система Motion Plus будет пытаться рассчитывать дополнительные кадры исходя из 60 имеющихся, тогда как в самом фильме их только 24.

Похожие новости:

Оцените статью
Добавить комментарий