Физики увидели распад ложного вакуума Итальянские физики зарегистрировали распад ложного вакуума в ферромагнитной сверхтекучей жидкости. Результаты, опубликованные в журнале Nature Physics, предлагают экспериментальные доказательства образования пузырей в результате распада ложного вакуума в квантовой системе. Но чтоб ещё и ложный вакуум, и чтобы он ещё и распадался — до такого извращения даже мы не доходили.
Итальянские физики смоделировали и экспериментально подтвердили возможность распада ложного вакуума
Конец Вселенной: ученые показали, к чему приведет распад вакуума Берлин , 25 октября, 2016, 09:49 — ИА Регнум. Гибель Вселенной может наступить из-за распада так называемого ложного вакуума, гласит одна из научных теорий. Видеоролик, доступно объясняющий этот процесс, опубликован на канале Kurzgesagt хостинга YouTube.
Если этот пузырь энергетически выгоден, то он начнет расширяться, вначале медленно, но затем разгонится до скорости света. При таком переходе свойства частиц резко изменятся, а во Вселенной выделится много дополнительный энергии, которая была раньше запасена в ложном вакууме. Иными словами, последствия такого распада вакуума будут катастрофическими для любых структур, населявших «старую» Вселенную. Этот процесс во многом напоминает вскипание перегретой жидкости, только, разумеется, масштабы здесь не те. Пояснение насчет единиц измерения и размерностей. В результате длина выражается не в метрах, а в обратных энергетических единицах, например Дж—1 или эВ—1. Подсказка 1 Разумеется, честное полноценное решение представляет собой серьезную научную задачу. Однако очень грубую оценку времени жизни можно дать из довольно простых рассуждений, которые опираются на анализ размерностей.
Подсказка 2 Рассмотрим неподвижный пузырь «истинного вакуума» радиуса R во Вселенной, находящейся в состоянии «ложного вакуума». Оценим полную энергию этого пузыря относительно ложного вакуума. Пузырь заполнен истинным вакуумом, который придает пузырю отрицательную энергию. Однако у пузыря есть тонкие стенки, в которых хиггсовское поле плавно переходит от истинного вакуума в ложный. Эти стенки обладают положительной энергией, по аналогии с поверхностным натяжением на границе жидкости. Исходя из соображений размерности, оцените коэффициент поверхностного натяжения стенки в этой задачи. После этого найдите критический размер пузыря, который должен появиться где-нибудь во Вселенной, чтобы с него начался распад вакуума. На последнем шаге постарайтесь понять, как вероятность появления такого пузыря во Вселенной зависит от его размера. Затем подставьте найденный размер и получите ответ. Решение Шаг 1.
Полная энергия тонкостенного пузыря радиуса R равна Критический размер пузыря, с которого начнется распад вакуума во всей Вселенной, вычисляется так же, как и критический размер пузырька пара для начала кипения перегретой жидкости. Надо лишь, чтобы полная энергия этого пузыря была отрицательной. Вообще, оценки на основе размерностей работают тогда, когда в задаче не возникает безразмерного параметра.
Ученые сравнили скорость образования пузырька истинного вакуума и частоту распадов ложного вакуума с численным моделированием классической динамики поля, а также с простой теорией инстантонов, основанной на приведенном функционале энергии намагниченности. Компьютерное моделирование совпало с экспериментальными результатами, что по мнению ученых доказывает наблюдение распада ложного вакуума в истинный. Физики отмечают, что предложенный ими метод позволит подробнее изучить распад ложного вакуума квантовых состояний. Кстати, наш вакуум вполне вероятно тоже является ложным. О том так ли это, и что будет со Вселенной, если он распадется, читайте в нашем материале , подготовленном совместно с Яндекс.
Это квантовая система, которая имеет свойства сверхтекучей жидкости и была охлаждена до температуры менее одного микрокельвина. Источник фото: Фото редакции Результаты экспериментов соответствовали численным моделям и подтверждали, что распад ложного вакуума имеет квантово-механическую природу. Ученые отмечают, что атомные сверхтекучие жидкости представляют идеальную платформу для изучения неравновесного квантового поля.
Опубликовано видео, показывающее уничтожение Вселенной из-за распада вакуума
Вакуум же не имеет более низких энергетических состояний, до которых можно продолжать распасться, и поэтому существует в стабильном состоянии. Однако в теоретической физике подобным предположениям не место. В начале 1970-х годов несколько российских физиков по отдельности исследовали идею о том, что между устойчивым вакуумом и нестабильным невакуумом есть нечто среднее: вакуумоподобное состояние, которое кажется стабильным из-за очень длительного периода существования до распада. Этот «ложный вакуум» помогает устранить несоответствия в теориях о ранних условиях во Вселенной.
Хотя концепция ложного вакуума была предложена для описания только переходного периода до Большого взрыва, недавние исследования в области поля Хиггса квантовое силовое поле, обнаруживаемое ускорителем частиц ЦЕРН предполагают, что мы все еще можем жить в ложном вакууме: то, что раньше считалось стабильным с наименьшей энергией состоянием поля Хиггса, может не являться состоянием с самой низкой энергией. Один из ответов — из-за «пузыря ничего». Пузырь из ничего — один из примеров «пузыря пространства-времени», где пространство-время обладает различными свойствами внутри и за пределами пузыря.
Если в пространстве ложного вакуума спонтанно образуется пузырь из ничего, то он будет расти, и в конечном итоге поглотит всю Вселенную.
Согласно большинству расчетов по этой теме, такой распад ложного вакуума будет означать мгновенное исчезновение барионной материи. Есть небольшое число моделей, при которых такой распад не уничтожает сразу всю обычную материю, но вот жизнь нашего типа при этом все равно будет, мягко говоря, маловероятна. Базовое энергетическое состояние нашей Вселенной зависит от потенциала поля Хиггса. Если сейчас Вселенная находится в состоянии с минимальной возможной энергией что вполне вероятно , тогда вакуум в ней истинный, и она вполне стабильна.
То есть она хоть и может сжиматься или расширяться, но не может мгновенно измениться до неузнаваемости. А вот если мы находимся в области лишь локального минимума состояния с не самой низкой энергией вакуума , тогда вакуум нашей Вселенной ложный. Поэтому реальная регистрация подобного распада маловероятна: если он все же случится, регистрировать будет некому. К тому же это событие, если вообще возможно, очень маловероятно. Ожидаемое минимальное время до него — десять миллиардов триллионов триллионов триллионов триллионов лет 10 в 58-й степени.
В этом случае материя всей Вселенной начнет разрушаться. Впрочем, поддаваться панике, утверждают ученые, не стоит — дело в том, что этот процесс займет настолько много времени, что никак не может нести угрозу человеческой цивилизации. Подписывайтесь на электронную газету «Век» в: Реклама на веке.
Бозе-конденсат — это состояние материи, которое возникает, когда частицы или атомы, относящиеся к бозонам, охлаждают почти до абсолютного нуля, в данном случае до нескольких десятков нанокельвинов. Бозоны способны находиться в одном и том же основном квантовом состоянии грубо говоря, их принципиально нельзя отличить одну от другой и ведут себя подобно одной «размытой» частице, что создает квантовые эффекты, видимые невооруженным глазом. Одним из таких эффектов является сверхтекучесть — способность жидкости обтекать узкие барьеры без трения.
Ru прочитано 2797 раз.
Распад вакуума уничтожит Вселенную
Конец Вселенной: ученые показали, к чему приведет распад вакуума Берлин , 25 октября, 2016, 09:49 — ИА Регнум. Гибель Вселенной может наступить из-за распада так называемого ложного вакуума, гласит одна из научных теорий. Видеоролик, доступно объясняющий этот процесс, опубликован на канале Kurzgesagt хостинга YouTube.
Нарушение симметрии — это событие, в результате которого условия внезапно изменяются таким образом, что теория, описывающая взаимодействия частиц, приобретает другую, менее симметричную структуру. После этого уже нельзя будет делать перестановки в уравнениях, а нарушение симметрии отразится и в физическом мире в виде изменения поведения частиц. Некоторые используемые физиками симметрии являются абстрактными и могут быть выражены лишь математически, однако среди них есть и вполне привычные. О вращательной симметрии речь идет тогда, когда нечто выглядит одинаково при повороте на некоторый угол например, окружность или пятиконечная звезда. Трансляционная симметрия означает, что нечто выглядит одинаково при сдвиге в сторону например, длинный забор, сдвинутый на расстояние одной планки, или длинная прямая линия, смещенная на несколько сантиметров.
Нарушение симметрии предполагает такое изменение ситуации, в результате которого симметрия перестает работать. Бокал обладает идеальной симметрией вращения до тех пор, пока где-то на его кромке не появится след от губной помады. Забор обладает трансляционной симметрией до тех пор, пока не сломается одна из его планок. Даже на званом обеде может произойти нарушение симметрии, особенно после подачи спиртных напитков. В начале банкета, пока вы терпеливо ждете в окружении множества столовых приборов и небольших тарелок с хлебом, вы находитесь в ситуации, которой свойственна вращательная симметрия. Как только кто-то из ваших соседей потянется за куском хлеба, симметрия нарушится, и все остальные смогут последовать его примеру. Если бы два человека одновременно потянулись к тарелкам с хлебом, находящимся на противоположной от них стороне стола, физики назвали бы такую ситуацию топологическим дефектом.
В данном конкретном случае речь идет о доменной стенке, которая, если начнет доминировать во Вселенной, может привести к Большому сжатию. Вот почему я всегда жду, пока другие возьмут хлеб, прежде чем потянуться к тарелке. С какой бы симметрией мы как физики ни работали, она будет отражена в описывающих взаимодействия уравнениях. Существуют способы кодирования вращательной, зеркальной и трансляционной симметрии, гарантирующие, что физика останется неизменной, как бы вы ни вращали, ни отражали и ни перемещали изучаемую систему. В уравнениях также могут быть закодированы и более тонкие виды симметрий, лучше всего описываемые с помощью теории групп и абстрактной алгебры; это удивительные разделы математики, обсуждение которых, к сожалению, выходит далеко за рамки данной работы. Нарушение электрослабой симметрии, которое произошло спустя 0,1 наносекунды после возникновения Вселенной, представляло собой своеобразную перестройку структуры физики на фундаментальном уровне. После этого правила взаимодействия частиц радикально изменились.
Парообразное поле Хиггса превратилось в океан. Однако водная аналогия не идеальна. Двигаясь сквозь толщу воды, вы замедляетесь, и если перестанете прикладывать усилия, то совсем остановитесь. Что касается массивных частиц, то их скорость не снижается по мере взаимодействия с полем Хиггса. В вакууме любой объект стремится продолжать делать то, что он делает. Массивные частицы, как правило, путешествуют по Вселенной на очень высоких хотя и досветовых скоростях. Основное различие между массивными и безмассовыми частицами заключается в том, что массивным частицам, движущимся в вакууме, для ускорения требуется толчок, тогда как безмассовые частицы перемещаются со скоростью света без всяких усилий.
На самом деле, безмассовые частицы просто не могут двигаться медленнее скорости света. Поэтому нам следует сказать спасибо, что поле Хиггса нарушило электрослабую симметрию, в противном случае мы не имели бы возможности просто спокойно посидеть. Поле Хиггса не только позволило частицам обрести массу, но и определило некоторые из фундаментальных физических констант, в том числе заряд электрона и значения масс частиц. То физическое состояние, в котором мы существуем, называется «вакуумом Хиггса» или «вакуумным состоянием». Если бы поле Хиггса имело какое-то другое значение или симметрия нарушилась как-то иначе, мы, вероятно, вообще не могли бы существовать. Мы находимся во Вселенной, где массы и заряды частиц идеально подходят для того, чтобы частицы объединялись в молекулы, формировали сложные структуры и обеспечивали химические процессы, поддерживающие жизнь. Если бы поле Хиггса имело другое значение, такое деликатное равновесие, вероятно, не было бы достигнуто, что сделало бы невозможным формирование этих связей.
Своим материальным существованием мы обязаны тому факту, что поле Хиггса остановилось на нужном значении. И тут возникают некоторые риски. Эксперименты, проводимые на ускорителе БАК с целью воссоздания экстремальных условий ранней Вселенной, помогают нам не только лучше изучить существующие законы физики, но и понять, какими они могли бы быть при других обстоятельствах. В 2012 году, когда физикам наконец удалось создать бозон Хиггса в результате столкновения частиц, измерение его массы позволило получить недостающий фрагмент для завершения Стандартной модели физики элементарных частиц. Благодаря этому мы узнали не только о текущем значении поля Хиггса, но и обо всех возможных значениях, которые оно могло бы принять, появись у него такая возможность. Хорошая новость: измеренная масса бозона Хиггса полностью соответствует хорошо обоснованной и математически последовательной формулировке Стандартной модели, которая до сих пор с блеском выдерживала все экспериментальные испытания. Плохая новость: последовательная Стандартная модель также говорит нам о том, что наш вакуум Хиггса — идеально сбалансированный набор законов, управляющих физическим миром, — нестабилен.
В таком случае дни нашего прекрасного космоса, судя по всему, сочтены. Шаткое положение космоса Идея о том, что наш вакуум может оказаться нестабильным, не нова. Уже в 1960-х и 1970-х годах физики писали статьи о возможном и катастрофическом для Вселенной процессе распада, способном уничтожить жизнь какой мы ее знаем, и любую возможность существования организованной материи. В то время распад вакуума был просто идеей, с которой можно забавляться в уравнениях, не имея никаких подтверждающих ее экспериментальных данных. Сейчас все иначе. Чтобы разобраться с распадом вакуума, сначала нужно познакомиться с концепцией потенциала, математической конструкцией, описывающей то, как может измениться значение поля и где оно «предпочитает» находиться. Поле Хиггса можно представить в виде камешка, катящегося по склону долины.
Форма этого склона и есть потенциал. Подобно тому, как камешек стремится оказаться на дне долины, поле Хиггса будет искать состояние с самой низкой энергией, соответствующее наименьшему значению потенциала, и остановится на нем, если ему ничто не помешает. Потенциал можно изобразить в виде U-образной кривой, нижняя часть которой соответствует этой самой долине. Нарушение электрослабой симметрии привело к возникновению потенциала, управляющего полем Хиггса, и, как мы думаем, это поле благополучно обосновалось на дне долины. Проблема в том, что истинное дно может находиться в гораздо более низкой части потенциала и соответствовать другому вакуумному состоянию. Представьте себе наклоненную округлую W-образную кривую, одна из долин которой расположена ниже той, в которой в настоящее время находится поле Хиггса. Если потенциал Хиггса имеет второй, более низкий минимум, то это превращает его из хорошей математической конструкции в экзистенциальную угрозу для всего космоса.
В каком бы месте своего потенциала в данный момент ни находилось поле Хиггса, оно дает нам вполне приемлемую, удобную Вселенную. У нас есть физические константы, которые позволяют частицам организовываться в твердые жизнеспособные структуры. Если его потенциал имеет еще один, более низкий минимум, все сущее находится под угрозой. Потенциал поля Хиггса с состоянием ложного вакуума. Каждый минимум потенциала соответствует возможному состоянию вселенной. Наше поле Хиггса находится в более высоком минимуме ложный вакуум , оно может перейти в другое состояние истинный вакуум в результате высокоэнергитического события отмеченного на диаграмме словом "флуктуации" или путем квантового туннелирования. Если наша Вселенная находится в ложном вакууме, переход поля Хиггса в состояние истинного вакуума будет настоящей катастрофой.
В такой ситуации вакуум Хиггса можно назвать лишь метастабильным. То есть он стабилен только до определенного момента. Поле застряло в минимуме потенциала, который на самом деле больше напоминает не дно долины, а небольшое углубление в ее склоне. Поле может оставаться там в течение длительного времени — достаточного для возникновения галактик, рождения звезд, эволюции жизни, а также для производства бесчисленного количества никому не нужных фильмов о супергероях, однако существует вероятность, что достаточно сильное возмущение способно перебросить его через край, после чего ему уже ничто не помешает найти истинный минимум потенциала. И такое развитие событий было бы апокалиптически плохим по причинам, которые мы обсудим далее во всех кровавых подробностях. К сожалению, лучшие из имеющихся у нас данных, полностью соответствующих Стандартной модели физики элементарных частиц, позволяют предположить, что наше поле Хиггса в настоящее время находится именно в таком углублении. Это метастабильное состояние также называется «ложным вакуумом» в отличие от «истинного» вакуума, который соответствует самому нижнему минимуму потенциала.
Что плохого в том, чтобы находиться в ложном вакууме? Вполне возможно, что все. Ложный вакуум в лучшем случае представляет собой лишь временную отсрочку для окончательного разрушения. В ложном вакууме законы физики, в том числе сама возможность существования частиц, зависят от деликатного баланса, который в любой момент может быть нарушен. Это событие называется распадом вакуума. Оно происходит быстро, чисто, безболезненно и способно уничтожить абсолютно все. Квантовый пузырь смерти Для того чтобы распад вакуума произошел, его должно что-то спровоцировать, то есть заставить поле Хиггса отправиться на поиски предпочтительного для него минимума потенциала, соответствующего «истинному» вакууму.
Таким триггером может послужить сверхмощный взрыв, катастрофическое испарение черной дыры или злосчастное квантовое туннелирование о котором мы поговорим подробнее чуть позже. Если в любой точке космоса произойдет что-то подобное, будет запущен целый каскад апокалиптических событий, которому ничто во Вселенной не сможет противостоять. Все начнется с возникновения пузыря. На месте события-триггера образуется крошечный пузырь истинного вакуума. Он будет заключать в себе совершенно иной вид пространства, в котором физические процессы подчиняются другим законам, а частицы обладают иными свойствами. В момент формирования этот пузырь представляет собой бесконечно малое пятнышко. Однако он окружен чрезвычайно высокоэнергетической стенкой, способной сжечь все, с чем соприкоснется.
Затем пузырь начнет расширяться. Поскольку истинный вакуум является более стабильным состоянием, Вселенная его «предпочитает» и переходит в него при первой же возможности, подобно тому, как камешек скатывается по склону, оказавшись на его вершине. Как только возникнет этот пузырь, поле Хиггса вокруг него внезапно опустится в истинный минимум.
Они могут быть смешными или грустными, красиво нарисованными или схематичными. Также их могут перевести сами пользователи, взять перевод с других сайтов или же комикс может не нуждаться в переводе. Для прочих любых новостей, связанных с комиксами но не сами вебкомиксы , есть свои группы. Показать полностью Правила сообщества 1. Никаких глупых срачей.
Большая заморозка.
Согласно лучшим моделям эволюции Вселенной, наиболее вероятным сценарием является то, что называется Большой заморозкой. Если расширение не прекратится в течение многих лет, то все объекты будут находиться слишком далеко друг от друга. Процесс этот растянется на триллионы лет. На одном из финальных этапов в космосе останутся только чёрные дыры, но и они не вечны. Рано или поздно даже частицы перестанут взаимодействовать друг с другом, а материя и свет уйдут в прошлое. Большой разрыв.
Дыра в ткани реальности, в теории, может уничтожить Вселенную
Но чтоб ещё и ложный вакуум, и чтобы он ещё и распадался — до такого извращения даже мы не доходили. Если все пути распада ведут к очень массивным частицам, энергетический барьер такого распада может привести к образованию стабильного пузыря ложного вакуума (также известного как шар Ферми), окружающего частицу ложного вакуума. Результаты эксперимента соответствовали численным моделям и подтверждали квантово-механическую природу распада ложного вакуума. Опубликовано в журнале Физика природы Полученные результаты дают экспериментальные доказательства образования пузырьков в результате ложного распада вакуума в квантовой системе. Сложность вызова события, обладающего достаточно высокой энергией для инициирования распада вакуума, обусловлена высотой потенциального барьера между ложным и истинным вакуумом.
Распад вакуума уничтожит Вселенную
Распад ложного вакуума: вводный обзор | Гибель Вселенной может наступить из-за распада так называемого ложного вакуума, гласит одна из научных теорий. |
Распад вакуума уничтожит Вселенную | На канале Kurzgesagt видеохостинга YouTube появился ролик, на котором ученые рассказали о возможном механизме уничтожения Вселенной, которое может произойти в результате распада ложного вакуума, передает |
Открытие распада ложного вакуума: ученые получили доказательства | 24.01.2024 | | Ученые заявили, что из-за распада ложного вакуума Вселенная может быть разрушена. |
Исследователи изучают пузыри ничего, которые могли бы уничтожить Вселенную | Точнее, есть бесконечный ложный вакуум, который расширяется с бесконечно огромной скоростью, и в нем возникают зоны распада, где формируются вселенные, как пузырьки углекислоты в открытой бутылке газировки. |
Пузыри смерти или Когда распад ложного вакуума уничтожит Вселенную | Смотрите видео на тему «распад ложного вакума» в TikTok (тикток). |
Впервые получены доказательства распада ложного вакуума
На канале Kurzgesagt видеохостинга YouTube появился ролик, на котором ученые рассказали о возможном механизме уничтожения Вселенной, которое может произойти в результате распада ложного вакуума, передает Lenta. На примере ферромагнитной жидкости жидкости итальянские физики смогли впервые экспериментально засвидетельствовать распад ложного вакуума в квантовом макроскопическом поле. Пузырь истинного вакуума расширяется внутри пузыря ложного вакуума в соответствии со специальной теорией относительности, не быстрее скорости света, и уничтожает всю материю первоначального мира. Гибель Вселенной может наступить из-за распада так называемого ложного вакуума, гласит одна из научных теорий. Опубликовано в журнале Физика природы Полученные результаты дают экспериментальные доказательства образования пузырьков в результате ложного распада вакуума в квантовой системе. Смотрите видео на тему «распад ложного вакума» в TikTok (тикток).
Новое исследование проливает свет на явление, известное как «ложный вакуумный распад»
Законы физики внутри него в корне отличаются от тех, что царят снаружи. Пузырь расширяется со скоростью света, в итоге поглощая всю Вселенную. Галактики разлетаются, атомы не могут удерживать свои компоненты, а взаимодействия частиц меняются на фундаментальном уровне. Какую бы форму Вселенная ни приняла впоследствии, она определенно станет непригодной для жизни человека. Как такое может быть Чтобы понять, что такое распад вакуума, сначала следует разобраться, что такое вакуумное состояние. У большинства людей слово «вакуум» ассоциируется с открытым космосом и другими областями, в которых нет материи.
Однако открытый космос, на самом деле, не пустой. Напротив, в нем есть флуктуирующие квантовые поля, производящие частицы, которые отвечают за фундаментальные законы физики во Вселенной. Когда это пространство достигает минимального энергетического уровня, говорят, что оно находится в вакуумном состоянии. Тем не менее эти квантовые поля, несмотря ни на что, продолжают работу, удерживая таким образом ткань реальности от разрушения. Нам известны 17 частиц, которые появляются при возмущении квантовых полей — или, другими словами, когда квантовое поле получает энергию.
Одна из таких частиц — фотон, который мы воспринимаем как свет и который отвечает за электромагнитные излучения вроде рентгеновского и микроволнового среди прочих. Также есть кварки, которые собираются в протоны и нейтроны в атомных ядрах. Другие частицы — частицы взаимодействий — вроде сильного и слабого, — которые в итоге диктуют, как работает Вселенная.
В этом случае материя всей Вселенной начнет разрушаться. Впрочем, поддаваться панике, утверждают ученые, не стоит — дело в том, что этот процесс займет настолько много времени, что никак не может нести угрозу человеческой цивилизации. Подписывайтесь на электронную газету «Век» в: Реклама на веке.
Однако в теоретической физике подобным предположениям не место. В начале 1970-х годов несколько российских физиков по отдельности исследовали идею о том, что между устойчивым вакуумом и нестабильным невакуумом есть нечто среднее: вакуумоподобное состояние, которое кажется стабильным из-за очень длительного периода существования до распада. Этот «ложный вакуум» помогает устранить несоответствия в теориях о ранних условиях во Вселенной. Хотя концепция ложного вакуума была предложена для описания только переходного периода до Большого взрыва, недавние исследования в области поля Хиггса квантовое силовое поле, обнаруживаемое ускорителем частиц ЦЕРН предполагают, что мы все еще можем жить в ложном вакууме: то, что раньше считалось стабильным с наименьшей энергией состоянием поля Хиггса, может не являться состоянием с самой низкой энергией. Один из ответов — из-за «пузыря ничего». Пузырь из ничего — один из примеров «пузыря пространства-времени», где пространство-время обладает различными свойствами внутри и за пределами пузыря. Если в пространстве ложного вакуума спонтанно образуется пузырь из ничего, то он будет расти, и в конечном итоге поглотит всю Вселенную. Но почему пузырь ничего до сих пор не сформировался?
И поэтому… Что если он происходит регулярно, но мы его не замечаем? Именно такую вселенную мне хочется рассмотреть. Давайте введем величину D doom factor , которая пропорциональная вероятности спонтанного распада вакуума. Астрономы сейчас поежились от использования светового года в качестве меры расстояния, вместо парсека, но в данном случае очень хочется измерять время и расстояние в «одинаковых» единицах. Обреченная Вселенная Итак, какова вероятность того, что мы останемся живы в такой Вселенной? Нужно оценить количество потециальных катастроф в прошлом, то есть в нашем past light cone. То есть вероятность того, что мы не погибли равна. Нас не должно это удивлять, в MWI ветви разделяются еще сильнее даже в рамках минут и секунд. Тем не менее интересно проследить, а когда в среднем было последнее событие такого рода? Это можно сделать по формуле: Значение, которое мы получаем довольно странное для выбранного нами наобум D — около 100 миллионов лет. Впрочем, на самом деле это не удивительно, так как 4-объем конуса растет очень быстро к основанию. То есть опасность, которая нас подстерегает исходит не от случайно развалившегося 4 года назад вакуума в Альфа Центавра, а в том, что нас накроет волной разложения, которая дошла до нас из далеких глубин Вселенной. Насколько быстро мы разлагаемся?
Новое исследование проливает свет на явление, известное как «ложный вакуумный распад»
Международная группа ученых продемонстрировала первые экспериментальные доказательства распада ложного вакуума, используя квантовомеханическую систему, состоящую из сверхохлажденного газа изотопов натрия-23. **Ученые из Великобритании впервые применили квантовый симулятор для просчета. Недавно некоторые СМИ сообщили, что ученые впервые наблюдали распад ложного вакуума.
Что произошло в мире науки. Вечерний дайджест
Переход между ложным вакуумом и истинным затруднен из-за высокого энергетического барьера, однако может происходить квантовомеханическое туннелирование из одного состояния в другое. NP: процесс распада ложного вакуума впервые наблюдали в бозе-конденсатеИзображение: Nature Physics (2024) / дународная группа ученых получила первые экспериментальные доказательства распада ложного вакуума. Результаты исследования. Распад ложного вакуума. изучить квазиклассический метод вычисления вероятности распада ложного вакуума с помощью отскокового решения.