Новости распад ложного вакуума

Результаты, опубликованные в журнале Nature Physics, предлагают экспериментальные доказательства образования пузырей в результате распада ложного вакуума в квантовой системе. Переход между ложным вакуумом и истинным затруднен из-за высокого энергетического барьера, однако может происходить квантовомеханическое туннелирование из одного состояния в другое. То есть теоретическая возможность распада ложного вакуума в истинный есть, но реально это займет астрономическое время. Примечательно, что видео показывает как может погибнуть мир в результате распада ложного вакуума. Распад существовавшего тогда ложного вакуума привел к быстро расширяющемуся пространству, заполненному раскаленной материей.

Распад нестабильного вакуума

В эксперименте используется переохлажденный газ при температуре менее микрокельвина одной миллионной доли градуса от абсолютного нуля. При такой температуре видно, что пузырьки появляются по мере распада вакуума, и профессор Ньюкаслского университета Ян Мосс и доктор Том Биллам смогли убедительно показать, что эти пузырьки являются результатом термически активированного распада вакуума. Ян Мосс, профессор теоретической космологии в Школе математики, статистики и физики Университета Ньюкасла, сказал: "Считается, что распад вакуума играет центральную роль в создании пространства, времени и материи в результате Большого взрыва, но до сих пор не было проведено экспериментальной проверки. Это исследование открывает новые возможности в понимании ранней Вселенной, а также ферромагнитных квантовых фазовых переходов. Этот новаторский эксперимент - только первый шаг в изучении распада вакуума.

Насколько опасен истинный вакуум для жизни на Земле — в материале «Ленты. Вакуум в квантовой теории поля отвечает состоянию системы с минимально возможной энергией. Все физические процессы в таком мире происходят с энергиями, превышающими это принимаемое за нулевое значение. Между тем не исключено, что Вселенная или ее наблюдаемая часть находится в метастабильном, или ложном, вакууме. Это означает, что существует еще более выгодное энергетическое положение, в которое может эволюционировать Вселенная — истинный вакуум.

Количественное описание перехода системы из ложного вакуума в истинный впервые предложили в 1970-х годах советские физики.

Теперь эта возможность исключена. Второй частный случай - это распад в пространство исчезающей космологической постоянной, случай, который применим, если мы сейчас живем в обломках ложного вакуума, распавшегося в некую раннюю космическую эпоху. Этот случай представляет нам менее интересную физику и меньше поводов для риторических эксцессов, чем предыдущий.

Теперь внутренность пузыря - обычное пространство Минковского... Они утверждают, что из-за эффектов отбора наблюдателя мы могли бы недооценить шансы быть разрушенными в результате распада вакуума, потому что любая информация об этом событии достигнет нас только в тот момент, когда мы тоже были уничтожены. Это контрастирует с такими событиями, как риски от столкновений, гамма-всплесков , сверхновых и гиперновых , частоты которых у нас есть адекватные прямые измерения. Инфляция Ряд теорий предполагает, что космическая инфляция может быть результатом распада ложного вакуума в истинный вакуум.

Будущий электрон-позитронный коллайдер сможет обеспечить точные измерения верхнего кварка, необходимые для таких вычислений. Теория хаотической инфляции предполагает, что Вселенная может находиться либо в ложном вакууме, либо в истинном вакууме. Алан Гут в своем первоначальном предложении о космической инфляции предположил, что инфляция может прекратиться посредством квантово-механического зарождения пузырьков, описанного выше. Историю теории хаотической инфляции.

Большое сжатие. По этому сценарию расширение Вселенной со временем меняется на сжатие, и Вселенная коллапсирует, а в итоге схлопывается обратно в сингулярность. Это возможно, если плотность материи в космосе достаточно высока. Тогда её гравитация может преодолеть расширение. Разные учёные дают разные оценки того, когда может начаться эта фаза сжатия — через миллионы или миллиарды лет. Большой отскок. Есть ещё один вариант вышеупомянутой гипотезы.

Что произошло в мире науки. Вечерний дайджест

Самой очевидной является некое высокоэнергетическое событие, которое можно представить в виде землетрясения, выбивающего камешек из углубления в склоне и позволяющего ему отправиться на дно долины. К счастью, «землетрясение» такой невообразимой силы маловероятно. По нашим оценкам, это событие должно быть гораздо более высокоэнергетическим, чем самые разрушительные из наблюдаемых нами космических взрывов, и безусловно на много порядков превосходить все то, что мы способны устроить с помощью таких созданных человеком машин, как Большой адронный коллайдер. Если у нас когда-либо опять возникнут подобные опасения, мы всегда можем вновь сослаться на тот факт, что столкновения частиц в космосе достигают и всегда достигали гораздо более высоких уровней энергий, чем те, которые способен обеспечить БАК или любая другая машина. Раз уж мы пережили их последствия, значит, наши современные ускорители частиц точно не представляют никакой опасности. Сложность вызова события, обладающего достаточно высокой энергией для инициирования распада вакуума, обусловлена высотой потенциального барьера между ложным и истинным вакуумом. Если вернуться к аналогии с камешком, застрявшим в углублении склона долины, то потенциальный барьер — это выступающая кочка, придающая этому углублению форму кармана. Согласно нашему лучшему предположению относительно формы потенциала поля Хиггса, этот карман довольно глубок и отделен от минимума, соответствующего истинному вакууму, высоким горным хребтом. Количество энергии, которое потребовалось бы для того, чтобы перебросить камешек через хребет или заставить поле Хиггса преодолеть его потенциальный барьер , настолько велико, что об этом не стоит беспокоиться. Вот только… мы живем во Вселенной, которая не подчиняется подобным правилам.

В основе нашего космоса лежит квантовая механика, а она говорит о том, что если вы существуете в субатомном масштабе, путь, по которому вы добираетесь из одного места в другое, изредка может быть проложен прямо сквозь твердые объекты. Если вы стоите перед стеной, то вместо того, чтобы перепрыгивать через нее, вы можете просто пройти насквозь. Особенно если вы являетесь полем Хиггса. Туннелирование в бездну Идея квантового туннелирования может показаться научно-фантастической или сугубо теоретической концепцией, с которой забавляются физики, записывая непонятные уравнения. Квантовая механика действительно говорит о том, что мы никогда не можем точно определить, где находится частица или по какой траектории она движется. Поэтому для того, чтобы математика сработала, нужно выполнить вычисления для всех траекторий, включая самые странные, предполагающие, что частица перемещается из одной части лаборатории в другую через кофейню, находящуюся в другом городе. Однако это не значит, что частица действительно так делает, верно? Оказалось, что на вопрос о том, как на самом деле ведет себя частица, ответить очень трудно. Именно поэтому ученые на протяжении многих десятилетий спорили по поводу интерпретаций квантовой механики.

То, как частица путешествует между точками А и Б, по-прежнему остается в некотором смысле загадкой, как и то, почему, будучи небольшим локализованным объектом, частица подчиняется математике, описывающей распространяющиеся в пространстве волны. Тем не менее данные, с которыми согласны все, очень ясно дают понять, что туннелирование сквозь, казалось бы, непроходимые барьеры случается регулярно. Если уж частица оказалась зажатой в каком-то промежутке, стена ее не остановит. Подобное мастерство побега настолько характерно для частиц, что люди, разрабатывающие такие устройства как сотовые телефоны и микропроцессоры, вынуждены учитывать вероятность, что какой-нибудь электрон может внезапно материализоваться на другой стороне чипа. Это свойство даже применяется в некоторых технологиях, включая флеш-память. А сканирующие туннельные микроскопы используют так называемый туннельный ток для получения изображений отдельных атомов исследуемой поверхности. Свойство электронов перепрыгивать через короткие промежутки или протискиваться сквозь изоляционные барьеры может показаться хорошим трюком, однако все становится гораздо более зловещим, когда вы понимаете, что на квантовое туннелирование способны не только частицы, но и поля. Например, поле Хиггса, отделенное от состояния истинного вакуума потенциальным барьером, может туннелировать прямо в него. Как только вы это осознаете, единственная граница, отделяющая нашу гостеприимную Вселенную от тотальной космической катастрофы, покажется вам гораздо менее солидной.

Хорошая в некотором роде новость заключается в том, что даже такое странное событие, как квантовое туннелирование, следует определенным правилам, по крайней мере, когда речь идет об ожидаемой частоте его наступления. Вероятность туннелирования зависит от физических характеристик системы, а это означает, что вероятность наступления такого события в течение заданного периода времени можно достаточно точно определить. Разумеется, на это способен далеко не каждый. Но какой бы сложной ни была квантовая механика для понимания или интерпретации, она, по крайней мере, позволяет производить расчеты. Однако эти расчеты не дают нам ничего более определенного, чем оценка вероятности. Мы не можем с уверенностью заявить, что поле Хиггса не туннелирует из ложного вакуума в истинный и не создаст квантовый пузырь смерти прямо рядом с вами в течение следующих 30 секунд, запустив процесс всеобщего уничтожения. Мы можем сказать лишь то, что такой сценарий крайне маловероятен. Во всяком случае, в части «следующих 30 секунд». Если наш вакуум действительно является метастабильным, то, строго говоря, этот пузырь однажды должен возникнуть.

Согласно лучшим из имеющихся оценок, наш уютный вакуум вряд ли подвергнется радикальному изменению в ближайшее время, — на данный момент этот период оценивался в 10100 лет. К тому времени мы, вероятно, будем находиться в процессе тепловой смерти, а если нам совсем не повезет, — переживать Большой разрыв. В последнем случае мгновенное безболезненное уничтожение может показаться не таким уж плохим вариантом. Итак, технически я не могу утверждать, что распад вакуума не может произойти в любой момент. Я также не могу сказать наверняка, что это уже не случилось где-то в Солнечной системе, в другой части Млечного Пути или в другой галактике и не породило расширяющийся со скоростью света пузырь, тихо приближающийся к нам прямо сейчас. Однако если паранойя все-таки не дает вам покоя, я могу заверить вас в том, что у вас гораздо больше шансов быть пораженным молнией, попасть под машину, сгинуть под копытами разбушевавшегося быка или получить по голове метеоритом, чем столкнуться с пузырем истинного вакуума. Но есть еще одно обстоятельство. Мы уже сказали, что не можем вызвать распад вакуума, сталкивая частицы высокой энергии, а спонтанное туннелирование настолько маловероятно, что нам, пожалуй, стоит просто забыть о нем. Однако недавно физики описали еще один вариант уничтожения Вселенной вследствие распада вакуума и, надо сказать, довольно интересный.

Маленькая, но смертоносная В 2014 году Рут Грегори, Ян Мосс и Бенджамин Уизерс, опираясь на предыдущие работы в этой области, опубликовали статью, которая привлекла мое внимание. В ней говорилось о том, что хотя спонтанный распад вакуума происходит очень медленно, присутствие черной дыры может значительно ускорить этот процесс и сделать его более интересным. Они утверждали, что настоящую опасность представляет маленькая черная дыра, поскольку черные дыры размером с частицу способны значительно повысить вероятность распада вакуума прямо над ними. Может быть, нам и не придется ждать 10100 лет. В данном случае процесс напоминает конденсацию воды на пылинке в комнате с влажным воздухом или формирование облаков в верхних слоях атмосферы. Пылинка представляет собой место зарождения — особую точку, в которой этот процесс происходит легче, чем в других. Молекулам воды будет проще соединиться друг с другом, если сначала они прикрепятся к чему-то еще. Таким образом, наличие примеси может запустить цепную реакцию там, где в противном случае ситуация могла бы оставаться прежней. Оказывается, крошечные черные дыры могут выступать в качестве места зарождения пузырей истинного вакуума, но только в том случае, если они действительно очень маленькие.

К счастью для Вселенной, наше текущее понимание гравитационной физики говорит о том, что формирование таких черных дыр крайне маловероятно. Согласно нашим оценкам, черные дыры могут образоваться лишь при наличии массы, превышающей солнечную, в результате коллапса массивной звезды в конце ее жизненного цикла. Такие черные дыры могут увеличить свою массу путем поглощения вещества или слияния друг с другом, однако сокращение размера — это совсем другое дело. Они могут терять массу лишь за счет испарения Хокинга, а это занимает очень много времени. Черная дыра, масса которой равна солнечной, имеет ожидаемое время жизни около 1064 лет. В какой-то момент ближе к концу этого периода черная дыра может стать достаточно маленькой для того, чтобы спровоцировать распад вакуума, однако нам еще очень долго не придется беспокоиться по этому поводу. Также было высказано предположение, что в ранней Вселенной крошечные черные дыры могли образовываться под влиянием чрезвычайно высокой плотности, характерной для стадии Горячего Большого взрыва, но пока у нас нет никаких свидетельств в пользу этой гипотезы. Однако если бы маленькие черные дыры действительно возникали и были способны дестабилизировать вакуум, нас бы здесь не было. Таким образом, если мы принимаем во внимание этот довод и допускаем вероятность распада вакуума, то мы должны признать ошибочной любую теорию, предполагающую формирование крошечных черных дыр в ранней Вселенной, просто на основании факта нашего существования.

Некоторые ученые просто ради интереса размышляют о возможных способах создания таких маленьких черных дыр. Идея эта не нова. Помимо того, что они «ужасно милые» в теоретическом смысле, эти миниатюрные монстры могут многое рассказать нам о действии гравитации, об их возможном испарении и даже о существовании дополнительных невидимых нам измерений пространства. На протяжении многих лет физики изучали данные с ускорителей частиц, надеясь обнаружить признак того, что в результате одного из столкновений протонов в небольшом пространстве образовалось достаточно энергии для возникновения микроскопической черной дыры. Такая черная дыра, если и образуется, должна быть безвредной по традиционным представлениям, не учитывающим возможность распада вакуума. Согласно теории, она должна немедленно испариться под действием излучения Хокинга, и даже если этого не произойдет, она, скорее всего, унесется от нас с релятивистской скоростью, поскольку нацеливание нельзя выполнить настолько точно, чтобы после столкновения частицы полностью остановились. Кроме того, чтобы столкновения в коллайдерах могли породить крошечные черные дыры, гравитация, действующая на субатомные частицы, должна оказаться сильнее, чем предполагают эйнштейновские законы гравитации. И, насколько нам известно, такое может случиться лишь при наличии дополнительных измерений пространства. Достаточно лишь сказать, что существование более трех пространственных измерений может усилить гравитацию в очень малых масштабах, сделав возможным формирование маленьких черных дыр в результате столкновений в ускорителе БАК.

Таким образом, если нам удастся создать черную дыру с помощью БАК, мы получим доказательство того, что пространство имеет больше измерений, чем мы думали. Для ученого, стремящегося открыть новые захватывающие области физики, подобные новости кажутся фантастическими! Но, разумеется, было бы очень жаль, если бы крошечные черные дыры, которые мы пытаемся создать в ускорителе, могли вызвать распад вакуума и гибель Вселенной. К счастью, они на такое не способны. Мы уверены в этом настолько, насколько это вообще возможно для физиков. Во-первых, как мы уже говорили, энергия столкновения космических лучей намного превосходит все то, что мы наблюдаем в своих ускорителях частиц. Если даже мы можем сталкивать протоны для создания черных дыр, то Вселенная делала это бесчисленное количество раз, и, как видите, мы все еще здесь! Так что либо черные дыры нигде не возникают, либо они совершенно безвредны. Другая причина заключается в вероятном существовании порога значения массы, который должны преодолеть эти крошечные черные дыры, прежде чем они начнут представлять опасность хотя бы гипотетически.

Масса черных дыр, созданных коллайдером, была бы гораздо ниже этого уровня. И скорее всего, то же самое можно сказать о результатах большинства столкновений, происходящих в космосе. Чтобы доказать ограниченность размеров гипотетических дополнительных пространственных измерений, некоторые из нас уже приводили этот довод и указывали на то, что мы все еще живы.

Первый случай отвечает минимальному энергетическому состоянию хиггсовского поля, тогда как для второго существует отличная от нуля вероятность перехода в более глубокий, в частности, истинный вакуум. Представленное Kurzgesagt видео посвящено второй ситуации.

В результате в ложном вакууме создаются небольшие пузырьки истинного вакуума. Физики впервые наблюдали, как эти пузырьки образуются в квантовой системе, представляющей собой переохлажденный газ, состоящий из изотопов натрия-23 и обладающим свойством сверхтекучей жидкости, при температуре менее одного микрокельвина. Ложный и истинный вакуум в эксперименте представляли собой локальный и глобальный минимумы энергии ферромагнитного атомного конденсата Бозе-Эйнштейна.

Результаты наблюдений согласовывались с численными моделями, которые подтверждают квантово-механическую природу распада, что делает атомные сверхтекучие жидкости идеальной платформой для исследования явлений неравновесного квантового поля.

Любое использование текстовых, фото, аудио и видеоматериалов возможно только с согласия правообладателя ВГТРК. Главный редактор Панина Елена Валерьевна. Редактор сайта Кузнецов Николай Владимирович.

Распад ложного вакуума

Если наша Вселенная находится в состоянии ложного вакуума, а не в состоянии истинного вакуума, то распад менее стабильного ложного вакуума на более стабильный истинный вакуум (так называемый распад ложного вакуума) может иметь драматические последствия. NP: процесс распада ложного вакуума впервые наблюдали в бозе-конденсатеИзображение: Nature Physics (2024) / дународная группа ученых получила первые экспериментальные доказательства распада ложного вакуума. Результаты исследования. Однако количественный анализ распада ложного вакуума сопряжен с большой неопределенностью. СМИ заполонили тревожные сообщения: мол, физики устроили распад ложного вакуума — явление, способное уничтожить Вселенную.

Видео: смерть Вселенной из-за распада вакуума

При этом, интерес исследователей к «ложному вакууму» возник очень давно. Они пытаются определить его свойство и выяснить, могут ли существовать параллельные миры и не находится ли при этом наша Вселенная под угрозой. Автор: Алиса Скиба Редактор интернет-ресурса Новости по теме:.

И не какая-нибудь, а наша. Авторы YouTube-канала Kurzgesagt, которых не на шутку волнует эта угроза, опубликовали соответствующее видео, к котором попытались в доступной форме рассказать о проблеме, сообщает РИА VladNews со ссылкой на planet-today. Смотрите видеоролик ниже. В общем, суть в том, что весь наблюдаемый мир пребывает в состоянии истинного или ложного вакуума. Если мы живет в истинном вакууме, то опасаться совершенно нечего — он отвечает минимальному энергетическому потенциалу хиггсовского поля и поэтому стабилен.

Почему ученые не понимают, с чем они столкнулись? Ложный и истинный вакуум в эксперименте представляли собой локальный и глобальный минимумы энергии ферромагнитного атомного конденсата Бозе-Эйнштейна.

Читайте также: «Ростех» запустил производство двигателей для дронов Результаты наблюдений согласовывались с численными моделями, которые подтверждают квантово-механическую природу распада, что делает атомные сверхтекучие жидкости идеальной платформой для исследования явлений неравновесного квантового поля. Бозе-конденсат — это состояние материи, которое возникает, когда частицы или атомы, относящиеся к бозонам, охлаждают почти до абсолютного нуля, в данном случае до нескольких десятков нанокельвинов.

То есть, уничтожив, в частности, все свое содержимое. Нашу маленькую планетку в том числе. Но не волнуйтесь. Даже если мы живем в ложном вакууме обидно конечно, но что поделать , и он вот-вот преобразуется в истинный — это самое "вот-вот" — миллионы или миллиард лет, так что нынешней человеческой цивилизации эта проблема угрожает не слишком сильно.

Новости Владивостока в Telegram - постоянно в течение дня.

Как распад вакуума может уничтожить Вселенную

Уже примерно неделю замечаю в СМИ новости про физиков, которые «увидели распад ложного вакуума». Аннотация: На примере распада метастабильного состояния скалярного поля (конформный вакуум скалярных частиц над ложным классическим вакуумом). Суть катастрофы и заключается в распаде ложного вакуума, который, считают эксперты, начнет приближаться к состоянию истинного под воздействием сторонних сил. Международная группа ученых впервые экспериментально подтвердила процесс распада ложного вакуума, что стало значительным прорывом в области квантовой физики. Переход хиггсовского поля в состояние истинного вакуума вызовет вселенский распад материи, продемонстрировали ученые проекта Kurzgesagt. Гибель Вселенной может наступить из-за распада так называемого ложного вакуума, гласит одна из научных теорий.

Ученые получают доказательства распада ложного вакуума

Никаких глупых срачей. Переводчик может ошибиться. Скажите, где он ошибся и как надо перевести лучше. Не надо материть или угрожать человеку за ошибку. Это приведет к пермабану.

Однако в них все же была замечена система, хотя и несколько иного рода, чем надеялись обнаружить физики. Значения констант, похоже, тщательно «подобраны» для обеспечения нашего существования. Это наблюдение получило название антропного принципа. Константы будто специально тонко настроены Творцом, чтобы создать подходящую для жизни Вселенную — это как раз то, о чем говорят нам сторонники учения о разумном замысле.

Но существует иная возможность, рисующая совсем другой образ Творца: он произвольным образом порождает множество вселенных, и чисто случайно некоторые из них оказываются пригодными для жизни. Появившиеся в таких редких вселенных разумные наблюдатели обнаруживают чудесную тонкую настройку констант. В этой картине мира, называемой Мультиверсом, большинство пузырей бесплодно, но в них нет никого, кто мог бы на это пожаловаться. Но как проверить концепцию Мультиверса?

Прямые наблюдения ничего не дадут, поскольку мы не можем путешествовать в другие пузыри. Можно, однако, как в криминальном расследовании, найти косвенные улики. Если константы изменяются от одной вселенной к другой, их значения у нас нельзя точно предсказать, но можно сделать вероятностные предсказания. Можно спросить: какие значения обнаружит среднестатистический наблюдатель?

Это аналогично попытке предсказать рост первого встречного человека на улице. Вряд ли он окажется гигантом или карликом, поэтому если дать прогноз, что его рост будет где-то около среднего, мы, как правило, не ошибемся. Аналогично и с фундаментальными постоянными: нет оснований думать, что их значения в нашей области космоса очень велики или малы, иными словами, они существенно отличаются от тех, что измерит большинство наблюдателей во Вселенной. Предположение о нашей неисключительности — это важная идея; я назвал ее принципом заурядности.

Этот подход был применен к так называемой космологической постоянной, которая характеризует плотность энергии нашего вакуума. Значение этой постоянной, полученное из астрономических наблюдений, оказалось в хорошем согласии с предсказаниями, основанными на концепции Мультиверса. Это стало первым свидетельством существования там, за горизонтом, поистине колоссальной вечно инфлирующей Вселенной. Это свидетельство, конечно, косвенное, каким только и могло быть.

Но если нам посчастливится сделать еще несколько удачных предсказаний, то новую картину мира можно будет признать доказанной за пределами разумных сомнений. А было ли у Вселенной начало? Мы описали безгранично расширяющийся космос, порождающий все новые «большие взрывы», но хотелось бы знать, всегда ли Вселенная была такой? Многие находят такую возможность весьма привлекательной, поскольку она избавляет от некоторых трудных вопросов, связанных с началом Вселенной.

Когда Вселенная уже существует, ее эволюция описывается законами физики. Но как описывать ее начало? Что заставило Вселенную появиться? И кто задал ей начальные условия?

Было бы весьма удобно сказать, что Вселенная всегда пребывает в состоянии вечной инфляции без конца и без начала. Эта идея, однако, сталкивается с неожиданным препятствием. Арвинд Борд и Алан Гут доказали теорему, которая утверждает, что хотя инфляция вечна в будущем, она не может быть вечной в прошлом, а это значит, что у нее должно быть какое-то начало. И каково бы оно ни было, мы можем продолжать спрашивать: а что было до того?

Получается, что один из основных вопросов космологии — с чего началась Вселенная? Единственный предложенный до сих пор способ обойти эту проблему бесконечной регрессии состоит в том, что Вселенная могла быть спонтанно создана из ничего. Часто говорят: ничто не может появиться из ничего. Действительно, материя обладает положительной энергией, и закон ее сохранения требует, чтобы в любом начальном состоянии энергия была такой же.

Однако математический факт состоит в том, что замкнутая вселенная обладает нулевой энергией. В общей теории относительности Эйнштейна пространство может быть искривленным и замыкаться на себя подобно поверхности сферы. Если в такой замкнутой вселенной двигаться все время в одну сторону, то в конце концов вернешься туда, откуда стартовал, — точно так же, как возвращаешься в исходную точку, обойдя вокруг Земли. Энергия материи положительна, но энергия гравитации — отрицательна, и можно строго доказать, что в замкнутой вселенной их вклады в точности компенсируют друг друга, так что полная энергия замкнутой вселенной равна нулю.

Другая сохраняющаяся величина — электрический заряд. И тут тоже оказывается, что полный заряд замкнутой вселенной должен быть нулевым. Если все сохраняющиеся величины в замкнутой вселенной равны нулю, то ничто не препятствует ее спонтанному появлению из ничего. В квантовой механике любой процесс, который не запрещен строгими законами сохранения, с некоторой вероятностью будет происходить.

А значит, замкнутые вселенные должны появляться из ничего подобно пузырькам в бокале шампанского. Эти новорожденные вселенные могут быть разного размера и заполнены разными типами вакуума. Анализ показывает, что наиболее вероятные вселенные имеют минимальные начальные размеры и наивысшую энергию вакуума. Стоит появиться такой вселенной, как немедленно под влиянием высокой энергии вакуума она начинает расширяться.

Именно так и начинается история вечной инфляции. Пузырьки рождаются в жидкости, а у вселенной нет никакого окружающего пространства. Зародившаяся замкнутая вселенная — это и есть все имеющееся пространство. До ее появления никакого пространства не существует, как не существует и времени.

В квантовой теории поля, которая связывает квантовую физику и динамику пространства-времени, вакуум понимается как минимально возможное энергетическое состояние. Вакуум же не имеет более низких энергетических состояний, до которых можно продолжать распасться, и поэтому существует в стабильном состоянии. Однако в теоретической физике подобным предположениям не место. В начале 1970-х годов несколько российских физиков по отдельности исследовали идею о том, что между устойчивым вакуумом и нестабильным невакуумом есть нечто среднее: вакуумоподобное состояние, которое кажется стабильным из-за очень длительного периода существования до распада. Этот «ложный вакуум» помогает устранить несоответствия в теориях о ранних условиях во Вселенной. Хотя концепция ложного вакуума была предложена для описания только переходного периода до Большого взрыва, недавние исследования в области поля Хиггса квантовое силовое поле, обнаруживаемое ускорителем частиц ЦЕРН предполагают, что мы все еще можем жить в ложном вакууме: то, что раньше считалось стабильным с наименьшей энергией состоянием поля Хиггса, может не являться состоянием с самой низкой энергией. Один из ответов — из-за «пузыря ничего». Пузырь из ничего — один из примеров «пузыря пространства-времени», где пространство-время обладает различными свойствами внутри и за пределами пузыря.

Алан Гут в своем первоначальном предложении о космической инфляции предположил, что инфляция может прекратиться посредством квантово-механического зарождения пузырьков, описанного выше. Историю теории хаотической инфляции. Вскоре стало понятно, что однородная и изотропная Вселенная не может быть сохранена с помощью бурного процесса туннелирования. Это привело к тому, что Андрей Линде и независимо друг от друга Андреас Альбрехт и Пол Стейнхардт предложили «новую инфляцию» или «инфляцию с медленным вращением», при которой туннелирование не происходит, а инфляционное скалярное поле вместо этого отображается как пологий наклон. В 2014 году исследователи из Китайской академии наук Ухань Институт физики и математики предположил, что Вселенная могла спонтанно создана из ничего нет пространства , времени , ни материи по квантовым флуктуациям метастабильного ложного вакуума вызывает расширяющийся пузырь верно вакуум. Разновидности вакуумного распада Электрослабый вакуумный распад Стабильность электрослабого вакуума по оценкам 2012 г. Ландшафт устойчивости электрослабого вакуума по оценкам 2018 года. T RH - энергия великого объединения. Критерии устойчивости электрослабого взаимодействия были впервые сформулированы в 1979 году в зависимости от масс теоретического бозона Хиггса и самого тяжелого фермиона. Открытие топ-кварка в 1995 году и бозона Хиггса в 2012 году позволило физикам проверить критерии в сравнении с экспериментом, поэтому с 2012 года электрослабое взаимодействие считается наиболее многообещающим кандидатом на метастабильную фундаментальную силу. Соответствующая гипотеза ложного вакуума называется либо «нестабильностью электрослабого вакуума», либо «нестабильностью вакуума Хиггса».

Ученые рассказали о смерти Вселенной из-за распада вакуума

Гибель Вселенной может наступить из-за распада ложного вакуума, об этом гласит одна из научных теорий. Возможно, мы застанем распад ложного вакуума. На канале Kurzgesagt видеохостинга YouTube появился ролик, на котором ученые рассказали о возможном механизме уничтожения Вселенной, которое может произойти в результате распада ложного вакуума, передает Lenta. Поскольку ложный вакуум нестабилен, он в итоге распадется, порождая огненный сгусток, и на этом инфляция заканчивается. Но чтоб ещё и ложный вакуум, и чтобы он ещё и распадался — до такого извращения даже мы не доходили.

Впервые получены доказательства распада ложного вакуума

С такого пузыря начинается квантовый распад ложного вакуума в теориях с неравноправными вакуумами. Но чтоб ещё и ложный вакуум, и чтобы он ещё и распадался — до такого извращения даже мы не доходили. Однако существует и некоторый скептицизм относительно того, что такие процессы действительно могут инициировать распад вакуума. С такого пузыря начинается квантовый распад ложного вакуума в теориях с неравноправными вакуумами.

Похожие новости:

Оцените статью
Добавить комментарий