То есть теоретическая возможность распада ложного вакуума в истинный есть, но реально это займет астрономическое время. Видео: YouTube/Kurzgesagt Ученые наглядно показали, как распад ложного вакуума может уничтожить Вселенную. Речь идет о потенциальном процессе, известном как распад ложного вакуума. При нарушении тонкого баланса между квантовыми частицами поле Хиггса вырвалось бы из ложного вакуума, порождая по всей Вселенной эффект домино под названием распад вакуума. распад ложного вакуума физика Nature Physics квантовая теория вакуум распад.
Физики показали на видео разрушение Вселенной из-за распада вакуума
Исследователи отмечают, что поле Хиггса, в том числе, даёт массу частицам. Если однажды некоторое квантовое событие заставит поле Хиггса устремиться к стабильному состоянию, это может привести к необратимому цепному процессу — вакуумному распаду, сообщают учёные. Это, в свою очередь, приведёт к тому, что по космосу с огромной скоростью начнёт распространяться сфера так называемого «истинного вакуума», внутри которой не будут работать даже привычные нам законы физики из-за нарушения Стандартной модели. Гипотетически такое поле могло бы уничтожить Землю за долю секунды, и предотвратить это было бы невозможно.
Nature Physics: ученые получили доказательства распада ложного вакуума 0 0 Фото из открытых источников Англо-итальянская команда учёных достигла значительного прогресса в изучении явления распада ложного вакуума. Экспериментальные доказательства этого процесса были получены в изолированных и когерентно связанных атомных сверхтекучих средах, и результаты исследования опубликованы в журнале Nature Physics. Ложный вакуум - это состояние, в котором система оказывается временно устроенной в высокоэнергетическом состоянии, но может перейти в более стабильное состояние с меньшей энергией.
Компьютерное моделирование совпало с экспериментальными результатами, что по мнению ученых доказывает наблюдение распада ложного вакуума в истинный. Физики отмечают, что предложенный ими метод позволит подробнее изучить распад ложного вакуума квантовых состояний. Кстати, наш вакуум вполне вероятно тоже является ложным.
Ученые наблюдали зарождение пузырьков в этих сверхтекучих средах, а численное моделирование подтвердило их наблюдения. Этот прорыв не только подтверждает теоретические предположения, основанные на теории инстантонов, но также открывает новые перспективы для исследования неравновесных квантовых полей. Кроме того, результаты исследования предоставляют ценную информацию о процессах, происходящих в квантовых системах многих тел.
Пузыри смерти: Когда распад ложного вакуума уничтожит Вселенную
Гипотезы, гипотезы … В одной из гипотез из ложного вакуума может и могло? Ну а если существует Мультивселенная, в Параллельных Мирах которой одновременно существует и наше настоящее и прошлое и будущее? Какой же «здесь» конец Вселенной которой?
Особый взгляд на факты и события в разделе «В цифрах». Мы проводим еженедельные «Опросы» среди наших читателей. Удобная навигация, ежедневное обновление информации, ссылки на фото и видеорепортажи. Новости в Кемерово и в Кузбассе - наш главный приоритет. На информационном ресурсе применяются рекомендательные технологии информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети «Интернет», находящихся на территории Российской Федерации. Подробная информация Адрес: 650000, Кемеровская Область, г.
Спутник WMAP построил карту интенсивности излучения для всего неба и обнаружил, что видимый на ней пятнистый узор находится в безупречном согласии с теорией. С появлением теории инфляции Большой взрыв перестал быть единственным уникальным событием. Согласно ей вселенные возникают и расширяются, как пузырьки в бокале шампанского. И таких «бокалов» может быть множество. Согласно общей теории относительности Эйнштейна пространство может быть искривлено, однако теория инфляции предсказывает, что наблюдаемая нами область Вселенной должна с высокой точностью описываться плоской, евклидовой, геометрией. Вообразите искривленную поверхность сферы. Теперь мысленно увеличьте эту поверхность в огромное число раз. Это как раз то, что случилось со Вселенной во время инфляции.
Нам видна лишь крошечная часть этой огромной сферы. И она кажется плоской точно так же, как Земля, когда мы рассматриваем небольшой ее участок. То, что геометрия Вселенной плоская, было проверено путем измерения углов гигантского треугольника размером почти до космического горизонта. Их сумма составила 180 градусов, как и должно быть при плоской, евклидовой, геометрии. Теперь, когда данные, полученные в наблюдаемой нами области Вселенной, подтвердили теорию инфляции, можно в какой-то степени доверять тому, что она говорит нам о регионах, недоступных для наблюдения. Это возвращает нас к вопросу, с которого мы начали: что лежит за нашим космическим горизонтом? То там, то здесь в ее толще случаются «большие взрывы», в которых распадается ложный вакуум и возникает область космоса, подобная нашей. Но инфляция никогда не закончится полностью, во всей Вселенной.
Дело в том, что распад вакуума — вероятностный процесс, и в разных областях он случается в разное время. Выходит, Большой взрыв не был уникальным событием в нашем прошлом. Множество «взрывов» случилось прежде и несчетное число еще произойдет в будущем. Этот никогда не кончающийся процесс называется вечной инфляцией. Можно попробовать представить, как бы выглядела инфлирующая Вселенная, если взглянуть на нее со стороны. Пространство было бы заполнено ложным вакуумом и очень быстро расширялось во все стороны. Распад ложного вакуума похож на закипание воды. То там, то здесь спонтанно возникают пузыри низкоэнергетического вакуума.
Едва зародившись, пузыри начинают расширяться со скоростью света. Но они очень редко сталкиваются, поскольку пространство между ними расширяется еще быстрее, образуя место для все новых и новых пузырей. Мы живем в одном из них и видим только малую его часть. К сожалению, путешествия в другие пузыри невозможны. Даже забравшись в космический корабль и двигаясь почти со скоростью света, нам не угнаться за расширяющимися границами нашего пузыря. Так что мы являемся его пленниками. С практической точки зрения каждый пузырь является самодостаточной отдельной вселенной, у которой нет связи с другими пузырями. В ходе вечной инфляции порождается бесконечное число таких пузырей-вселенных.
Одна из впечатляющих возможностей — наблюдение за столкновением пузырей. Если бы другой пузырь ударился в наш, это оказало бы заметное воздействие на наблюдаемое космическое фоновое излучение. Проблема, однако, в том, что столкновения пузырей очень редки, и не факт, что такое событие случалось в пределах нашего горизонта. Удивительный вывод следует из этой картины мира: поскольку число вселенных-пузырей бесконечно и каждая из них неограниченно расширяется, в них будет содержаться бесконечное число областей размером с наш горизонт. У каждой такой области будет своя история. Под «историей» имеется в виду все, что случилось, вплоть до мельчайших событий, таких как столкновение двух атомов. Ключевой момент состоит в том, что число различных историй, которые могут иметь место, — конечно. Как это возможно?
Например, я могу подвинуть свой стул на один сантиметр, на полсантиметра, на четверть и так далее: кажется, что уже здесь таится неограниченное число историй, поскольку я могу сдвинуть стул бесконечным числом разных способов на сколь угодно малое расстояние. Однако из-за квантовой неопределенности слишком близкие друг к другу истории принципиально невозможно различить. Таким образом, квантовая механика говорит нам, что число различных историй конечно. С момента Большого взрыва для наблюдаемой нами области оно составляет примерно 10, возведенное в степень 10150. Это невообразимо большое число, но важно подчеркнуть, что оно не бесконечно. Итак, ограниченное количество историй разворачивается в бесконечном числе областей. Неизбежен вывод, что каждая история повторяется бесконечное число раз. В частности, существует бесконечное число земель с такими же историями, как у нашей.
Это значит, что десятки ваших дублей сейчас читают эту фразу. Должны существовать также области, истории которых в чем-то отличаются, реализуя все возможные вариации. Например, есть области, в которых изменена лишь кличка вашей собаки, а есть другие, где по Земле до сих пор ходят динозавры. Хотя, конечно, в большинстве областей нет ничего похожего на нашу Землю: ведь куда больше способов отличаться от нашего космоса, чем быть на него похожим.
В тот момент времени мы могли бы описать столь разнообразные явления, как падение яблока с дерева, и распад ядра урана, с помощью единой системы уравнений.
Такое положение вещей может существовать только при самых экстремальных температурах. Но когда Вселенная расширилась, она остыла настолько, что фундаментальные силы начали разделяться. До тех пор, пока, в конце концов, не стали четырьмя отдельным силам, которые мы знаем и очень любим сегодня. И именно в ходе этого процесса в почву физики просыпались прыткие семена будущей вакуумной подлянки. Квантовые поля Наши лучшие современные теории описывают Вселенную с помощью так называемых квантовых полей.
Поле — это просто то, что имеет какое-то значение в какой-то точке пространства. Знакомый всем пример — магнитное поле, которое окружает стержневой магнит. Оно описывает силу, генерируемую магнитом, в любой точке пространства. Это поле квантовано, то есть может принимать только одно из дискретного набора значений, в отличие от континуума значений, разрешенных в классическом поле. Волны в этих квантовых полях, известные как возбуждения, — это то, что мы наблюдаем как частицы.
Такие, как фотоны и электроны. Для любой фундаментальной силы или частицы существует соответствующее квантовое поле. Например, два электрона, сталкивающиеся и рассеивающие друг друга, можно представить как две волны в квантовом поле электрона, обменивающиеся фотоном. Который сам является волной в электромагнитном квантовом поле. Важно отметить, что существует также энергия, связанная с отсутствием возбуждений в квантовом поле — так называемая энергия нулевой точки, которая обычно, все же, не равна нулю.
Знаменитым примером влияния этой нулевой энергии является эффект Казимира, когда две металлические пластины, разделенные чрезвычайно маленьким зазором, притягиваются друг к другу за счет разницы в «давлении» вакуума между пластинами, и «давлении» на их внешних сторонах. Нулевые точки большинства известных квантовых полей оставались постоянными с тех пор, как впервые разделились вместе с фундаментальными силами в остывающей молодой Вселенной. Эти поля называются стабильными, поскольку их нулевые точки не могут стать другими. Однако есть некоторые признаки того, что для одного из полей это может быть вовсе не так.
Ученые показали на видео процесс разрушения Вселенной из-за распада вакуума
На канале Kurzgesagt видеохостинга YouTube появился ролик, на котором ученые рассказали о возможном механизме уничтожения Вселенной, которое может произойти в результате распада ложного вакуума, передает со ссылкой на Уже примерно неделю замечаю в СМИ новости про физиков, которые «увидели распад ложного вакуума». Суть катастрофы и заключается в распаде ложного вакуума, который, считают эксперты, начнет приближаться к состоянию истинного под воздействием сторонних сил.
Пузыри смерти или Когда распад ложного вакуума уничтожит Вселенную
В этом случае материя Вселенной будет разрушена, однако, по оценкам ученых, это займет слишком много времени, чтобы угрожать существованию человеческой цивилизации.
Если однажды некоторое квантовое событие заставит поле Хиггса устремиться к стабильному состоянию, это может привести к необратимому цепному процессу — вакуумному распаду, сообщают учёные. Это, в свою очередь, приведёт к тому, что по космосу с огромной скоростью начнёт распространяться сфера так называемого «истинного вакуума», внутри которой не будут работать даже привычные нам законы физики из-за нарушения Стандартной модели. Гипотетически такое поле могло бы уничтожить Землю за долю секунды, и предотвратить это было бы невозможно. Более того, учёные не исключают, что где-то в далёком космосе такой процесс уже мог стартовать — хотя если это произошло достаточно далеко, Землю от последствий защитит тот факт, что Вселенная непрерывно расширяется.
Этот переход происходит через туннелирование через энергетический барьер и широко известен в различных областях физики, включая квантовую теорию поля и космологию. Исследование показало, что атомные сверхтекучие жидкости предоставляют идеальную платформу для экспериментального подтверждения этого явления.
Ученые наблюдали зарождение пузырьков в этих сверхтекучих средах, а численное моделирование подтвердило их наблюдения.
Бозе-конденсат — это особое состояние материи, возникающее при охлаждении бозонов почти до абсолютного нуля. В таких условиях бозоны занимают одно и то же основное квантовое состояние, ведя себя как единая «размытая» частица. Это создает квантовые эффекты, видимые невооруженным глазом, включая сверхтекучесть — способность жидкости течь без трения.
Физики показали на видео разрушение Вселенной из-за распада вакуума
Результаты экспериментов соответствовали численным моделям и подтверждали, что распад ложного вакуума имеет квантово-механическую природу. Однако существует и некоторый скептицизм относительно того, что такие процессы действительно могут инициировать распад вакуума. Суть катастрофы и заключается в распаде ложного вакуума, который, считают эксперты, начнет приближаться к состоянию истинного под воздействием сторонних сил. Точнее, есть бесконечный ложный вакуум, который расширяется с бесконечно огромной скоростью, и в нем возникают зоны распада, где формируются вселенные, как пузырьки углекислоты в открытой бутылке газировки. изучить квазиклассический метод вычисления вероятности распада ложного вакуума с помощью отскокового решения.
Ученые рассказали о смерти Вселенной из-за распада вакуума
Ученые надеялись, что БАК поможет лучше изучить не только условия ранней Вселенной, но и саму структуру материи и энергии. Более ранние эксперименты показали, что законы физики энергозависимы, то есть поведение частиц и действие сил зависит от окружающих условий, поэтому столкновение частиц высоких энергий позволило бы ученым исследовать границы нашего понимания законов физики. Однако в поле зрения ученых маячил и более заманчивый приз. До этого физики на протяжении десятилетий теоретизировали по поводу существования частицы, настолько важной для понимания материи, что ее открытие должно было завершить Стандартную модель физики элементарных частиц. Бозон Хиггса, если бы он был обнаружен, позволил бы подтвердить ведущую теорию, объясняющую, как фундаментальные частицы могли обрести массу на ранней стадии развития Вселенной. Кроме того, мы надеялись, что это даст нам некоторое представление о физических законах, действующих за пределами нашей нынешней сферы исследований. Но сама перспектива изучения неизвестных областей реальности вселяла страх в сердца некоторых людей. Никто и никогда не производил столкновений частиц такой высокой энергии.
Никто не знал, как законы физики поведут себя в таких условиях. По Всемирной паутине начали распространяться наихудшие сценарии развития событий. Кто-то предполагал, что установка откроет портал в другое измерение, разорвав саму ткань пространства. Кто-то говорил о возможном возникновении крошечной черной дыры, которая начнет расти и в итоге поглотит всю планету. Кто-то боялся, что в результате будет создана так называемая странная материя — своеобразное вещество, состоящее из странных, верхних и нижних кварков, что, по мнению некоторых, могло запустить цепную реакцию в стиле «лед-девять» в книге Курта Воннегута «Колыбель для кошки» рассказывается о создании новой формы вещества под названием «лед-девять», которая более стабильна по сравнению с жидкой водой. Соприкоснувшись с частицей льда-девять, вода и сама превращается в это вещество, что создает угрозу существованию жизни на Земле. Однако физиков это не остановило.
В ноябре 2009 года на ускорителе БАК произвели первые столкновения протонов высокой энергии. Из того, что жизнь на этой планете все еще существует, следует, что ни одна из предполагаемых катастроф так и не произошла. Если вы все еще волнуетесь, можете отслеживать ситуацию в режиме реального времени на сайте: www. Был ли этот эксперимент оправдан, учитывая потенциальные риски? Физиков нельзя назвать самыми осторожными людьми, однако изучение сценариев типа «что, если» — это наш хлеб насущный, кроме того, возможность глубоко подумать о реальной физике, стоящей за гипотетической вероятностью всеобщего уничтожения, было бы очень жаль упускать. RHIC The Relativistic Heavy Ion Collider — это релятивистский коллайдер тяжелых ионов, предшественник БАК, расположенный в Брукхейвенской национальной лаборатории, который был предназначен для столкновения ядер тяжелых элементов вроде золота при высоких энергиях. Сам по себе этот новаторский эксперимент вызывал беспокойство по поводу непредвиденных последствий, которые могли представлять угрозу существованию планеты или Вселенной , и цель написания этой статьи заключалась в том, чтобы полностью исследовать и по возможности развеять эти опасения.
Полученные результаты были обнадеживающими. Основываясь на теоретических соображениях, исследователи оценили возможность создания странной материи или черных дыр как крайне маловероятную. Кроме того, их выводы подкреплялись и экспериментальными данными, а именно существованием Луны. Аргументация в пользу любого потенциально разрушительного явления, порожденного коллайдером, основывается на идее о том, что столкновения частиц такой высокой энергии настолько беспрецедентны, что мы не можем предугадать их последствий. Однако при этом игнорируется важный факт: несмотря на то что уровни энергии, достигаемые на RHIC и БАК, непривычны для нас, жалких людишек, космические лучи, путешествующие по Вселенной, постоянно их достигают и сталкиваются между собой и с другими объектами. На протяжении миллиардов лет по всей Вселенной происходили столкновения при гораздо более высоких энергиях, чем может обеспечить любой из наших коллайдеров, и если бы они могли привести к разрушению космоса, мы бы наверняка это заметили. Что если по всему космосу разбросаны скопления странной материи, а мы просто этого не знаем?
Несмотря на то что в большинстве случаев частицы, произведенные в коллайдере, по нашему мнению, обладают остаточным импульсом, который позволяет им покинуть лабораторию сразу после возникновения, в ходе экспериментов мы вполне можем получить нечто опасное, способное задержаться в детекторе. Что тогда? К счастью, для исследования этих эффектов мы можем использовать Луну. Данные, полученные от наземных детекторов и космических телескопов, говорят о том, что высокоэнергетические космические лучи бомбардируют Луну постоянно. На самом деле, благодаря радиотелескопам мы можем использовать Луну даже в качестве детектора нейтрино, что само по себе довольно здорово. Если бы столкновения частиц высоких энергий могли превратить обычное вещество в странную материю, это уже давно произошло бы на Луне, и сейчас в небе мы бы видели совершенно другой объект. Если бы на Луне образовалась крошечная черная дыра и поглотила ее, это также повлияло бы на вид ночного неба.
Не говоря уже о том, что люди были на Луне, гуляли по поверхности, играли в гольф и привезли оттуда образцы грунта. Судя по всему, Луна прекрасно себя чувствует, поэтому авторы работы, посвященной RHIC, были уверены, что ускоритель не представляет для нас опасности. Правда, странная материя и черные дыры были не единственными сценариями апокалипсиса. Еще одно опасение, которое также удалось развеять путем наблюдения за высокоэнергетическими космическими лучами, заключалось в том, что столкновения частиц высоких энергий могут вызвать разрушительное для Вселенной квантовое событие под названием «распад вакуума». Эта идея основывается на гипотезе о том, что нашей Вселенной присуща некая фатальная нестабильность. Несмотря на то что такой сценарий может показаться пугающим, каким бы маловероятным он ни был, на момент ввода RHIC в эксплуатацию реальные доказательства существования такой нестабильности отсутствовали, поэтому данная возможность не рассматривалась всерьез. Однако все изменилось в 2012 году, когда с помощью ускорителя БАК был обнаружен бозон Хиггса.
Состояние Вселенной Вернейший способ заставить специалиста по физике элементарных частиц поморщиться — это назвать бозон Хиггса «частицей бога», как он известен широкой публике. Недовольство ученых по поводу этого высокопарного прозвища вызвано не только смешением науки и религии хотя некоторых именно это раздражает больше всего. Дело в том, что название «частица бога» ужасно неточное и, надо сказать, довольно дерзкое. Это не отменяет огромной важности бозона Хиггса для Стандартной модели физики элементарных частиц. Можно даже утверждать, что именно он является ключом к объединению всего остального. Однако центральную роль в работе физики элементарных частиц и в природе космоса играет поле Хиггса, а не частица. Если коротко, поле Хиггса представляет собой пронизывающее все пространство энергетическое поле, при взаимодействии с которым другие частицы обретают массу.
Бозон Хиггса имеет такое же отношение к полю Хиггса, как фотон, переносчик электромагнитного взаимодействия и света , к электромагнитному полю, — это локализованное «возбуждение» чего-то, что пронизывает обширное пространство. Более длинная версия этой истории имеет отношение к электрослабой теории, которая объединяет слабое взаимодействие с электричеством и магнетизмом, а также к разделению этих сил вследствие так называемого спонтанного нарушения симметрии. Здесь я вынуждена совершить над собой героическое усилие и вместо подробного описания квантовой теории поля ограничиться обсуждением нескольких ключевых вопросов. Однако имейте в виду, что если вы решите изучить математику, стоящую за всем этим, вы увидите, что все намного круче. Физика работает по-разному в зависимости от уровня энергии. Например, электромагнетизм и слабое взаимодействие проявляются как совершенно независимые феномены на тех уровнях энергии, с которыми мы имеем дело в повседневной жизни, однако в ранней Вселенной, для которой были характерны очень высокие уровни энергии, эти силы представляли собой аспекты одного и того же явления. Поле Хиггса играло важную роль во время этого переходного периода.
Когда условия изменились, то же произошло и с законами физики. Во многом именно для этого мы и создаем ускорители частиц: чтобы воссоздать в небольшом пространстве внутри детекторов экстремальные условия, характерные для начальных стадий развития Вселенной, с помощью которых мы могли бы лучше понять основополагающие физические принципы, сводящие всё воедино. Основная идея заключается в существовании некой всеобъемлющей математической теории, описывающей взаимодействия частиц при всех возможных условиях, и последовательное проведение их столкновений позволяет нам получить более полное представление об этой всеобъемлющей структуре. В качестве аналогии можно привести воду. На самом фундаментальном уровне она представляет собой набор молекул, состоящих из определенным образом связанных атомов водорода и кислорода. Но в повседневной жизни мы воспринимаем воду в качестве однородной бесцветной жидкости, кристаллического твердого вещества, а в особенно тяжелые времена — в качестве удушающего влажного тумана, который заставляет вас мечтать об одежде, сшитой из полотенец. Изучая поведение воды в этих различных состояниях, мы можем сделать выводы о том, что она на самом деле собой представляет, даже если у нас под рукой нет мощных микроскопов, позволяющих рассмотреть отдельные атомы.
Например, форма снежинки может многое рассказать нам о форме молекул, если мы посмотрим, как они организуются в кристаллы. То, как вода испаряется, кое-что говорит нам о связях, которые удерживают молекулы вместе. Если бы мы имели дело с водой лишь в одном из ее агрегатных состояний, мы не смогли бы составить о ней полного впечатления. Точно так же наше представление о взаимодействиях субатомных частиц меняется в зависимости от уровня энергии или температуры во время эксперимента, варьирование которых позволяет нам лучше понять, что с ними на самом деле происходит. В физике элементарных частиц нас интересует, как частицы взаимодействуют друг с другом и чем обусловлены их фундаментальные свойства, такие как масса. Характерная особенность любой частицы, обладающей массой, состоит в том, что она не может ускориться без применения силы и не способна достичь скорости света. На самых ранних этапах существования Вселенной поле Хиггса подверглось изменению, в результате которого электрослабое взаимодействие разделилось на электромагнетизм и слабое ядерное взаимодействие, и некоторые частицы правда, не фотон и не глюон получили возможность взаимодействовать с самим полем Хиггса.
Интенсивность этого взаимодействия определяет массу частицы. Фотон продолжает путешествовать в пространстве со скоростью света, а частицы, обладающие массой, движутся тем медленнее, чем более сильное воздействие они испытывают со стороны поля Хиггса. Сравнивать поведение частиц в условиях ранней Вселенной с их текущим поведением все равно что сравнивать собственное взаимодействие с паром и жидкой водой. Представьте, что пар — это поле Хиггса, то есть энергетическое поле, присутствующее в каждой точке пространства. А теперь представьте, что в какой-то момент поле Хиггса претерпело изменение, подобное конденсации пара в жидкую воду. Если вы привыкли иметь дело лишь с влажным воздухом, то пребывание в бассейне с водой станет для вас совершенно новым опытом. В результате внезапного изменения поля Хиггса сами законы физики как бы приобрели совершенно иную форму.
Внезапно частицы, которые до этого могли беспрепятственно перемещаться в пространстве со скоростью света, замедлились под действием поля Хиггса, то есть обрели массу. Этот процесс получил название «нарушение электрослабой симметрии». Пугливая симметрия Симметрия — это тонкое, абстрактное понятие, чрезвычайно трудно объяснимое без уравнений, но настолько важное для физики, что я не могу просто отмахнуться от него. Симметрия имеет ключевое значение как для описания существующих, так и для разработки новых теорий природы. Если в ходе размышлений о мире вы привыкли использовать управляющие им математические уравнения, вас, вероятно, не удивит идея описания теорий в терминах симметрий, которым они подчиняются. В противном случае все это может показаться вам сущей тарабарщиной. Итак, давайте сделаем небольшой экскурс в эту тему, поскольку симметрия представляет собой нечто невероятно красивое, и как только вы узнаете о ней подробнее, вы начнете замечать ее повсюду.
Одна из таких частиц — фотон, который мы воспринимаем как свет и который отвечает за электромагнитные излучения вроде рентгеновского и микроволнового среди прочих. Также есть кварки, которые собираются в протоны и нейтроны в атомных ядрах. Другие частицы — частицы взаимодействий — вроде сильного и слабого, — которые в итоге диктуют, как работает Вселенная.
На этом графике показаны энергетические состояния гипотетического квантового поля. Исходя из определения, вакуумное состояние не может терять энергию, так как, если бы было справедливо обратное, работа фундаментальных частиц также была бы иной, а значит, и Вселенная перестала бы работать так, как она это делает сейчас. Большинство квантовых полей, судя по всему, находятся в своих квантовых состояниях, а значит, стабильны, а мы — в безопасности.
Однако измерить эти вещи крайне сложно. Возможно, одному квантовому полю еще предстоит достичь своего вакуумного состояния: речь идет о поле Хиггса. Как поле Хиггса связано с распадом вакуума Поле Хиггса и связанный с ним бозон Хиггса отвечают за наличие у всего во Вселенной массы.
Именно поэтому у фотонов массы нет, а у Z-бозонов ее очень мало — по крайней мере, для квантовой частицы. Само по себе это поле важно для взаимодействия фундаментальных частиц друг с другом. Возможно, поле Хиггса «застряло» на определенном энергетическом уровне.
Представьте мяч, который катится с холма, — все другие поля «скатились» к подножию, но поле Хиггса могло застрять в маленькой впадине посреди него, из-за чего не достигло подножия. Если низшая возможная энергия, доступная полю, называется вакуумным состоянием, то эту впадину можно считать ложным вакуумом: он выглядит стабильным, но в нем на самом деле больше энергии, чем там, где поле Хиггса «хочет» быть.
Фото: Pixabay Делают они это с помощью очень маленьких атомов, которые к тому же очень холодны. При этом, интерес исследователей к «ложному вакууму» возник очень давно. Они пытаются определить его свойство и выяснить, могут ли существовать параллельные миры и не находится ли при этом наша Вселенная под угрозой. Автор: Алиса Скиба Редактор интернет-ресурса Новости по теме:.
В квантовой теории поля, которая связывает квантовую физику и динамику пространства-времени, вакуум понимается как минимально возможное энергетическое состояние. Вакуум же не имеет более низких энергетических состояний, до которых можно продолжать распасться, и поэтому существует в стабильном состоянии. Однако в теоретической физике подобным предположениям не место.
В начале 1970-х годов несколько российских физиков по отдельности исследовали идею о том, что между устойчивым вакуумом и нестабильным невакуумом есть нечто среднее: вакуумоподобное состояние, которое кажется стабильным из-за очень длительного периода существования до распада. Этот «ложный вакуум» помогает устранить несоответствия в теориях о ранних условиях во Вселенной. Хотя концепция ложного вакуума была предложена для описания только переходного периода до Большого взрыва, недавние исследования в области поля Хиггса квантовое силовое поле, обнаруживаемое ускорителем частиц ЦЕРН предполагают, что мы все еще можем жить в ложном вакууме: то, что раньше считалось стабильным с наименьшей энергией состоянием поля Хиггса, может не являться состоянием с самой низкой энергией. Один из ответов — из-за «пузыря ничего». Пузырь из ничего — один из примеров «пузыря пространства-времени», где пространство-время обладает различными свойствами внутри и за пределами пузыря.
Как распад вакуума может уничтожить Вселенную
Подробнее про распад ложного вакуума можно прочитать в материале "Из пустого в порожнее", а также в новостях "Излучение Хокинга спасло Вселенную от распада ложного вакуума" и "Физик уточнил скорость распада ложного вакуума". В результате распада ложного вакуума огромная энергия, запасенная полем, высвободится — в конечном счете, это выразится в образовании большого числа частиц и приведет к повторному разогреванию Вселенной. Распад ложного вакуума — это физическое явление, способное уничтожить каждый атом во Вселенной. Видео: YouTube/Kurzgesagt Ученые наглядно показали, как распад ложного вакуума может уничтожить Вселенную. Пузырь истинного вакуума расширяется внутри пузыря ложного вакуума в соответствии со специальной теорией относительности, не быстрее скорости света, и уничтожает всю материю первоначального мира. Распад ложного вакуума.
Разрушение пустоты: могут ли физики случайно уничтожить Вселенную
Юрий Медведев Предупреждение известного физика Стивена Хокинга о крайней опасности для всей Вселенной экспериментов на Большом адронном коллайдере с бозоном Хиггса не более чем очередная "страшилка". Об этом сказал корреспонденту "РГ" известный теоретик академик Валерий Рубаков. Чем же пугает Хокинг? По его мнению, бозон способен вызвать исчезновение двух фундаментальных основ мироздания - времени и пространства. Об этом он пишет в предисловии к новой книге "Starmus".
Это сборник лекций ведущих физиков. В основе новейшей концепции Хокинга лежит гипотеза о квантовом распаде вакуума. Она предполагает, что существует два вида вакуума с различными уровнями энергии - ложный и истинный. Предполагается, что наша Вселенная находится в ложном вакууме.
Согласно квантовой теории поля это стабильное состояние с определенным уровнем энергии. Что касается так называемого "истинного" вакуума, то он обладает наименьшей из всех возможных энергий. По мнению Хокинга, в ходе экспериментов с бозоном Хиггса он может быть переведен в такое нестабильное состояние, которое станет своеобразным тоннелем между ложным и истинным вакуумом.
Международная группа ученых смогла получить первые экспериментальные подтверждения распада ложного вакуума. Их исследования были опубликованы в престижном журнале Nature Physics. Ложный вакуум - это состояние с низкой энергией, которое считается относительно стабильным, но может перейти в состояние с минимальной энергией, известное как истинный вакуум. Но такой переход затруднен из-за высокого барьера энергии.
Тот, который повыше, — ложный вакуум — не совсем стабилен. До поры до времени он может выглядеть как нормальный вакуум, и в нём тоже могут летать частицы, происходить взаимодействия и образовываться звезды и планеты. Но всегда существует вероятность, что этот вакуум «сломается», что он протуннелирует в более стабильный истинный вакуум. Этот квантовый распад вакуума выглядит так. В какой-то момент во Вселенной, находящейся в состоянии «ложного вакуума», появляется пузырь истинного вакуума рис. Переход между областью истинного и ложного вакуума не может быть разрывным, теория такой возможности не допускает. Поэтому имеется тонкая промежуточная зона стенка пузыря , в которой хиггсовское поле плавно переходит от одного вакуума в другой, преодолевая по пути потенциальный барьер. Если этот пузырь энергетически выгоден, то он начнет расширяться, вначале медленно, но затем разгонится до скорости света. При таком переходе свойства частиц резко изменятся, а во Вселенной выделится много дополнительный энергии, которая была раньше запасена в ложном вакууме. Иными словами, последствия такого распада вакуума будут катастрофическими для любых структур, населявших «старую» Вселенную. Этот процесс во многом напоминает вскипание перегретой жидкости, только, разумеется, масштабы здесь не те. Пояснение насчет единиц измерения и размерностей. В результате длина выражается не в метрах, а в обратных энергетических единицах, например Дж—1 или эВ—1. Подсказка 1 Разумеется, честное полноценное решение представляет собой серьезную научную задачу. Однако очень грубую оценку времени жизни можно дать из довольно простых рассуждений, которые опираются на анализ размерностей. Подсказка 2 Рассмотрим неподвижный пузырь «истинного вакуума» радиуса R во Вселенной, находящейся в состоянии «ложного вакуума». Оценим полную энергию этого пузыря относительно ложного вакуума. Пузырь заполнен истинным вакуумом, который придает пузырю отрицательную энергию. Однако у пузыря есть тонкие стенки, в которых хиггсовское поле плавно переходит от истинного вакуума в ложный. Эти стенки обладают положительной энергией, по аналогии с поверхностным натяжением на границе жидкости. Исходя из соображений размерности, оцените коэффициент поверхностного натяжения стенки в этой задачи.
К счастью, этот процесс совершенно безболезненный: ни на каком этапе ваши нервные импульсы не смогут угнаться за процессом вашего распада. Хотя бы этому можно порадоваться. Разумеется, вами пузырь не ограничится. Любую планету или звезду, оказавшуюся в пределах его постоянно расширяющегося радиуса, постигнет та же участь. Целые галактики будут уничтожены. Истинный вакуум полностью обнулит всю Вселенную. Уцелеют лишь те области, которые в силу своей удаленности навсегда останутся за горизонтом пузыря благодаря ускоренному расширению космического пространства. Пузырь истинного вакуума. Если распад вакуума произойдет в каком-то месте космоса, это событие породит пузырь, расширяющийся во все стороны со скоростью света и уничтожающий всё на своем пути. На самом деле вполне возможно, что пока мы тут сидим и спокойно пьем чай, распад вакуума где-то уже происходит. Может быть, нам повезло, и пузырь находится за пределами нашего космического горизонта, поглощая галактики, о которых мы ничего не знаем. А может быть, он произошел по космическим меркам прямо по соседству, и уже тихо подкрадывается, чтобы застать нас врасплох. Нарываясь на неприятности Однако переживать по поводу возможного распада вакуума не стоит. В самом деле. По нескольким причинам. Среди них есть и очевидные: вы не сможете остановить этот процесс, если он начнется; вы не сумеете предсказать его начало; судя по всему, вам не будет больно; кроме того, скучать по вам в любом случае будет некому, так что какой смысл беспокоиться? Лучше проверьте батарейки в пожарной сигнализации, добейтесь закрытия угольных электростанций или что-нибудь в этом роде. Но если по какой-то причине эти доводы не кажутся вам достаточно обнадеживающими, я могу с достаточной степенью уверенности заявить, что распад вакуума вряд ли произойдет в течение следующих триллионов лет. Теоретически он может быть вызван несколькими причинами. Самой очевидной является некое высокоэнергетическое событие, которое можно представить в виде землетрясения, выбивающего камешек из углубления в склоне и позволяющего ему отправиться на дно долины. К счастью, «землетрясение» такой невообразимой силы маловероятно. По нашим оценкам, это событие должно быть гораздо более высокоэнергетическим, чем самые разрушительные из наблюдаемых нами космических взрывов, и безусловно на много порядков превосходить все то, что мы способны устроить с помощью таких созданных человеком машин, как Большой адронный коллайдер. Если у нас когда-либо опять возникнут подобные опасения, мы всегда можем вновь сослаться на тот факт, что столкновения частиц в космосе достигают и всегда достигали гораздо более высоких уровней энергий, чем те, которые способен обеспечить БАК или любая другая машина. Раз уж мы пережили их последствия, значит, наши современные ускорители частиц точно не представляют никакой опасности. Сложность вызова события, обладающего достаточно высокой энергией для инициирования распада вакуума, обусловлена высотой потенциального барьера между ложным и истинным вакуумом. Если вернуться к аналогии с камешком, застрявшим в углублении склона долины, то потенциальный барьер — это выступающая кочка, придающая этому углублению форму кармана. Согласно нашему лучшему предположению относительно формы потенциала поля Хиггса, этот карман довольно глубок и отделен от минимума, соответствующего истинному вакууму, высоким горным хребтом. Количество энергии, которое потребовалось бы для того, чтобы перебросить камешек через хребет или заставить поле Хиггса преодолеть его потенциальный барьер , настолько велико, что об этом не стоит беспокоиться. Вот только… мы живем во Вселенной, которая не подчиняется подобным правилам. В основе нашего космоса лежит квантовая механика, а она говорит о том, что если вы существуете в субатомном масштабе, путь, по которому вы добираетесь из одного места в другое, изредка может быть проложен прямо сквозь твердые объекты. Если вы стоите перед стеной, то вместо того, чтобы перепрыгивать через нее, вы можете просто пройти насквозь. Особенно если вы являетесь полем Хиггса. Туннелирование в бездну Идея квантового туннелирования может показаться научно-фантастической или сугубо теоретической концепцией, с которой забавляются физики, записывая непонятные уравнения. Квантовая механика действительно говорит о том, что мы никогда не можем точно определить, где находится частица или по какой траектории она движется. Поэтому для того, чтобы математика сработала, нужно выполнить вычисления для всех траекторий, включая самые странные, предполагающие, что частица перемещается из одной части лаборатории в другую через кофейню, находящуюся в другом городе. Однако это не значит, что частица действительно так делает, верно? Оказалось, что на вопрос о том, как на самом деле ведет себя частица, ответить очень трудно. Именно поэтому ученые на протяжении многих десятилетий спорили по поводу интерпретаций квантовой механики. То, как частица путешествует между точками А и Б, по-прежнему остается в некотором смысле загадкой, как и то, почему, будучи небольшим локализованным объектом, частица подчиняется математике, описывающей распространяющиеся в пространстве волны. Тем не менее данные, с которыми согласны все, очень ясно дают понять, что туннелирование сквозь, казалось бы, непроходимые барьеры случается регулярно. Если уж частица оказалась зажатой в каком-то промежутке, стена ее не остановит. Подобное мастерство побега настолько характерно для частиц, что люди, разрабатывающие такие устройства как сотовые телефоны и микропроцессоры, вынуждены учитывать вероятность, что какой-нибудь электрон может внезапно материализоваться на другой стороне чипа. Это свойство даже применяется в некоторых технологиях, включая флеш-память. А сканирующие туннельные микроскопы используют так называемый туннельный ток для получения изображений отдельных атомов исследуемой поверхности. Свойство электронов перепрыгивать через короткие промежутки или протискиваться сквозь изоляционные барьеры может показаться хорошим трюком, однако все становится гораздо более зловещим, когда вы понимаете, что на квантовое туннелирование способны не только частицы, но и поля. Например, поле Хиггса, отделенное от состояния истинного вакуума потенциальным барьером, может туннелировать прямо в него. Как только вы это осознаете, единственная граница, отделяющая нашу гостеприимную Вселенную от тотальной космической катастрофы, покажется вам гораздо менее солидной. Хорошая в некотором роде новость заключается в том, что даже такое странное событие, как квантовое туннелирование, следует определенным правилам, по крайней мере, когда речь идет об ожидаемой частоте его наступления. Вероятность туннелирования зависит от физических характеристик системы, а это означает, что вероятность наступления такого события в течение заданного периода времени можно достаточно точно определить. Разумеется, на это способен далеко не каждый. Но какой бы сложной ни была квантовая механика для понимания или интерпретации, она, по крайней мере, позволяет производить расчеты. Однако эти расчеты не дают нам ничего более определенного, чем оценка вероятности. Мы не можем с уверенностью заявить, что поле Хиггса не туннелирует из ложного вакуума в истинный и не создаст квантовый пузырь смерти прямо рядом с вами в течение следующих 30 секунд, запустив процесс всеобщего уничтожения. Мы можем сказать лишь то, что такой сценарий крайне маловероятен. Во всяком случае, в части «следующих 30 секунд». Если наш вакуум действительно является метастабильным, то, строго говоря, этот пузырь однажды должен возникнуть. Согласно лучшим из имеющихся оценок, наш уютный вакуум вряд ли подвергнется радикальному изменению в ближайшее время, — на данный момент этот период оценивался в 10100 лет. К тому времени мы, вероятно, будем находиться в процессе тепловой смерти, а если нам совсем не повезет, — переживать Большой разрыв. В последнем случае мгновенное безболезненное уничтожение может показаться не таким уж плохим вариантом. Итак, технически я не могу утверждать, что распад вакуума не может произойти в любой момент. Я также не могу сказать наверняка, что это уже не случилось где-то в Солнечной системе, в другой части Млечного Пути или в другой галактике и не породило расширяющийся со скоростью света пузырь, тихо приближающийся к нам прямо сейчас. Однако если паранойя все-таки не дает вам покоя, я могу заверить вас в том, что у вас гораздо больше шансов быть пораженным молнией, попасть под машину, сгинуть под копытами разбушевавшегося быка или получить по голове метеоритом, чем столкнуться с пузырем истинного вакуума. Но есть еще одно обстоятельство. Мы уже сказали, что не можем вызвать распад вакуума, сталкивая частицы высокой энергии, а спонтанное туннелирование настолько маловероятно, что нам, пожалуй, стоит просто забыть о нем. Однако недавно физики описали еще один вариант уничтожения Вселенной вследствие распада вакуума и, надо сказать, довольно интересный. Маленькая, но смертоносная В 2014 году Рут Грегори, Ян Мосс и Бенджамин Уизерс, опираясь на предыдущие работы в этой области, опубликовали статью, которая привлекла мое внимание. В ней говорилось о том, что хотя спонтанный распад вакуума происходит очень медленно, присутствие черной дыры может значительно ускорить этот процесс и сделать его более интересным. Они утверждали, что настоящую опасность представляет маленькая черная дыра, поскольку черные дыры размером с частицу способны значительно повысить вероятность распада вакуума прямо над ними. Может быть, нам и не придется ждать 10100 лет. В данном случае процесс напоминает конденсацию воды на пылинке в комнате с влажным воздухом или формирование облаков в верхних слоях атмосферы. Пылинка представляет собой место зарождения — особую точку, в которой этот процесс происходит легче, чем в других. Молекулам воды будет проще соединиться друг с другом, если сначала они прикрепятся к чему-то еще. Таким образом, наличие примеси может запустить цепную реакцию там, где в противном случае ситуация могла бы оставаться прежней. Оказывается, крошечные черные дыры могут выступать в качестве места зарождения пузырей истинного вакуума, но только в том случае, если они действительно очень маленькие. К счастью для Вселенной, наше текущее понимание гравитационной физики говорит о том, что формирование таких черных дыр крайне маловероятно. Согласно нашим оценкам, черные дыры могут образоваться лишь при наличии массы, превышающей солнечную, в результате коллапса массивной звезды в конце ее жизненного цикла. Такие черные дыры могут увеличить свою массу путем поглощения вещества или слияния друг с другом, однако сокращение размера — это совсем другое дело. Они могут терять массу лишь за счет испарения Хокинга, а это занимает очень много времени. Черная дыра, масса которой равна солнечной, имеет ожидаемое время жизни около 1064 лет. В какой-то момент ближе к концу этого периода черная дыра может стать достаточно маленькой для того, чтобы спровоцировать распад вакуума, однако нам еще очень долго не придется беспокоиться по этому поводу. Также было высказано предположение, что в ранней Вселенной крошечные черные дыры могли образовываться под влиянием чрезвычайно высокой плотности, характерной для стадии Горячего Большого взрыва, но пока у нас нет никаких свидетельств в пользу этой гипотезы. Однако если бы маленькие черные дыры действительно возникали и были способны дестабилизировать вакуум, нас бы здесь не было. Таким образом, если мы принимаем во внимание этот довод и допускаем вероятность распада вакуума, то мы должны признать ошибочной любую теорию, предполагающую формирование крошечных черных дыр в ранней Вселенной, просто на основании факта нашего существования. Некоторые ученые просто ради интереса размышляют о возможных способах создания таких маленьких черных дыр. Идея эта не нова.