На канале Kurzgesagt ученые рассказали о возможном механизме уничтожения Вселенной, которое может произойти в результате распада ложного вакуума. Возможно, мы застанем распад ложного вакуума. Физики увидели распад ложного вакуума Итальянские физики зарегистрировали распад ложного вакуума в ферромагнитной сверхтекучей жидкости.
Виртуальный хостинг
- Новости дня
- Ученые показали на видео процесс разрушения Вселенной из-за распада вакуума
- Физики увидели распад ложного вакуума. Пока только в ферромагнитных сверхтекучих жидкостях
- Распад ложного вакуума
- Конец Вселенной: ученые показали, к чему приведет распад вакуума
Впервые получены доказательства распада ложного вакуума
В одной из гипотез « раздувающейся Вселенной » из ложного вакуума вскоре после появления Вселенной могла образоваться не одна, а множество метагалактик в том числе и наша [2] , в таком случае Большой взрыв — переход ложного вакуума в обычный [3]. Оценка времени жизни метастабильного вакуума в Стандартной модели для наблюдаемой Вселенной лежит в диапазоне от 1058 до 10241 лет ввиду неопределённостей в параметрах частиц, главным образом в массах топ-кварка и бозона Хиггса [4] По теории, между зонами истинного и ложного вакуума должна быть промежуточная зона, в которой ложный вакуум становится истинным [5]. Есть гипотеза, что мы живём в ложном, а не истинном вакууме [6].
Это можно сделать по формуле: Значение, которое мы получаем довольно странное для выбранного нами наобум D — около 100 миллионов лет. Впрочем, на самом деле это не удивительно, так как 4-объем конуса растет очень быстро к основанию. То есть опасность, которая нас подстерегает исходит не от случайно развалившегося 4 года назад вакуума в Альфа Центавра, а в том, что нас накроет волной разложения, которая дошла до нас из далеких глубин Вселенной.
Насколько быстро мы разлагаемся? Для оценки возьмем производную n по t, и получим: Для нашего значения D величина n увеличивается на 0. Аргумент Судного Дня Опять таки, не буду пересказывать вики. Так как тел куда больше к концу существования цивилизации, вероятность родиться в Римской империи очень мала. Мы применяем инвертированный аргумент судного дня к цивилизациям причем при расхождении времени развития разных цивилизаций в миллионы лет эффект начинает проявляться с куда более низких значений D.
То есть, вероятность родиться в поздней цивилизации ничтожна. То есть мы родились в первой, и пока единственной цивилизации! Опрос В статье вики приведены различные варианты решения проблемы. Проголосуйте за те, которые вам кажутся вероятными. Я взял варианты из английской версии Вики в русской их мало , но объединил некоторые Только зарегистрированные пользователи могут участвовать в опросе.
Исследователи полагают, что наблюдаемый мир находится в истинном или ложном вакуумном состоянии. Первый случай отвечает минимальному энергетическому состоянию хиггсовского поля, тогда как для второго существует отличная от нуля вероятность перехода в более глубокий, в частности, истинный вакуум.
Впрочем, поддаваться панике, утверждают ученые, не стоит — дело в том, что этот процесс займет настолько много времени, что никак не может нести угрозу человеческой цивилизации. Подписывайтесь на электронную газету «Век» в: Реклама на веке.
Ученые рассказали о смерти Вселенной из-за распада вакуума
Она прилетит из глубин космоса со скоростью света. Изменятся все законы физики. Забудьте о химии, которую Вы знали до этого. Сейчас она принципиально невозможна. Забудьте о самой жизни. Ее больше никогда не будет в том виде, к которому мы привыкли. Человечество , наша цивилизация, и любые следы нашего существования будут стерты навсегда.
За доли секунды… Вакуумный распад Хотя этот сценарий звучит как начало какого-то безумного романа из 50-х годов прошлого века, это вполне реальная перспектива. Так может произойти, если Вселенная подвергнется процессу, известному как вакуумный распад. Именно он может запустить образование непобедимого пузыря смерти. Способного вызвать разрушение всего, что мы когда-либо знали… Страшно? И что это вообще такое. Для начала давайте переместимся в далекое прошлое.
В первые доли секунды после Большого взрыва. Вселенная все еще крошечная и невероятно, просто безумно горячая. Считается, что в таких условиях фундаментальные силы электромагнетизм, сильные и слабые ядерные взаимодействия и гравитация были объединены в одно универсальное взаимодействие. В тот момент времени мы могли бы описать столь разнообразные явления, как падение яблока с дерева, и распад ядра урана, с помощью единой системы уравнений. Такое положение вещей может существовать только при самых экстремальных температурах. Но когда Вселенная расширилась, она остыла настолько, что фундаментальные силы начали разделяться.
До тех пор, пока, в конце концов, не стали четырьмя отдельным силам, которые мы знаем и очень любим сегодня.
Образованию пузыря истинного вакуума в пузыре ложного соответствует фазовый переход первого рода, когда система претерпевает скачкообразное, а не непрерывное, как в фазовом переходе второго рода, изменение. Главное в обоих приближениях — высота потенциального барьера, разделяющего ложный и истинный вакуум. Приближение тонкой стенки работает, когда различие между ложным и истинным минимумами потенциала намного меньше высоты барьера между ними. Если толщина стенок намного меньше радиуса пузыря, основной вклад в вероятность его рождения вносит поверхностная, а не объемная энергия.
Определение вероятности при этом сводится к вычислению показателя экспоненты. Приближение толстой стенки гораздо реже используется в физически интересных теориях. И понятно почему: в этом случае вероятность образования пузырьков новой фазы оказывается экспоненциально подавленной — ложный вакуум практически неотличим от истинного. В настоящее время самой тяжелой элементарной частицей считается топ-кварк — его масса превышает 173 гигаэлектронвольт. Именно поэтому открытия новых тяжелых частиц так важны для космологических моделей — это может повлиять на прогнозы стабильности наблюдаемого мира.
Особая роль в распаде вакуума у гравитации — кривизны пространства-времени.
По этому сценарию расширение Вселенной со временем меняется на сжатие, и Вселенная коллапсирует, а в итоге схлопывается обратно в сингулярность. Это возможно, если плотность материи в космосе достаточно высока. Тогда её гравитация может преодолеть расширение. Разные учёные дают разные оценки того, когда может начаться эта фаза сжатия — через миллионы или миллиарды лет. Большой отскок. Есть ещё один вариант вышеупомянутой гипотезы. Он предполагает, что за несколько мгновений до того, как Вселенная схлопнется в бесконечно плотную сингулярность, она снова изменит курс и возобновит период расширения.
Пузырь истинного вакуума расширяется внутри пузыря ложного вакуума в соответствии со специальной теорией относительности, не быстрее скорости света, и уничтожает всю материю первоначального мира. Поэтому и говорят о возможной гибели наблюдаемой Вселенной. Однако количественный анализ распада ложного вакуума сопряжен с большой неопределенностью. Главное, что необходимо сделать, — это оценить вероятность рождения пузыря новой космологической фазы. Есть два основных подхода, позволяющих максимально упростить задачу и получить явные выражения для вероятности перехода — приближения тонкой и толстой стенок. В качестве базового объекта выступает потенциал Хиггса иначе — Гинзбурга-Ландау Стандартной модели — современной концепции физики элементарных частиц. В нем присутствует поле Хиггса, ответственное за возникновение у частиц инертной массы. Образованию пузыря истинного вакуума в пузыре ложного соответствует фазовый переход первого рода, когда система претерпевает скачкообразное, а не непрерывное, как в фазовом переходе второго рода, изменение. Главное в обоих приближениях — высота потенциального барьера, разделяющего ложный и истинный вакуум. Приближение тонкой стенки работает, когда различие между ложным и истинным минимумами потенциала намного меньше высоты барьера между ними. Если толщина стенок намного меньше радиуса пузыря, основной вклад в вероятность его рождения вносит поверхностная, а не объемная энергия.
Главное сегодня
- Telegram: Contact @darksciences
- Главные новости
- Впервые получены доказательства распада ложного вакуума
- Сеть взорвало ВИДЕО смерти Вселенной под влиянием распада вакуума
Распад вакуума уничтожит Вселенную
В глобальной паутине появился видеоролик, на котором сотрудники научного мира проинформировали о вероятном механизме уничтожения галактик Вселенной, что происходит в результате распада ложного вакуума. Отмечается, что первопричиной вселенской катастрофы вполне может стать распад вакуума Ученые поведали о вероятной смерти мира, которая случится после распада ложного вакуума Ученые рассказали, что. Ученые смоделировали гибель Вселенной, которую может вызвать распад ложного вакуума. Открытие исследователей: проблема ложного вакуума доказана на практике Международная группа ученых достигла прорыва в изучении распада ложного вакуума, что было подтверждено экспериментально.
Открытие распада ложного вакуума: ученые получили доказательства
Если наша Вселенная находится в состоянии ложного вакуума, а не в состоянии истинного вакуума, то распад менее стабильного ложного вакуума на более стабильный истинный вакуум (так называемый распад ложного вакуума) может иметь драматические последствия. Речь идет о потенциальном процессе, известном как распад ложного вакуума. При нарушении тонкого баланса между квантовыми частицами поле Хиггса вырвалось бы из ложного вакуума, порождая по всей Вселенной эффект домино под названием распад вакуума.
Когда распад ложного вакуума уничтожит Вселенную
Именно поэтому ученые на протяжении многих десятилетий спорили по поводу интерпретаций квантовой механики. То, как частица путешествует между точками А и Б, по-прежнему остается в некотором смысле загадкой, как и то, почему, будучи небольшим локализованным объектом, частица подчиняется математике, описывающей распространяющиеся в пространстве волны. Тем не менее данные, с которыми согласны все, очень ясно дают понять, что туннелирование сквозь, казалось бы, непроходимые барьеры случается регулярно. Если уж частица оказалась зажатой в каком-то промежутке, стена ее не остановит. Подобное мастерство побега настолько характерно для частиц, что люди, разрабатывающие такие устройства как сотовые телефоны и микропроцессоры, вынуждены учитывать вероятность, что какой-нибудь электрон может внезапно материализоваться на другой стороне чипа. Это свойство даже применяется в некоторых технологиях, включая флеш-память. А сканирующие туннельные микроскопы используют так называемый туннельный ток для получения изображений отдельных атомов исследуемой поверхности. Свойство электронов перепрыгивать через короткие промежутки или протискиваться сквозь изоляционные барьеры может показаться хорошим трюком, однако все становится гораздо более зловещим, когда вы понимаете, что на квантовое туннелирование способны не только частицы, но и поля. Например, поле Хиггса, отделенное от состояния истинного вакуума потенциальным барьером, может туннелировать прямо в него. Как только вы это осознаете, единственная граница, отделяющая нашу гостеприимную Вселенную от тотальной космической катастрофы, покажется вам гораздо менее солидной.
Хорошая в некотором роде новость заключается в том, что даже такое странное событие, как квантовое туннелирование, следует определенным правилам, по крайней мере, когда речь идет об ожидаемой частоте его наступления. Вероятность туннелирования зависит от физических характеристик системы, а это означает, что вероятность наступления такого события в течение заданного периода времени можно достаточно точно определить. Разумеется, на это способен далеко не каждый. Но какой бы сложной ни была квантовая механика для понимания или интерпретации, она, по крайней мере, позволяет производить расчеты. Однако эти расчеты не дают нам ничего более определенного, чем оценка вероятности. Мы не можем с уверенностью заявить, что поле Хиггса не туннелирует из ложного вакуума в истинный и не создаст квантовый пузырь смерти прямо рядом с вами в течение следующих 30 секунд, запустив процесс всеобщего уничтожения. Мы можем сказать лишь то, что такой сценарий крайне маловероятен. Во всяком случае, в части «следующих 30 секунд». Если наш вакуум действительно является метастабильным, то, строго говоря, этот пузырь однажды должен возникнуть.
Согласно лучшим из имеющихся оценок, наш уютный вакуум вряд ли подвергнется радикальному изменению в ближайшее время, — на данный момент этот период оценивался в 10100 лет. К тому времени мы, вероятно, будем находиться в процессе тепловой смерти, а если нам совсем не повезет, — переживать Большой разрыв. В последнем случае мгновенное безболезненное уничтожение может показаться не таким уж плохим вариантом. Итак, технически я не могу утверждать, что распад вакуума не может произойти в любой момент. Я также не могу сказать наверняка, что это уже не случилось где-то в Солнечной системе, в другой части Млечного Пути или в другой галактике и не породило расширяющийся со скоростью света пузырь, тихо приближающийся к нам прямо сейчас. Однако если паранойя все-таки не дает вам покоя, я могу заверить вас в том, что у вас гораздо больше шансов быть пораженным молнией, попасть под машину, сгинуть под копытами разбушевавшегося быка или получить по голове метеоритом, чем столкнуться с пузырем истинного вакуума. Но есть еще одно обстоятельство. Мы уже сказали, что не можем вызвать распад вакуума, сталкивая частицы высокой энергии, а спонтанное туннелирование настолько маловероятно, что нам, пожалуй, стоит просто забыть о нем. Однако недавно физики описали еще один вариант уничтожения Вселенной вследствие распада вакуума и, надо сказать, довольно интересный.
Маленькая, но смертоносная В 2014 году Рут Грегори, Ян Мосс и Бенджамин Уизерс, опираясь на предыдущие работы в этой области, опубликовали статью, которая привлекла мое внимание. В ней говорилось о том, что хотя спонтанный распад вакуума происходит очень медленно, присутствие черной дыры может значительно ускорить этот процесс и сделать его более интересным. Они утверждали, что настоящую опасность представляет маленькая черная дыра, поскольку черные дыры размером с частицу способны значительно повысить вероятность распада вакуума прямо над ними. Может быть, нам и не придется ждать 10100 лет. В данном случае процесс напоминает конденсацию воды на пылинке в комнате с влажным воздухом или формирование облаков в верхних слоях атмосферы. Пылинка представляет собой место зарождения — особую точку, в которой этот процесс происходит легче, чем в других. Молекулам воды будет проще соединиться друг с другом, если сначала они прикрепятся к чему-то еще. Таким образом, наличие примеси может запустить цепную реакцию там, где в противном случае ситуация могла бы оставаться прежней. Оказывается, крошечные черные дыры могут выступать в качестве места зарождения пузырей истинного вакуума, но только в том случае, если они действительно очень маленькие.
К счастью для Вселенной, наше текущее понимание гравитационной физики говорит о том, что формирование таких черных дыр крайне маловероятно. Согласно нашим оценкам, черные дыры могут образоваться лишь при наличии массы, превышающей солнечную, в результате коллапса массивной звезды в конце ее жизненного цикла. Такие черные дыры могут увеличить свою массу путем поглощения вещества или слияния друг с другом, однако сокращение размера — это совсем другое дело. Они могут терять массу лишь за счет испарения Хокинга, а это занимает очень много времени. Черная дыра, масса которой равна солнечной, имеет ожидаемое время жизни около 1064 лет. В какой-то момент ближе к концу этого периода черная дыра может стать достаточно маленькой для того, чтобы спровоцировать распад вакуума, однако нам еще очень долго не придется беспокоиться по этому поводу. Также было высказано предположение, что в ранней Вселенной крошечные черные дыры могли образовываться под влиянием чрезвычайно высокой плотности, характерной для стадии Горячего Большого взрыва, но пока у нас нет никаких свидетельств в пользу этой гипотезы. Однако если бы маленькие черные дыры действительно возникали и были способны дестабилизировать вакуум, нас бы здесь не было. Таким образом, если мы принимаем во внимание этот довод и допускаем вероятность распада вакуума, то мы должны признать ошибочной любую теорию, предполагающую формирование крошечных черных дыр в ранней Вселенной, просто на основании факта нашего существования.
Некоторые ученые просто ради интереса размышляют о возможных способах создания таких маленьких черных дыр. Идея эта не нова. Помимо того, что они «ужасно милые» в теоретическом смысле, эти миниатюрные монстры могут многое рассказать нам о действии гравитации, об их возможном испарении и даже о существовании дополнительных невидимых нам измерений пространства. На протяжении многих лет физики изучали данные с ускорителей частиц, надеясь обнаружить признак того, что в результате одного из столкновений протонов в небольшом пространстве образовалось достаточно энергии для возникновения микроскопической черной дыры. Такая черная дыра, если и образуется, должна быть безвредной по традиционным представлениям, не учитывающим возможность распада вакуума. Согласно теории, она должна немедленно испариться под действием излучения Хокинга, и даже если этого не произойдет, она, скорее всего, унесется от нас с релятивистской скоростью, поскольку нацеливание нельзя выполнить настолько точно, чтобы после столкновения частицы полностью остановились. Кроме того, чтобы столкновения в коллайдерах могли породить крошечные черные дыры, гравитация, действующая на субатомные частицы, должна оказаться сильнее, чем предполагают эйнштейновские законы гравитации. И, насколько нам известно, такое может случиться лишь при наличии дополнительных измерений пространства. Достаточно лишь сказать, что существование более трех пространственных измерений может усилить гравитацию в очень малых масштабах, сделав возможным формирование маленьких черных дыр в результате столкновений в ускорителе БАК.
Таким образом, если нам удастся создать черную дыру с помощью БАК, мы получим доказательство того, что пространство имеет больше измерений, чем мы думали. Для ученого, стремящегося открыть новые захватывающие области физики, подобные новости кажутся фантастическими! Но, разумеется, было бы очень жаль, если бы крошечные черные дыры, которые мы пытаемся создать в ускорителе, могли вызвать распад вакуума и гибель Вселенной. К счастью, они на такое не способны. Мы уверены в этом настолько, насколько это вообще возможно для физиков. Во-первых, как мы уже говорили, энергия столкновения космических лучей намного превосходит все то, что мы наблюдаем в своих ускорителях частиц. Если даже мы можем сталкивать протоны для создания черных дыр, то Вселенная делала это бесчисленное количество раз, и, как видите, мы все еще здесь! Так что либо черные дыры нигде не возникают, либо они совершенно безвредны. Другая причина заключается в вероятном существовании порога значения массы, который должны преодолеть эти крошечные черные дыры, прежде чем они начнут представлять опасность хотя бы гипотетически.
Масса черных дыр, созданных коллайдером, была бы гораздо ниже этого уровня. И скорее всего, то же самое можно сказать о результатах большинства столкновений, происходящих в космосе. Чтобы доказать ограниченность размеров гипотетических дополнительных пространственных измерений, некоторые из нас уже приводили этот довод и указывали на то, что мы все еще живы. Как космологу, заинтересованному в тестировании различных физических теорий, мне нравится приводить в качестве одного из доводов отсутствие признаков космического апокалипсиса. Итак, если отвлечься от маленьких черных дыр, что можно сказать о распаде вакуума? Все остальные варианты гибели Вселенной, рассмотренные ранее, по крайней мере, предполагают такую отдаленность во времени, что все опасения по их поводу можно смело оставить постчеловеческим сущностям, которые будут населять космос после нас. Особенность распада вакуума заключается в том, что он может произойти в любой момент, даже если вероятность этого чрезвычайно мала. Кроме того, он предполагает тотальное разрушение Вселенной. В 1980 году два теоретика, Сидни Коулман и Фрэнк Де Луччиа, рассчитали, что пузырь истинного вакуума будет содержать не только элементарные частицы с совершенно иными и смертоносными свойствами, но и пространство, которое по своей природе гравитационно нестабильно.
По их словам, после образования пузыря все его содержимое коллапсирует в течение нескольких микросекунд. Вот что они написали: Это удручает. Вероятность того, что мы существуем в ложном вакууме, никогда не была особенно обнадеживающей. Распад вакуума представляет собой окончательную экологическую катастрофу; в новом вакууме будут действовать другие физические константы; после распада вакуума невозможной станет не только жизнь, какой мы ее знаем, но и привычная нам химия. Тем не менее всегда можно было утешиться мыслью о том, что со временем в новом вакууме может возникнуть если и не жизнь, какой мы ее знаем, то, по крайней мере, некие структуры, способные радоваться своему существованию. Теперь и эта возможность исключена. Радость неведения Распад вакуума — это относительно новая идея, которая опирается на множество экстремальных видов физики, так что за следующие несколько лет наш взгляд на нее, скорее всего, резко изменится. Возможно, благодаря более подробным и строгим вычислениям мы получим другие результаты. Все эти вопросы очень сложны, и до достижения консенсуса нам еще далеко.
Если мы признаем, что наш вакуум действительно является метастабильным, этот вывод может оказаться несовместимым с теорией космической инфляции. По нашим оценкам, квантовых флуктуаций на стадии инфляции и высокой температуры после нее должно было оказаться достаточно, чтобы спровоцировать распад вакуума в первые моменты существования космоса, что свело бы на нет наши шансы на существование. Очевидно, такого не произошло.
А не на истинном глобальном минимуме. Это похоже на то, как мяч, катящийся с холма, зацепляется за выступ, вместо того, чтобы пролететь полностью весь склон. То есть мяч этот условно стабилен.
Но имеет запас потенциальной энергии, не равный нулю относительно подножия холма. Таким образом, поле Хиггса демонстрирует ложный вакуум. То есть оно еще не заняло свою истинную точку с нулевой энергией. Точно так же, как требуется добавление энергии, чтобы сдвинуть мяч с уступа и позволить ему скатиться в долину, например, от удара ногой, может получить толчок энергии и поле Хиггса. Это выведет его из нахождения в состоянии локального минимума энергии и доведет до точки истинной нулевой энергии. Или состояния истинного вакуума.
Это и есть вакуумный распад. Энергетический толчок, необходимый для начала этого процесса, мог вполне произойти вблизи горизонта событий крошечных первичных черных дыр. И были даже опасения, что столкновения частиц с чрезвычайно высокими энергиями на Большом Адронном коллайдере могут вызвать этот самый вакуумный распад. При проведении, кстати, работ, по поискам бозона Хиггса как это иронично. Если первичные черные дыры настолько распространены, как предполагают некоторые теории, то маловероятно, что распад не произошел бы за время , прошедшее с момента их образования. Еще в очень и очень молодой Вселенной.
А еще Землю постоянно бомбардируют частицы космических лучей из глубин космоса. Некоторые из которых сталкиваются с частицами в нашей атмосфере с энергиями на порядки больше, чем те, что возможны при столкновениях в коллайдере. И если вакуумный распад при таких условиях был бы возможен, это уже давно бы произошло. Хотя это крайне маловероятно с точки зрения как времени, так и пространства, но если бы вакуумный распад произошел где-то возле Земли, мы абсолютно ничего не смогли бы с этим поделать. Скорее всего, мы бы просто ничего не почувствовали.
Это возвращает нас к вопросу, с которого мы начали: что лежит за нашим космическим горизонтом? То там, то здесь в ее толще случаются «большие взрывы», в которых распадается ложный вакуум и возникает область космоса, подобная нашей. Но инфляция никогда не закончится полностью, во всей Вселенной. Дело в том, что распад вакуума — вероятностный процесс, и в разных областях он случается в разное время. Выходит, Большой взрыв не был уникальным событием в нашем прошлом.
Множество «взрывов» случилось прежде и несчетное число еще произойдет в будущем. Этот никогда не кончающийся процесс называется вечной инфляцией. Можно попробовать представить, как бы выглядела инфлирующая Вселенная, если взглянуть на нее со стороны. Пространство было бы заполнено ложным вакуумом и очень быстро расширялось во все стороны. Распад ложного вакуума похож на закипание воды. То там, то здесь спонтанно возникают пузыри низкоэнергетического вакуума. Едва зародившись, пузыри начинают расширяться со скоростью света. Но они очень редко сталкиваются, поскольку пространство между ними расширяется еще быстрее, образуя место для все новых и новых пузырей. Мы живем в одном из них и видим только малую его часть. К сожалению, путешествия в другие пузыри невозможны.
Даже забравшись в космический корабль и двигаясь почти со скоростью света, нам не угнаться за расширяющимися границами нашего пузыря. Так что мы являемся его пленниками. С практической точки зрения каждый пузырь является самодостаточной отдельной вселенной, у которой нет связи с другими пузырями. В ходе вечной инфляции порождается бесконечное число таких пузырей-вселенных. Одна из впечатляющих возможностей — наблюдение за столкновением пузырей. Если бы другой пузырь ударился в наш, это оказало бы заметное воздействие на наблюдаемое космическое фоновое излучение. Проблема, однако, в том, что столкновения пузырей очень редки, и не факт, что такое событие случалось в пределах нашего горизонта. Удивительный вывод следует из этой картины мира: поскольку число вселенных-пузырей бесконечно и каждая из них неограниченно расширяется, в них будет содержаться бесконечное число областей размером с наш горизонт. У каждой такой области будет своя история. Под «историей» имеется в виду все, что случилось, вплоть до мельчайших событий, таких как столкновение двух атомов.
Ключевой момент состоит в том, что число различных историй, которые могут иметь место, — конечно. Как это возможно? Например, я могу подвинуть свой стул на один сантиметр, на полсантиметра, на четверть и так далее: кажется, что уже здесь таится неограниченное число историй, поскольку я могу сдвинуть стул бесконечным числом разных способов на сколь угодно малое расстояние. Однако из-за квантовой неопределенности слишком близкие друг к другу истории принципиально невозможно различить. Таким образом, квантовая механика говорит нам, что число различных историй конечно. С момента Большого взрыва для наблюдаемой нами области оно составляет примерно 10, возведенное в степень 10150. Это невообразимо большое число, но важно подчеркнуть, что оно не бесконечно. Итак, ограниченное количество историй разворачивается в бесконечном числе областей. Неизбежен вывод, что каждая история повторяется бесконечное число раз. В частности, существует бесконечное число земель с такими же историями, как у нашей.
Это значит, что десятки ваших дублей сейчас читают эту фразу. Должны существовать также области, истории которых в чем-то отличаются, реализуя все возможные вариации. Например, есть области, в которых изменена лишь кличка вашей собаки, а есть другие, где по Земле до сих пор ходят динозавры. Хотя, конечно, в большинстве областей нет ничего похожего на нашу Землю: ведь куда больше способов отличаться от нашего космоса, чем быть на него похожим. Эта картина может показаться несколько угнетающей, но ее очень трудно избежать, если признается теория инфляции. Но это необязательно должно быть так. Свойства нашего мира определяются набором чисел, называемых фундаментальными постоянными. Среди них Ньютонова гравитационная постоянная, массы элементарных частиц, их электрические заряды и тому подобное. Всего существует около 30 таких констант, и возникает вполне естественный вопрос: почему у них именно такие значения, которые есть? Долгое время физики мечтали, что однажды смогут вывести значения констант из некой фундаментальной теории.
Но существенного прогресса на этом пути достигнуто не было. Если выписать на листок бумаги значения известных фундаментальных постоянных, они покажутся совершенно случайными. Некоторые из них очень малы, другие велики, и за этим набором чисел не просматривается никакого порядка. Однако в них все же была замечена система, хотя и несколько иного рода, чем надеялись обнаружить физики. Значения констант, похоже, тщательно «подобраны» для обеспечения нашего существования. Это наблюдение получило название антропного принципа. Константы будто специально тонко настроены Творцом, чтобы создать подходящую для жизни Вселенную — это как раз то, о чем говорят нам сторонники учения о разумном замысле.
Международная группа ученых смогла получить первые экспериментальные подтверждения распада ложного вакуума. Их исследования были опубликованы в престижном журнале Nature Physics. Ложный вакуум - это состояние с низкой энергией, которое считается относительно стабильным, но может перейти в состояние с минимальной энергией, известное как истинный вакуум. Но такой переход затруднен из-за высокого барьера энергии.
Распад ложного вакуума
Впервые получены доказательства распада ложного вакуума - Hi-Tech | Речь идет о потенциальном процессе, известном как распад ложного вакуума. |
Впервые получены доказательства распада ложного вакуума | Автор ролика рассказывает о распаде ложного вакуума, как о спонтанном процессе, который может происходить как мгновенно так и постепенно. |
Смерть Вселенной из-за распада вакуума показали на видео
По этому сценарию расширение Вселенной со временем меняется на сжатие, и Вселенная коллапсирует, а в итоге схлопывается обратно в сингулярность. Это возможно, если плотность материи в космосе достаточно высока. Тогда её гравитация может преодолеть расширение. Разные учёные дают разные оценки того, когда может начаться эта фаза сжатия — через миллионы или миллиарды лет. Большой отскок. Есть ещё один вариант вышеупомянутой гипотезы. Он предполагает, что за несколько мгновений до того, как Вселенная схлопнется в бесконечно плотную сингулярность, она снова изменит курс и возобновит период расширения.
Однако реальная новость вновь заслоняется выдуманной: часто пишут, будто «Вояджер-2» и «Водяжер-1» покинули Солнечную систе… naked-science. Опыт проходил в среде с температурами в районе долей градуса выше абсолютного нуля. Однако он не касался вакуума в физическом смысле этого слова, в том числе потому, что происходил в среде, насыщенной атомами. Интересно, что сами ученые, написавшие эту работу для Nature Physics, достаточно однозначно пояснили, что речь идет именно о симуляции квантовых процессов, а не о них самих.
Том Биллам Tom Billam прокомментировал ее так: «Использование возможностей экспериментов с ультрахолодными атомами для симулирования квантовых физических процессов в других системах — в данном случае ранней Вселенной — крайне интересная область исследования в настоящий момент». Фейк: вторая Суперлуна в августе запустит разрушительные землетрясения на планете Российские СМИ массово пишут — причем ссылаясь на ученых, — что второе суперлуние этого августа в ночь на 31-е число вызовет серию разрушительных землетрясений. Однако с научной точки зрения реал… naked-science. Они осознают, что проводили симуляцию распада ложного вакуума и регистрировали именно эту симуляцию, а не реальный процесс. Ясно им и то, что если бы такое событие случилось в реальной жизни, оно стало бы последним в нашей истории.
Опубликовано видео, показывающее уничтожение Вселенной из-за распада вакуума 25. Соответствующее видео появилось на канале Kurzgesagt видеохостинга YouTube. Предположительно, наблюдаемый нами мир находится в ложном или истинном вакуумном состоянии.
Вокруг этого вопроса проводилось множество опытов, которые должны помочь космологам проверить множество теорий, связанных с формированием Вселенной. В частности, данная работа позволит в дальнейшем изучать роль квантовых флуктуаций. Исследователи смогли определить, каким образом формировались фазовые переходы в ранней Вселенной, среди которых процесс распада «ложного вакуума». Примечательно, утверждают в университете, что ученые занимаются изучением тайн наиболее горячей и плотной материи мироздания.
Ученые показали на видео процесс разрушения Вселенной из-за распада вакуума
Физики показали гибель Вселенной вследствие распада вакуума - ГТРК Удмуртия | На примере ферромагнитной жидкости жидкости итальянские физики смогли впервые экспериментально засвидетельствовать распад ложного вакуума в квантовом макроскопическом поле. |
Ученые получают доказательства распада ложного вакуума | 24.01.2024 | В Татарстане | Уже примерно неделю замечаю в СМИ новости про физиков, которые «увидели распад ложного вакуума». |
Новость №430: Излучение Хокинга спасло Вселенную от распада ложного вакуума | Пикабу | Если это ложный вакуум, то его самопроизвольный распад произойдет намного позже естественной смерти Солнца. |
Позитроны укажут на распад вакуума при столкновении тяжёлых ионов | Аннотация: На примере распада метастабильного состояния скалярного поля (конформный вакуум скалярных частиц над ложным классическим вакуумом). |
Открытие распада ложного вакуума: ученые получили доказательства | 24.01.2024 | Capital Sport | изучить квазиклассический метод вычисления вероятности распада ложного вакуума с помощью отскокового решения. |
Как распад вакуума может уничтожить Вселенную
На канале Kurzgesagt видеохостинга YouTube появился ролик, на котором ученые рассказали о возможном механизме уничтожения Вселенной, которое может произойти в результате распада ложного вакуума, передает со ссылкой на Видео: YouTube/Kurzgesagt Ученые наглядно показали, как распад ложного вакуума может уничтожить Вселенную. Результаты экспериментов соответствовали численным моделям и подтверждали, что распад ложного вакуума имеет квантово-механическую природу. Гибель Вселенной может наступить из-за распада так называемого ложного вакуума, гласит одна из научных теорий. Результаты эксперимента соответствовали численным моделям и подтверждали квантово-механическую природу распада ложного вакуума. Ложный вакуум (метастабильный вакуум[1]) — состояние в квантовой теории поля, которое не является состоянием с глобально минимальной энергией, а соответствует её локальному минимуму.