Это связано с тем, что нейросеть хоть и обладает интеллектом, но все же является программой, а потому нуждается в четких командах. В ближайшие годы ИИ сможет заменить профессии, связанные с работой с повторяющимися рутинными операциями. Промт-инженер знает, как получить доступ к нейросетям и взаимодействовать с ними через различные платформы и инструменты. Тенденция к большей заинтересованности рынка в гуманитариях со знанием ИИ, нежели в аналогичных навыках у программистов, может быть связана с относительной "молодостью" нейросети, считает генеральный директор EvApps Альфред Столяров.
Маркетолог назвал профессии, которые могут исчезнуть из-за нейросетей
ИИ вам в помощь: почему самозанятым нужно учиться работать с нейросетями | У нейросети спросили, какими будут профессии будущего. |
ИИ ищет работу: топ-10 профессий, которые исчезнут или изменятся из-за нейросетей | Искусственный интеллект и профессии: какие специальности, связанные с ИИ и нейросетями, ждет бурное развитие и высокий спрос. |
Нейросеть показала профессии будущего (фото)
Знания ложатся в голову гораздо быстрее, если понимаешь, как будешь применять их в своей будущей работе. На курс по нейросетям лучше идти уже с небольшой базой: будет достаточно тех знаний по математике, Python и SQL, которые вы изучали самостоятельно или в университете. Курсы помогут обновить и дополнить базу, чтобы двигаться к главному — Machine Learning и работе с искусственным интеллектом. Погружаемся в машинное обучение Зная методы линейной алгебры и владея языком программирования Python, вы можете строить модели анализа данных, которые помогают реальному бизнесу оптимизировать процессы и больше зарабатывать. Сначала вы получаете задачу: например, спрогнозировать отток клиентов в следующем месяце. Для решения этой задачи вам нужно собрать данные за прошлые периоды, очистить их, подготовить признаки, по которым модель будет работать с информацией, а затем построить и внедрить эту модель.
На выходе вы получите прогноз, который бизнес использует для построения стратегии маркетинга на следующий месяц, чтобы уменьшить отток — так специалист по big data сэкономит ему миллионы рублей. Именно поэтому спрос на специалистов по машинному обучению высокий: прибыль в разы перекрывает затраты на работу с большими данными. На курсе GeekUniversity после модуля про машинное обучение вы научитесь оценивать эффективность и повышать качество своих моделей анализа данных, а для закрепления знаний самостоятельно выполните курсовой проект на выбор: классификация людей с сердечно-сосудистыми заболеваниями, предсказание спроса на товар, предсказание стоимости акций или классификация отзывов в приложении. Все проекты — примеры реальных задач, которые вам предстоит решать в будущем в качестве специалиста по машинному обучению. Посмотрите большой вебинар о нейросетях и их использовании в жизни и бизнесе от GeekBrains: Введение в нейронные сети Понимая, как собирать и анализировать большие данные, вы можете работать с более сложными моделями и задачами.
Позже она получила сообщение от руководителей, что ChatGPT дешевле, чем использование ее услуг. Матиас Депфнер, гендиректор Axel Springer, куда входят Bild, Insider, Politico и Welt, прогнозирует , что ИИ вскоре сможет работать с информацией значительно лучше, чем люди. Однако по его словам, журналисты все равно будут нужны, чтобы понять «истинные мотивы» людей. Он призвал редакции уделять больше внимания эксклюзивным новостям, расследованиям, комментариям экспертов, которые пока не способны делать машины. Успех издателей будет зависеть от способности создавать такой оригинальный контент. Журналисты уже сейчас могут писать авторские колонки, репортажи и исследования, используя инструменты искусственного интеллекта для сбора и анализа данных. А также могут выбрать узкую специализацию и сосредоточиться на развернутой, глубокой журналистике, требующей критического мышления и человеческой мысли. Писатель На сайте Amazon появились книги, подписанные именем американского автора Джейн Фридман.
Однако писательница заявила, что они написаны искусственным интеллектом. Много моего контента является общедоступным для обучения моделей ИИ», — написала автор на собственном сайте. Ранее писательница создала несколько книг об издательской индустрии, и фальшивые книги довольно удачно имитировали ее произведения. Союз писателей и сценаристов Америки уже объявил забастовку. Авторы требуют правового регулирования искусственного интеллекта в дополнение к повышению зарплат. Если они заберут работу писателей, они заберут и работу всех остальных. Как вы знаете по фильмам, в конце работы обычно убивают всех», — говорит Миранда Берман. Дошло уже и до суда: 17 знаменитых писателей, среди которых и Джордж Р.
Мартин, подали групповой иск в суд Нью-Йорка. Авторы заявили, что OpenAI без разрешения копировала работы истцов и использовала защищенные авторским правом материалы для обучения языковых моделей. А это, по мнению писателей, ставит под угрозу прибыль и нарушает право на контроль над собственными произведениями. Графический дизайнер Генеративный искусственный интеллект может значительно повлиять на профессию графического дизайнера. Все мы видели, как инструменты генеративного ИИ — например, Dall-E и Midjourney — создают художественные или фотореалистичные изображения из текстовой подсказки. И здесь возникает множество вызовов и споров. Начиная от потери заказов, которые в будущем будет выполнять ИИ, и заканчивая защитой прав интеллектуальной собственности на настоящие произведения. Что можно посоветовать дизайнерам, чтобы не потерять работу из-за ИИ?
Первый шаг — оставаться впереди, быть в курсе последних разработок в сфере искусственного интеллекта, работать над сохранением навыков и опыта. Графические дизайнеры также должны сосредоточиться на развитии собственного уникального стиля и голоса, чтобы их работа выделялась и не могла быть легко воспроизведена машинами. И, как ни странно, использовать в собственной работе возможности ИИ, чтобы работать продуктивнее.
То же самое касается специалистов по Big Data, чья задача заключается в анализе огромного массива данных», — объяснил аналитик. Он добавил, что сегодня нужны эти профессионалы, в частности, в таких областях, как маркетинг, финансы и медицина. В сфере здравоохранения или банковского дела будут востребованы специалисты по машинному обучению, а профессионалы в области скриптинга будут участвовать в создании игр. Количество отказов на приглашения о работе после собеседований стало рекордным за последние восемь лет.
Нейросети можно использовать для улучшения SEO-оптимизации текстов, что может помочь улучшить позиции сайта в результатах поиска. Нейросети используют информацию из интернета, но она не всегда достоверная. Поэтому нейрокопирайтерам важно вычитывать тексты и проверять факты. А чтобы оценить, насколько нужно править сгенерированный ответ по стилю и структуре, специалисту всё так же нужны базовые навыки работы с текстом. Нейросеть пока не пишет хорошие длинные статьи и не может шутить или придавать тексту естественную эмоциональную окраску. Но она неплохо придумывает идеи и предлагает варианты текстов. Нейрокопирайтер обычно работает быстрее, чем простой автор. С помощью ИИ он может разобраться в сложной теме и собрать фактуру для статьи за 10—15 минут. Если качество при этом остаётся высоким, спрос на услуги таких специалистов только растёт.
Особенно нейрокопирайтеры будут востребованы там, где часто нужно писать много и быстро, например в маркетинге. AI-блогер Как появилась. Цифровые звёзды появились больше 20 лет назад: в 1998 году группа Gorillaz выпустила первые треки, а в 2007 году в Японии стала популярной виртуальная певица Хацунэ Мику. С 2021 года в медиапространство проникли инфлюенсеры, полностью сгенерированные искусственным интеллектом. В соцсетях AI-блогеры ведут полноценные блоги, например про путешествия или бьюти. Внешность им делают с помощью ИИ: получается сгенерировать не только «фотографии», но и 3D-модель с мимикой как у живого человека. Посты за AI-инфлюенсеров также пишут нейросети. Через два года команда стартапа Brud призналась, что это они создали «робота». Интерес к виртуальной селебрити не утих и продолжает расти до сих пор.
Девушка записывает треки, снимается в клипах и сотрудничает с мировыми брендами. Поклонники рады следить за жизнью любимого блогера, а компании — быть на одной волне с новым поколением. За AI-блогерами могут стоять не только отдельные люди, но и целые креативные агентства или бренды. Таких персонажей создают, чтобы привлечь внимание аудитории и получить дополнительные возможности для заработка на рекламе. В 2021 году телеканал «ТНТ» представил зрителям аватара Аню. У Ани были свои промоинтеграции в развлекательных шоу, популярные комики и ведущие записывали с ней ролики. А ещё Аня получила эпизодическую роль в сериале. AI-блогерам не нужны услуги визажистов, стилистов и прочих мастеров.
Что делают разработчики нейронных сетей: суть работы, обучение
Работа и вакансии "специалист по нейросетям" в Санкт-Петербурге | чем занимаются разработчики нейронных сетей и кто это такие, что нужно знать и уметь (обязанности). |
Эксперт назвал профессии, куда нейросети могут прийти уже в 2023 году | Анализ интернет-спроса на профессии, связанные с разработкой и ИТ, показал, что больше всего растет спрос на создание нейросетей (+1749%). |
Специалист по нейросетям: профессия промт-инженер | Специалист по нейронным сетям создает саму модель, помогает ей обучаться и следит за ее работой. |
5 профессий, которые появились благодаря искусственному интеллекту
Многие задачи, связанные с обработкой и анализом больших объемов данных, могут быть автоматизированы. Сначала нейросети пришли за художниками, дизайнерами, композиторами, теперь добрались и до нас — работников телевидения. Реже специалистов по нейросетям ищут в госсекторе, строительстве, логистике, здравоохранении и тяжелом машиностроении – по 1% вакансий. Почти половина руководителей российских компаний и начальников отделов фирм считают, что нейросети сумеют заменить специалистов нескольких профессий. Недавно телеканал RTVI захотел рассказать о профессиях будущего и обратился за помощью к нейросети MidJourney.
Погружаемся в машинное обучение
- 5 перспективных профессий в области искусственного интеллекта
- ИИ для переговоров и создания лекарств
- Восстание машин: как нейросети «вытесняют» людей из профессий
- Нейросеть составила список самых востребованных профессий будущего
- Новости по теме
- Треть российских соискателей полагает, что их профессию могут заменить нейросети
Как стать тренером нейросетей и почему сегодня это востребованная профессия
Нейросеть сделала это за 5 минут с хорошей ла локальные компании от глобальных, рассказала про количество производственных площадок. На модуле по Deep Learning студентов знакомят с продвинутыми технологиями по работе с нейросетями, например трансформерами — архитектурой нейронных сетей, которая лежит в основе ChatGPT. Современные профессии, которые они могут привести в этот мир, это: молекулярный биолог, нейробиолог, врач-невролог и нейрохирург, инженер (разрабатывающий искусственные нейронные сети), специалист по BigData, лингвист. В прошлый раз, неделю назад, мы обсуждали ChatGPT, нейросети, технические аспекты, нюансы этих механизмов. Развитие нейросетей в России создаст, в числе прочих, профессию специалиста по этике в сфере искусственного интеллекта (ИИ), также в вузах появятся профильные. Анастасией Абышевой.
ChatGPT отнимет у вас работу: нейросеть перечислила профессии в зоне наибольшего риска
В беседе с CNews Кирилл Чеханков , руководитель отдела ИТ-решений Konica Minolta Business Solutions Russia , отметил, что в последние годы нейросети стали более популярными в таких сферах, как медицина, финансовый сектор, телеком, наука и других. Вырос также спрос на сотрудников, которые умеют работать с нейросетями, растет. Навык работы с ChatGPT и другими площадками для доступа к нейросетям, в основном, нужен разработчикам, так как они работают с кодом и программами, которые используют эти платформы. Но он может быть полезен и для исследователей данных, аналитиков, специалистов по машинному обучению. Сеть помогает в подготовке контента по темам маркировки и устойчивого развития в бизнесе — а сегодня сложно найти и дорого нанять англоговорящих райтеров, которые могли бы свободно писать на такие сложные темы, отмечает эксперт.
Это очень полезно, например, когда нужно составить персонализированное письмо для клиента, пост в соцсетях, статью для блога или анонс для рекламного баннера. Более того, ChatGPT способен менять тон тексты в формальный или же, наоборот, в неформальный». Второе направление, где может пригодиться нейросеть — верхнеуровневая аналитика по рынку и компаниям. Так, можно быстро собрать информацию по необходимому рынку, найти список ключевых производителей рынка и многое другое, говорит Сидоренко.
Нейросеть сделала это за 5 минут с хорошей детализацией. Отделила локальные компании от глобальных, рассказала про количество производственных площадок. Более того, дальше можно детализировать запрос и узнать точную информацию по каждой компании — основные направления их ESG стратегии — и, возвращаясь к первому пункту, использовать это для создания персонализированных сообщений с упором на фокусы конкретной компании. Единственный минус — ChatGPT пока работает с информацией вплоть до 2021 г.
Последние 4 года, начиная с ковида, мы живем в таких реалиях, что много людей боятся настоящего. Это настоящее еще надо пережить. Читайте также: « 2023 — год нейросетей в SMM: учимся автоматизировать всё ». Как стать высокооплачиваемым SMM-специалистом в 2023 году Я вам скажу парадоксальный ответ: не быть SMM-специалистом в привычном понимании.
Объясню: простое ведение соцсетей стоит дешево. Это вопрос не нейросетей, а спроса и предложения. За годы существования SMM не стал в России дорогой и высокооплачиваемой нишей. Чтобы стать высокооплачиваемым SMM-специалистом, нужно очень хорошо понимать бизнес: его конкурентные преимущества, ценность.
Нужно говорить заказчику: «Я не про SMM, я знаю, как вырастить ваш бизнес — в продажах, подписчиках или других метриках». В России основная проблема: «Сделайте нам рост, но с очень малым бюджетом». Если вы умеете это делать и у вас есть хорошие кейсы, вы можете стоить бесконечно дорого. Особенно в таких нишах, как development.
Изучайте комьюнити-менеджмент — сейчас у бизнеса есть спрос на лояльное комьюнити вокруг бренда. Вам нужно: иметь действительно мощные работы в портфолио, как минимум больше 3-х кейсов; хорошо понимать суть бизнеса. Еще нужно уметь раскрутить себя. Согласитесь, странно, если вы SMM-специалист без личного бренда.
Когда вы это сделаете, то сможете работать на очень высоком чеке — все хотят работать с лучшими. Если вы ведете интересный блог с классными постами, вас рано или поздно купит крупный клиент за этот контент. Это история про то, что вы делаете это для себя, вам интересно, а потом этот труд монетизируется. В последние 2 года я стала писать меньше — примерно по посту раз в 3 дня.
Ни с каким выгоранием я не сталкивалась. Выгораете вы от низких расценок и оттого, что беретесь за то, что вам неинтересно. Например, можно взять 15 компаний, в которых SMM стоит по 15 тысяч рублей в месяц. В результате приходится писать большое количество неинтересных текстов на неинтересные темы за низкий прайс клиентам, которые еще и всю душу вынут.
По данным исследования, у российского бизнеса растёт интерес к работникам, понимающим как развивать, обслуживать и работать с нейросетями. Так, за неполные 11 месяцев 2023 года на сайте рекрутингового ресурса было размещено более 12,6 тысяч вакансий, в которых упоминался ИИ. При этом в целом на Северо-Западе страны бизнес опубликовал более 2,2 тыс. Испытывают спрос в подобных работниках СМИ, маркетинговые агентства, образовательные учреждения, сфера ретейла», - говорится в исследовании HeadHunter.
Николай Иронов для начала — это не одна нейросеть, это большое количество разных алгоритмов, наборов алгоритмов, которые работают в ансамбле между собой. Собственно, рождение Николая Иронова — это не рождение какой-то одной технологии генеративного дизайна.
Это рождение правильно срежиссированной комбинации технологий. И с момента рождения Николая, когда мы всем рассказали о том, что он существует, о том, что он выполняет дизайн задачи, его мозги пересобрались уже очень-очень много раз. И вот они сейчас снова в одном шаге от того, чтобы пересобраться с использование новых технологий, которые появились на рынке. Соответственно, дизайнеры, которые занимаются этим проектом, их задача заключается в том, чтобы правильные технологии объединить в правильный пайплайн — последовательность действий, когда результат одного алгоритма правильно передается правильный результат другому алгоритму, и вот так вот по этому конвейеру получается какой-то новый результат. Соответственно, дизайнеры Иронова проектируют примерный диапазон, изобразительный диапазон, учат его новым стилям, подключают к нему новые шрифты и так далее. И вот здесь мы упираемся в то, что задача дизайнера, она на самом деле и раньше была такой — применить какое-то изобразительное решение в правильный контекст.
Потому что поставщиками потребностей всегда были и будут люди. Соответственно, принять правильное решение, какой из десятков и даже сотен вариантов подходит лучше всего, - это была, есть и будет истинная работа дизайнера, потому что дизайн делается людьми, для людей. А сейчас, с появлением роботов, просто у нас появляется некоторая компонента, которая называется искусственным интеллектом, которая позволяет: а делать это масштабировано, то есть в больших масштабах, вместо трех вариантов логотипа выбирать из тысячи, б позволяет это делать непредсказуемо. Собственно, в этот все отличие от того, что сейчас называется искусственным интеллектом от алгоритмических каких-то результатов, в том, что мы часто получаем не вполне предсказуемый результат, и это очень похоже на то, как работает человек. Собственно, вот и вся разница. Но корневая суть работы дизайнера — она не поменялась.
Это было и есть подбор правильного варианта в правильные контексты. Гребенников: То есть определяет. Что красиво, сегодня дизайнер все еще, а не искусственный интеллект? Кулинкович: Да, но… У нас, например, есть отдельные технологии внутри Иронова, которые позволяют отбросить совсем плохие варианты. То есть такой примитивный арт-директор, скажем так. И он помогает не выгружать на конечного пользователя весь массив данных, которые слишком шероховатые, слишком смелые, а как бы делать такой скоринг дизайн-решений, чтобы финальное решение было в каком-то более-менее приличном диапазоне.
Поэтому мы все равно используем эти технологии, даже чтобы отсортировать какой-то большой массив выдачи, но финальное решение, конечно, принимает человек. Гребенников: А как вообще происходит постановка технического задания искусственному интеллекту? Предположим, я — маленькая пекарня во Владимирской области. Я приходу в вашу студию и говорю: «Хочу себе классный логотип, чтобы ко мне приходило не 2 000 человек в месяц, а 15 000 человек. Я считаю, что вся проблема моя в логотипе». Я говорю: «Хочу такой логотип, чтобы там был колосочек, хлебушек и круассанчик обязательно».
Вы же куда-то это загружаете. Как происходит процесс формирования технического задания? И потом как искусственный интеллект осознает, что мне нужно как конечному клиенту? Кулинкович: Начнем с того, что если вы предъявите задание живым людям, живым дизайнерам, то, скорее всего, если они будут достаточно с вами честны, то они скажут, что изменение логотипа не увеличит вашу выручку в 10 раз. Это первый момент. То есть если у вас была пекарня с плохим логотипом, а потом появляется некоторый бренд с хорошим логотипом, то едва ли это напрямую окажет влияние на ваши продажи.
Косвенно, возможно, при правильном стечении обстоятельств, правильно посеве, да. Но, скорее всего, это не является критерием хорошего логотипа. Второй момент заключается в том, что, если мы посмотрим на логотип пекарен и других каких-то бизнесов, связанных с хлебобулочными изделиями, там не всегда фигурируют колоски, не всегда фигурируют круассаны. А иногда это некий образ, визуальна интерпретация образа бизнеса, которая этим дизайнером и сделана. Соответственно, когда вы приходите в брендинговое агентство, где сидят живые люди, и они получают этот бриф, что еще происходит? Они его творчески интерпретируют.
Они смотрят, как выглядят булочные в этом городе, в округе, пытаются придумать что-то контрастное, что-то отличное от тех ребят, которые на той же улице торгуют круассанами. И, соответственно, они приходят с некоторыми дизайн-гипотезами, что кто-то решил, что это будет какой-то крестик красивый, в котором угадывается что-то такое. Кто-то решил пойти через концепцию семейности, семейного кафе, и вообще нарисовал сердечко, потому что вот «Приходите к нам. Мы вас любим». И все такое. А кто-то прошел напролом и начал рисовать конкретно круассан, фотореалистично и так далее.
И эти все подходы имеют право на жизнь, и в равнозначной степени вы можете получить такие варианты от живых людей. В случае с Ироновым человек, без участия людей, он заполняет бриф, описывает свою компанию. Дальше у нас отдельная система, нейросеть, она интерпретирует бриф, то есть она из текста брифа достает некоторые образы, которые могут подходить под визуальное представление этой компании, как она может быть представлена в виде какого-то емкого символа либо знака. И дальше это по такой цепочке передается, появляются эти визуализации этих образов, они обогащаются разными шрифтовыми комбинациями, дальше подключаются отдельные алгоритмы, которые подбирают цветовые сочетания комплиментарные. В общем, там сложная-сложная штука. Но по факту это точно то же самое, что происходит при работе с живым человеком.
То есть интерпретируется некоторый текстовый ввод, так же как к вам приходит человек и что-то говорит, и вы как-то это трансформируете. Мы все эти шаги условно творческих мытарств алгоритмизировали, перевели в какие-то отдельные процессы? И клиент на выходе получает опыт, очень сопоставимый с опытом общения с живым дизайнером. Только наш дизайнер не капризничает, не болеет. Коротнева: Не уходит в отпуск. Кулинкович Да, да, да.
Гребенников: Скажите, а стоимость разработки логотипа… Логотип, предположим, я пришел за логотипом, искусственным интеллектом и обычным дизайнером в студии Артемия Лебедева отличается? Есть какой-то прайс на искусственный интеллект и обычного дизайнера? Кулинкович: Да, конечно, отличается. Когда вы приходите лично в брендинговое агентство или дизайн-студию, помимо непосредственного конечного дизайнера, который сидит и визуализирует ваш логотип, в это вовлечено очень много людей на самом деле. Это юристы, которые помогают составлять договор; менеджеры, которые позволяют клиенту и дизайнеру услышать друг друга, перевести с одного языка на другой, и много-много всего. Соответственно, когда вы работаете с живыми людьми, чаще всего дизайн — это операционный процесс, где клиент хочет, чтобы его услышали и некоторое врем поиграли с ним вот в эту игру «Согласование видения», да?
Это все умножается на стоимость часов специалиста. И разные компании, конечно, по-разному, диапазон очень большой, но он может доходить до очень больших сумм. То есть если вы просто придете в большую дизайн-компанию, то разработка логотипа с нуля, где вас будут слышать, слушать долго и до победного, она может быть супердорогой, неподъемно дорогой для малого и среднего бизнеса. Поэтому Иронов и другие генеративные технологии — это не просто про скорость, это про такую демократизацию дизайна, что если у вас не слишком много денег для того, чтобы играть во все эти чаепития и подписания договоров дорогостоящее, то вы можете пойти и получить из коробки сопоставимый по качеству результат. Просто процесс будет происходить несколько иначе. Вам нужно будет принять, что ваши какие-то правки и пожелания интерпретируются не прямым методом, а косвенным, в результате работы некоторых алгоритмов.
Там могут быть шероховатости, а могут быть, наоборот, источники классных открытий в результате этого. Гребенников: Вот вы говорите про открытия. А бывало так, что пришли две разные компании, диапазон полгода-год, и искусственный интеллект выдал одинаковый логотип на совершенно разные задачи, которые перед вами ставили? Такое происходит и с живыми людьми, то есть можно увидеть очень много примеров того, как дизайнеры думают похоже, скажем так. Гребенников: Назовем это так, хорошо. Кулинкович: Ну да.
Просто на самом деле очень часто, когда у вас большой объем работы, вы сделали 1 000 логотипов, наивно полагать, что в мире все ваши логотипы абсолютно аутентичны, потому что каждый день в мире сотни и тысячи дизайнеров генерят новые логотипы, а набор примитивов, из которых логотипная графика состоит, он довольно ограничен, потому что есть базовые формы: треугольник, прямоугольник, квадрат и так далее, которые так или иначе комбинируются. Если мы говорим условно, что даже у стран, которых ограниченное количество, есть очень похожие флаги, которые можно часто путать друг с другом, что уж говорить про логотипы, которых сотни тысяч генерируется каждый год. Соответственно, мы видим, что действительно могут появляться одинаковые работы, как у живых людей, так и нейросеть может генерировать одинаковые работы, и мы в этом не видим проблемы, потому что это было долгое время ранее. Если где-то в Сингапуре еще существует похожая птицефабрика с таким же крестиком, таким же цветом и с таким же соотношением сторон исполнен, то едва ли эти бизнесы будут друг друга локтями толкать. Поэтому мы на это смотрим совершенно нормально компенсируем это объемом, то есть проблема плагиата существенна, когда у вас стоимость каждой итерации очень большая, а дизайнер уходит на следующую итерацию, неделю молчит, пыхтит и так далее. Но когда вы можете еще одним щелчком сгенерировать еще 100 альтернатив, то, в целом, это перестает быть проблемой.
Но я предлагаю переходить от проекта Николай Иронов к другим генеративным технологиям, потому что летом прошлого года буквально весь интернет взорвала сеть Midjourney, которая создавала крутые классные визуальные картинки, и все были в полном восторге. Но вместе с этим восторгом действительно возник вопрос о том, что «Зачем мне условно в штате держать дизайнера, если я могу загрузить свой достаточно вариант брифа, и нейросеть выдаст мне несколько классных вариантов: совершенно удивительных и визуально привлекательных. Сергей, давайте поговорим немножко про это. Во-первых, как вы думаете, какие перспективы развития у этих нейросетей? Насколько действительно хорошо они генерируют визуальные изображения, и какие риски это несет для творческих профессий? Кулинкович: Спасибо за вопрос.
Поскольку возможна какая-то профдеформация, и мы довольно давно находимся от в этой области генеративного дизайна. Просто сейчас из-за того, что искусственный интеллект как понятие тиражируется и как-то ассоциируется с нейросетевыми технологиями, и это сейчас на всех полосах газет и всяких изданий, на это все прожекторы устремлены, на самом деле генеративный дизайн существовал ранее просто в других жанрах. И он как тогда, так и сейчас создавая новые возможности, новые рабочие места, то есть сейчас есть отдельные ребята, которые используют эту технологию для того, чтобы решать подобные задачи за деньги. Midjourney и другие ребята, они создают под себя, как Иронов, который создал новый рынок, который мы сделали, так и другие ребята. Они берут и просто используют это как инструмент. Раньше инструментом была кисть, к которой просто нужно было применить к ней механическое какое-то воздействие, и сколько-то лет опыта.
Но, в целом, она выдавала такие же результаты. Сейчас вместо этой кисти что-то другое. Завтра будет еще что-то другое. Но, в целом, какого-то такого слома я не наблюдаю. Просто появилась новая возможность делать то, что раньше требовало большого количества часов, быстро.
«Подстегнуть людей к развитию»: доцент ИТМО — о замещении профессий нейросетями и возможностях ИИ
Здесь вы узнаете про профессию специалиста по нейросетям, как пройти курсы, и сколько они зарабатывают! Наша гипотеза состояла в том, что скорее всего именно эти профессии нейросеть вряд ли заменит. Профессия требует не только применять нейросети, но также строить и обучать модели для новых задач. «Cпециалист по нейросетям: профессия промт-инженер» – это большая программа повышения квалификации. Представители новой профессии обучают нейросеть YaLM 2.0 (она же YandexGPT), чтобы та отвечала на вопросы «не хуже людей, разбирающихся в теме».
Профессии, связанные с нейросетями: какой бывает работа будущего и как на нее устроиться
Найдите работу "специалист по нейросетям" В нашей базе бесплатно доступны 35 100 вакансий в Санкт-Петербурге. В прошлый раз, неделю назад, мы обсуждали ChatGPT, нейросети, технические аспекты, нюансы этих механизмов. В этой статье я расскажу мои предположения о перспективных профессиях будущего, связанных с новыми достижениями в области искусственного интеллекта. Нейросеть выдаёт ответ, но не учитывает нововведения, которые появились в последние годы.