При этом сейчас появляется всё больше профессий, связанных с созданием и обслуживанием нейросетей. — Какие профессии заменят нейросети? 19 реальных примеров! — Заменит ли ИИ специалистов этих профессий на 100%?
Маркетолог назвал профессии, которые могут исчезнуть из-за нейросетей
Ввод данных — это рутинная и трудоемкая задача, которую можно автоматизировать с помощью систем ИИ. Такой тип работы предполагает ввод больших объемов данных в компьютерную систему. Эта работа может быть выполнена намного быстрее и точнее с помощью ИИ. Специалисты по телемаркетингу. Телемаркетинг включает в себя повторные звонки потенциальным клиентам и является еще одной задачей, которую можно автоматизировать с помощью ИИ. Системы искусственного интеллекта можно запрограммировать на совершение звонков и общение с потенциальными клиентами, что устраняет необходимость в привлечении людей.
Midjourney Служба поддержки клиентов. Системы искусственного интеллекта можно запрограммировать для обработки простых запросов в службу поддержки клиентов, таких как ответы на вопросы о продуктах и услугах. Этот тип работы часто включает однотипные задачи и может быть автоматизирован с помощью ИИ, что снижает потребность в представителях службы поддержки клиентов. Что касается копирайтеров и программистов, то эти профессии с меньшей вероятностью будут непосредственно затронуты искусственным интеллектом в краткосрочной перспективе. Хотя системы ИИ можно использовать для создания простого текста, такого как описание продуктов, ИИ по-прежнему сложно сравниться с творческими нюансами текстов, написанных людьми.
Копирайтинг часто требует глубокого понимания человеческого поведения и эмоций, что в настоящее время трудно воспроизвести системам ИИ. С другой стороны, программирование включает узкоспециализированные задачи, требующие передовых технических навыков. Хотя системы ИИ можно использовать для автоматизации некоторых аспектов разработки программного обеспечения, таких как генерация кода, они еще не способны воспроизвести сложные навыки решения проблем и критического мышления, необходимые для большинства задач в области программирования.
Ломоносова возможность подготовить по-настоящему современных специалистов в области цифровых медиа и коммуникаций. Александр Крайнов, директор по развитию технологий искусственного интеллекта в Яндексе Медиа — среди отраслей, в которых открываются самые большие возможности, связанные с генеративным ИИ. Появляются новые профессии как в самой медиаотрасли, так и на стыке с другими областями, например с Data Science. И мы стараемся помочь эти возможности найти и раскрыть. Совместная программа с МГУ — очередной шаг в этом направлении. Пройти обучение могут выпускники бакалавриата любых направлений.
Для поступления нужно сдать вступительный экзамен, проверяющий знания по теории медиа, медиаэкономике и медиаменеджменту, социологии медиа и другим сферам медиакоммуникаций.
Сегодня поговорим о нейросетях в творчестве, в дизайне и в генерации креатива. Сергей, как ты оцениваешь, насколько реален риск того, что дизайнеры и художники потеряют свою работу и свою востребованность? Гребенников: Смотри, мне кажется, что мы в прошлый раз эту тему даже активно начали обсуждать и делали такой мостик к сегодняшней теме. Я уже даже озвучивал, что в 2022 году все визуальные материалы к премии Рунета были так или иначе созданы с помощью искусственного интеллекта. При этом мы все равно в 2022 году использовали ровно ту команду дизайнеров, которую использовали на протяжении предыдущих лет. Поэтому говорить о том, что искусственный интеллект вдруг сделает так, что мы перестанем нуждаться в дизайнерах, мне кажется, это неправда. Но я предлагаю все-таки поговорить с настоящим экспертом в этой теме. Представишь нашего гостя? Сергей, здравствуйте.
Спасибо, что нашли время. Спасибо, что подключились. Кулинкович: Привет-привет! Коротнева: Ну что, я начну мучить вопросами Сергея? Гребенников: Конечно, конечно. Коротнева: Сергей, вы… ваша студия — одна из первых, кто начали работать с искусственным интеллектом, еще до того, как это стало повсеместно, до того, как это стало мейнстримом. В 2019 вы запустили ваш проект Николай Иронов, правильно? Кулинкович: Полагаю, что да. Но разрабатывать мы его начали гораздо раньше, но в секретном режиме, никому об этом не рассказываем. Пока не понимаем, что из этого выйдет, мы помалкиваем.
Коротнева: Ну вот расскажите, как тогда еще, почти 5 лет назад, когда, в принципе, о генерации визуального контента искусственны интеллектом говорили очень мало и редко, почему вы пошли на это? Вы тогда уже понимали, что за этим будущее или это был какой-то эксперимент? Или для чего это было создано? Кулинкович: На самом деле это такая череда счастливых случайностей, потому что исторически мы занимались дизайном много лет, и у нас была сильная техническая экспертиза, и все начиналось с сайтов и разработки всяких систем технически сложных, то есть не только чисто графический дизайн в каком-то виде. И, соответственно, у нас в команде были ребята, которые не только делают дизайн, но еще и программируют. И о мере роста количества дизайн-задач мы начали замахиваться на задачи по автоматизации. Там сверстать 100 каких-нибудь шаблонов чего-либо или еще что-то автоматизировать. Мы привлекали ребят из вот этой части, которая связана с программированием. Вот, но потом в какой-то момент, когда мы автоматизировали все, что можно было автоматизировать из области рутинного дизайна, мы просто в рамках эксперимента подумали: «А что если замахнуться на то, что люди называют творчеством, на творческую часть дизайна? И мы начали этим заниматься и постепенно слой за слоем начали снимать какие-то покровы с того, что называется творчеством, то, что мы сами считали творчеством.
И к нашему удивлению, мы обнаружили, что очень много из этого может быть автоматизировано. И даже хуже — не для всего нужны нейросети. Не для всего того, что люди называют творчеством, нужно использовать нейросеть и то, что называется искусственный интеллект. Так и закрутилось. Мы начали делать эксперименты, и со временем результаты этих экспериментов стали по качеству своему сопоставимы с результатами живых дизайнеров, то, что графика начинала выглядеть непредсказуемо свежо. И дальше случилось так, как должно было случиться, - родился Николай Иронов. Гребенников: Сергей, а вот после того, как появился проект Николай Иронов, количество дизайнеров у вас в студии стало больше или меньше? Кулинкович: Сложно сказать. Скорее, не изменилось. Как вы ранее говорили, что количество дизайнеров не меняется, но меняется суть их работы.
То есть у нас помимо дизайнеров появились еще люди, которые обслуживают мозги Николая Иронова. Ну как обслуживают? Развивают и разрабатывают новые технологии, и в том числе дизайнеры, которые режиссируют эти технологии. То есть здесь главная дизайн-задача раньше была в том, чтобы создать непосредственно конечный объект дизайна, а сейчас она плавно трансформировалась в то, чтобы создать ту систему, способную масштабировано производить большое количество экземпляров арт-дизайна. Но дизайн-задачи остались теми же, просто они немного трансформировались, и плечо получается больше. То есть объем дизайнеров тот же, но эффективность их несопоставимо больше, потому что это масштабируется. Коротнева: Я правильно понимаю, что дизайнер, человек, выполняет творческую функцию, придумывает общий концепт, а уже Николай Иронов, ваш проект, он это все масштабирует и просто пропечатывает в огромном количестве? Или это не совсем так работает? То есть дизайнер — это мозги и творчество, а нейросеть — это условно руки, руки и механизмы? Кулинкович: Все сложно.
Давайте обрисую, в целом, систему. Николай Иронов для начала — это не одна нейросеть, это большое количество разных алгоритмов, наборов алгоритмов, которые работают в ансамбле между собой. Собственно, рождение Николая Иронова — это не рождение какой-то одной технологии генеративного дизайна. Это рождение правильно срежиссированной комбинации технологий. И с момента рождения Николая, когда мы всем рассказали о том, что он существует, о том, что он выполняет дизайн задачи, его мозги пересобрались уже очень-очень много раз. И вот они сейчас снова в одном шаге от того, чтобы пересобраться с использование новых технологий, которые появились на рынке. Соответственно, дизайнеры, которые занимаются этим проектом, их задача заключается в том, чтобы правильные технологии объединить в правильный пайплайн — последовательность действий, когда результат одного алгоритма правильно передается правильный результат другому алгоритму, и вот так вот по этому конвейеру получается какой-то новый результат. Соответственно, дизайнеры Иронова проектируют примерный диапазон, изобразительный диапазон, учат его новым стилям, подключают к нему новые шрифты и так далее. И вот здесь мы упираемся в то, что задача дизайнера, она на самом деле и раньше была такой — применить какое-то изобразительное решение в правильный контекст. Потому что поставщиками потребностей всегда были и будут люди.
Соответственно, принять правильное решение, какой из десятков и даже сотен вариантов подходит лучше всего, - это была, есть и будет истинная работа дизайнера, потому что дизайн делается людьми, для людей. А сейчас, с появлением роботов, просто у нас появляется некоторая компонента, которая называется искусственным интеллектом, которая позволяет: а делать это масштабировано, то есть в больших масштабах, вместо трех вариантов логотипа выбирать из тысячи, б позволяет это делать непредсказуемо. Собственно, в этот все отличие от того, что сейчас называется искусственным интеллектом от алгоритмических каких-то результатов, в том, что мы часто получаем не вполне предсказуемый результат, и это очень похоже на то, как работает человек. Собственно, вот и вся разница. Но корневая суть работы дизайнера — она не поменялась. Это было и есть подбор правильного варианта в правильные контексты. Гребенников: То есть определяет. Что красиво, сегодня дизайнер все еще, а не искусственный интеллект? Кулинкович: Да, но… У нас, например, есть отдельные технологии внутри Иронова, которые позволяют отбросить совсем плохие варианты. То есть такой примитивный арт-директор, скажем так.
И он помогает не выгружать на конечного пользователя весь массив данных, которые слишком шероховатые, слишком смелые, а как бы делать такой скоринг дизайн-решений, чтобы финальное решение было в каком-то более-менее приличном диапазоне. Поэтому мы все равно используем эти технологии, даже чтобы отсортировать какой-то большой массив выдачи, но финальное решение, конечно, принимает человек. Гребенников: А как вообще происходит постановка технического задания искусственному интеллекту? Предположим, я — маленькая пекарня во Владимирской области. Я приходу в вашу студию и говорю: «Хочу себе классный логотип, чтобы ко мне приходило не 2 000 человек в месяц, а 15 000 человек. Я считаю, что вся проблема моя в логотипе». Я говорю: «Хочу такой логотип, чтобы там был колосочек, хлебушек и круассанчик обязательно». Вы же куда-то это загружаете. Как происходит процесс формирования технического задания? И потом как искусственный интеллект осознает, что мне нужно как конечному клиенту?
Кулинкович: Начнем с того, что если вы предъявите задание живым людям, живым дизайнерам, то, скорее всего, если они будут достаточно с вами честны, то они скажут, что изменение логотипа не увеличит вашу выручку в 10 раз. Это первый момент. То есть если у вас была пекарня с плохим логотипом, а потом появляется некоторый бренд с хорошим логотипом, то едва ли это напрямую окажет влияние на ваши продажи. Косвенно, возможно, при правильном стечении обстоятельств, правильно посеве, да. Но, скорее всего, это не является критерием хорошего логотипа. Второй момент заключается в том, что, если мы посмотрим на логотип пекарен и других каких-то бизнесов, связанных с хлебобулочными изделиями, там не всегда фигурируют колоски, не всегда фигурируют круассаны. А иногда это некий образ, визуальна интерпретация образа бизнеса, которая этим дизайнером и сделана. Соответственно, когда вы приходите в брендинговое агентство, где сидят живые люди, и они получают этот бриф, что еще происходит? Они его творчески интерпретируют. Они смотрят, как выглядят булочные в этом городе, в округе, пытаются придумать что-то контрастное, что-то отличное от тех ребят, которые на той же улице торгуют круассанами.
И, соответственно, они приходят с некоторыми дизайн-гипотезами, что кто-то решил, что это будет какой-то крестик красивый, в котором угадывается что-то такое. Кто-то решил пойти через концепцию семейности, семейного кафе, и вообще нарисовал сердечко, потому что вот «Приходите к нам. Мы вас любим». И все такое. А кто-то прошел напролом и начал рисовать конкретно круассан, фотореалистично и так далее. И эти все подходы имеют право на жизнь, и в равнозначной степени вы можете получить такие варианты от живых людей. В случае с Ироновым человек, без участия людей, он заполняет бриф, описывает свою компанию. Дальше у нас отдельная система, нейросеть, она интерпретирует бриф, то есть она из текста брифа достает некоторые образы, которые могут подходить под визуальное представление этой компании, как она может быть представлена в виде какого-то емкого символа либо знака.
Изменения профессионального ландшафта ждать не заставят, на трансформацию потребуется 5—10 лет, считают участники опроса, который проходил с 10 по 27 марта 2023 года. В нем приняли участие 2,4 тыс.
Будущее SMM-специалистов в эпоху нейросетей: интервью с хантером Аленой Владимирской
Вот небольшая часть того, чем я могу помочь: 1. Создание уникальных рефератов 3. Качественный перевод статей, постов 4. Описание карточек товаров на маркетплейсах 5.
Сфера AI получила такое развитие только тогда, когда крупные компании увидели в этом перспективу. Нейросети помогают захватывать новые рынки, привлекать аудиторию. Поиск Google и Яндекс долгое время был построен на солидных, классических технологиях. Нейронные сети появились здесь совсем недавно.
Сначала это были алгоритмы, потом — эвристики с подобранными параметрами, потом — какие-то простые ML-вещи. Нейросетей долго не было, потому что отвечать на запросы пользователей с их помощью сильно дороже, чем с помощью классических решений. А в поиске время ответа важно. Раньше нужно было потратить год работы команды из ста человек, чтобы улучшить пользовательский опыт на пару процентов. С приходом нейросетей оказалось, что можно увеличить показатели качества на те же два процента, если в течение месяца обучать алгоритм. Стало ясно, что в это выгодно вкладываться. За годы работы крупные компании — Google, Microsoft, Яндекс — накопили много данных.
Они начали тренировать на этих данных большие нейросети, чтобы решить множество внутренних и внешних задач. Пару лет назад «Яндекс» запустил нейросеть «Балабоба». Технология позволяла решать различные задачи, связанные с текстами. Это выглядело как простой сервис для генерации текстов, но технология позволила решать разные прикладные задачи внутри компании — без сбора больших датасетов и привлечения разработчиков. Это очень прикладные вещи: иногда нужно переписать формулировки, иногда найти в объявлении контактную информацию. Затратив пару месяцев работы команды, можно не просто увеличить показатели счастья юзеров, но и сразу решить целую пачку проблем на нескольких проектах. Вот такой странноватый анекдот сочинила нейросеть «Балабоба» Благодаря вложениям больших компаний на рынке стали появляться результаты работы разработчиков нейросетей.
Сейчас люди успешно пишут письма и дипломы с помощью ChatGPT, генерят картинки с помощью StableDiffusion и делают потрясающие аватарки в Lensa или Prisma. Пользователи любят с их помощью менять и стилизовать изображения. Я тоже пользуюсь этой технологией: у меня на аватарке стоит картинка, сгенерированная нейросетью. Трудно сказать, почему это так популярно. Но факт остается фактом: в этой области все еще много стартапов, которые легко привлекают инвестиции. Моя аватарка после обработки нейросетью Вклад разработчиков в развитие нейросетей Время от времени кто-то из разработчиков предлагает классные идеи и сам же воплощает их в жизнь — в рамках коммерческого проекта или просто в виде домашнего задания. В 2016 году люди, работающие с текстами, стали пользоваться моделью, которую популяризовал Андрей Карпатый — сейчас очень известный специалист.
Он написал один из популярных постов про рекуррентные нейронные сети. Все кинулись искать полезное применение этой технологии. Модель была маленькая, она не позволяла решать много задач, но люди вдохновились. Вклад Карпатого в генерацию текстов огромный. Он популяризовал неизвестную технологию, привлек широкий круг разработчиков. Те стали генерировать идеи, проверять гипотезы и заметно продвинули отрасль вперед. Видео Карпатого про языковое моделирование Опенсорс дает большой вклад в развитие ML.
Популярнейший фреймворк машинного обучения PyTorch для языка Python — полностью опенсорсный продукт. Известная библиотека для машинного обучения TensorFlow — изначально внутренняя библиотека Google, которую компания со временем перевела в опенсорс, и с тех пор ее развивает комьюнити. Среди контрибьюторов все еще много людей из Google, но влияние комьюнити велико. Такими опенсорсными проектами пользуются абсолютно все, кто занимается обучением нейросетей и применяет их в своих проектах. Если разработчик делает коммиты в PyTorch, это классная строчка в его резюме — он сделал полезный вклад для всего сообщества. Поэтому разработчики заинтересованы в том, чтобы контрибьютить в громкие опенсорсные проекты. Важный вклад делают журналисты и блогеры в мире науки, которые занимаются пересказом статей, рассказывают аудитории, какова была изначальная идея, как она менялась.
Для этого и нужны AI-тренеры. На вакансию обычно откликаются филологи, лингвисты, историки, педагоги, психологи, журналисты, копирайтеры Источник: Дарья Пона Выпускница филфака Александра Лапина, окончив вуз, работала в газете, потом в интернет-издании — писала статьи о здоровье, дальше были пресс-службы и отдел продвижения в крупной медицинской сети. Последние полгода, кроме рекламных стратегий, Саша разрабатывала скрипты для чат-бота колл-центра клиники — обучала робота отвечать на вопросы пациентов и записывать их на прием к врачу. В этот момент она наткнулась в интернете на вакансию AI-тренера.
В описании говорилось, что это специалист, который разрабатывает примеры текстов для обучения нейросети, а потом оценивает ответы и помогает ей совершенствоваться — кто-то вроде репетитора для машины. Саша отправила свое резюме и прошла конкурсный отбор на должность руководителя AI-тренеров. Скоро месяц, как Александра работает шефом в редакции Алисы. То есть в общих чертах я представляла себе, насколько это кропотливая и монотонная работа — обучать искусственный интеллект.
Мы прослушивали телефонные разговоры, сами звонили на демо-стенд, разговаривали с ботом с акцентами, не выговаривали слова. В итоге проект был воплощен и сейчас работает. Вакансия AI-тренера появилась в тот момент, когда я начала размышлять, куда расти и какие вообще есть перспективы. Идея понравилась мне тем, что это реально будущее, которое восхищает.
И ты можешь стать его частью. В переводе «крауд» — это толпа. Редакция Алисы, в которую встроена команда Саши, учит нейросеть говорить. AI-тренеры готовят для нее примеры ответов, безупречных с точки зрения этики, языка, пользы, достоверности и безопасности.
Нужно быстро разбираться в незнакомых темах — от алгебры до поэзии, критически мыслить и отличать достоверные источники информации от «мусорных». Попасть на работу сложно, нужно пройти серьезное тестовое задание и собеседования. Ценные навыки, которые пригодятся репетитору машин — очень быстро разбираться в незнакомых темах и отличать достоверные источники информации от фейковых Источник: Дарья Пона — Сначала ты откликаешься на вакансию, работодатель смотрит твое резюме, — рассказывает Саша. Это пять автотестов: по русскому языку, этике, безопасности, фактчекингу и ранжированию.
Базовые принципы выполнения работ объясняются в инструкции, есть пара референсов, которые помогают понять логику решения. Если ты прошел автотест, тебя просят написать три текста на разные темы. Обязательно есть «умный вопрос», где надо разобраться в наукоемком материале. Когда я получила задание, мне пришлось перечитать его раза три.
Из всех слов, которые я там увидела, были понятны только предлоги. Я пошла искать информацию, читать, слушать лекции. Вроде бы получилось понятно. Следующий вопрос — чувствительный.
К ним относится медицина, религия, национальный вопрос, деньги, психологические проблемы, вопросы манипуляции, например, как заставить парня сделать тебе предложение.
Нейронные сети еще в 2022 году научились составлять новостные сводки", - сказал Роман Губанов. Однако, по мнению специалиста, ИИ еще несовершенен и будет развиваться многие годы. Подписывайтесь одним нажатием! Если у вас есть тема, пишите нам на WhatsApp:.
Как стать специалистом по нейросетям?
Его задачи - предотвращать киберпреступления и кибертеррористические атаки, создавать защищенную архитектуру пользования данными. По мнению эксперта, ценность таких профессионалов будет только расти. За нейропилотированием будущее, направление развивается параллельно с БЛА. Искусственный интеллект полагает, что нейропилоты-профессионалы умеют управлять БЛА с помощью мозговых импульсов, а потому должны отличаться стрессоустойчивостью и самоконтролем. Это химик, инженер и эколог в одном лице.
В его специализацию входит обработка письменной или устной речи, используемой для обучения ИИ. Именно от него зависит, насколько успешным и вообще возможным будет общение пользователя с тем же ChatGPT, онлайн-переводчиком или примитивным чат-ботом. Специалист по этике.
Морально-нравственные принципы важны даже для искусственного интеллекта. Особенно, если нейросеть учится сама, используя данные из интернета. Разработчик интегральных микросхем или инженер-микроэлектронщик. Пожалуй, самая сложная профессия, и чисто «техническая». Но — фундаментальная, без которой не имеют смысла все остальные. Нет ИИ-чипа — нет и самой сети. Как получить профессию Независимо от выбранной специальности, профессии нужно учиться.
Сегодня есть три варианта: Самостоятельное обучение. Не всегда, но практика показывает — талантливые самоучки достигают больших успехов. Но для достижения должного уровня придется стараться намного больше, чем при обучении где-либо, самостоятельно разрабатывать систему обучения. Самоконтроль, целеустремленность, эффективное планирование времени — все это нужно при самостоятельном обучении. Надежный вариант для тех, кто желает освоить профессию с нуля. Но современные программы не всегда предлагают то, что нужно. Впрочем, освоить языки программирования и получить нужные навыки возможно.
Производственные рабочие. Системы искусственного интеллекта можно использовать для автоматизации производственных задач, таких как работа на сборочном конвейере. Этот тип работы часто включает в себя повторяющиеся задачи, которые могут быть выполнены более эффективно и точно с помощью ИИ, что снижает потребность в людях.
Технические писатели. Искусственный интеллект угрожает профессии технического писателя, потому что многие задачи, связанные с написанием технических документов, инструкций и справочных материалов, могут быть автоматизированы с помощью ИИ. Искусственный интеллект может анализировать большое количество данных и формировать документы быстрее и точнее, чем человек.
Это значит, что в будущем технические писатели могут столкнуться с уменьшением спроса на свои услуги. Специалисты по вводу данных. Ввод данных — это рутинная и трудоемкая задача, которую можно автоматизировать с помощью систем ИИ.
Такой тип работы предполагает ввод больших объемов данных в компьютерную систему. Эта работа может быть выполнена намного быстрее и точнее с помощью ИИ. Специалисты по телемаркетингу.
Телемаркетинг включает в себя повторные звонки потенциальным клиентам и является еще одной задачей, которую можно автоматизировать с помощью ИИ.
С помощью ИИ он может разобраться в сложной теме и собрать фактуру для статьи за 10—15 минут. Если качество при этом остаётся высоким, спрос на услуги таких специалистов только растёт. Особенно нейрокопирайтеры будут востребованы там, где часто нужно писать много и быстро, например в маркетинге. AI-блогер Как появилась. Цифровые звёзды появились больше 20 лет назад: в 1998 году группа Gorillaz выпустила первые треки, а в 2007 году в Японии стала популярной виртуальная певица Хацунэ Мику. С 2021 года в медиапространство проникли инфлюенсеры, полностью сгенерированные искусственным интеллектом.
В соцсетях AI-блогеры ведут полноценные блоги, например про путешествия или бьюти. Внешность им делают с помощью ИИ: получается сгенерировать не только «фотографии», но и 3D-модель с мимикой как у живого человека. Посты за AI-инфлюенсеров также пишут нейросети. Через два года команда стартапа Brud призналась, что это они создали «робота». Интерес к виртуальной селебрити не утих и продолжает расти до сих пор. Девушка записывает треки, снимается в клипах и сотрудничает с мировыми брендами. Поклонники рады следить за жизнью любимого блогера, а компании — быть на одной волне с новым поколением.
За AI-блогерами могут стоять не только отдельные люди, но и целые креативные агентства или бренды. Таких персонажей создают, чтобы привлечь внимание аудитории и получить дополнительные возможности для заработка на рекламе. В 2021 году телеканал «ТНТ» представил зрителям аватара Аню. У Ани были свои промоинтеграции в развлекательных шоу, популярные комики и ведущие записывали с ней ролики. А ещё Аня получила эпизодическую роль в сериале. AI-блогерам не нужны услуги визажистов, стилистов и прочих мастеров. Они могут быть везде и сразу и быстро делать рекламные интеграции.
Брендам удобно работать с такими персонажами, а обычным пользователям интересно за ними следить. Скорее всего, в будущем AI-блогеров будет становиться всё больше. Благодаря нейросетям у людей появляется больше возможностей. На рынке рождается спрос на новых специалистов, которые решают бизнес-задачи с помощью ИИ. За развитие и обучение искусственного интеллекта тоже отвечают профессионалы, в которых раньше не было необходимости.
Какие профессии заменит искусственный интеллект
Профессии, связанные с нейросетями: какой бывает работа будущего и как на нее устроиться. Специалист по нейронным сетям: подробный обзор профессии Профессия нейротехнолог – как стать, где обучиться, востребованность. Недавно телеканал RTVI захотел рассказать о профессиях будущего и обратился за помощью к нейросети MidJourney. Насколько реальны и востребованы в будущем предложенные нейросетью профессии, оценил руководитель направлений "Инноваций" компании Никита Бугров.
Бесплатный онлайн-интенсив
- Программист
- Профессии будущего: под грифом «нейро» |
- ИИ набирает силу
- Какие профессии заменит искусственный интеллект
- Введите текст заголовка
Огонь нейросетей: как попасть в индустрию
Узнали у нейросети, каких профессионалов искусственный интеллект настроен видеть в числе будущих коллег. Как появилась профессия тренера нейросетей Основные обязанности AI-тренера Ключевые навыки Где могут работать AI-тренеры Сколько зарабатывает тренер нейросетей Как стать AI-тренером Перспективы профессии Главные мысли. Анастасией Абышевой. Около трети респондентов считают, что нейросеть сможет заменить бухгалтеров и менеджеров по продажам, меньшее число опрошенных рассказали, что рискуют быть замененными финансисты, HR-специалисты, социологи. Развитие нейросетей в России создаст, в числе прочих, профессию специалиста по этике в сфере искусственного интеллекта (ИИ), также в вузах появятся профильные. Профессионалам, мастерам своего дела и талантливым представителям творческих профессий нейросети вряд ли угрожают, во всяком случае в обозримой перспективе.
Будущее SMM-специалистов в эпоху нейросетей: интервью с хантером Аленой Владимирской
Готовность меняться Абсолютное большинство опрошенных готовы к каким-либо действиям в случае замены своей профессии или должности нейросетью. Участникам исследования также предлагалось отметить, в каких профессиях нейросети способны заменить человека.
Предсказуемый перенос стиля — 6 часов Тема 3. Генерирование изображений в Dall-E — 6 часов Тема 4. Stable Diffusion для новичков. Эффектная работа с графикой без требовательного ПО — 9 часов Live-консультация по итогам модуля Нейросети как инструмент для генерации успешной карьеры — 10 часов Тема 1. Создание портфолио и подготовка к собеседованию при помощи нейросетей — 3 часа Тема 2. Использование нейросетей для повышения эффективности HR-экспертов — 3 часа Live-консультация по итогам модуля Нейросети для работы с видео и аудио — 44 часа Тема 1. Возможности генерации видео в Stable Diffusion — 8 часов Тема 3. Копирование голоса и удаление шума при помощи искусственного интеллекта в Adobe Podcast — 7 часов Тема 6. Нейросети для генерирования музыки и озвучки видеороликов — 7 часов Live-консультация по итогам модуля Презентация финального проекта, созданного на основе практических занятий и самостоятельных работ.
Об это сообщает пресс-служба рекрутингового сервиса HeadHunter со ссылкой на собственную аналитику. Мария Кузнецова Мария Кузнецова С января по ноябрь 2023 года российские работодатели разместили более 12,6 тыс. По данным исследования, у российского бизнеса растёт интерес к работникам, понимающим как развивать, обслуживать и работать с нейросетями.
Так, за неполные 11 месяцев 2023 года на сайте рекрутингового ресурса было размещено более 12,6 тысяч вакансий, в которых упоминался ИИ.
Мы уже не обращаем внимания, как точно попадают в наши вкусы видео и посты в рекомендательных лентах, как четко работает поиск по изображениям, не удивляемся, когда видим релевантную и полезную рекламу — все это возможно благодаря ИИ. Искусственный интеллект используют и в бизнесе: например, в небольшой пекарне на основе данных за несколько лет можно рассчитать, сколько хлеба и выпечки производить, чтобы не выкидывать лишнее, а в крупном банке ИИ за 5 минут принимает решение о выдаче кредита без участия менеджера. Помните новости о том, что скоро многих работников заменит искусственный интеллект? Это происходит уже сейчас, но точно не с AI-разработчиками — специалистами по работе с ИИ, спрос на которых растет каждый год. Чтобы нейросеть работала правильно, ее нужно обучать: загружать в нее миллионы строк данных, в которых она будет находить закономерности и распределять объекты по определенным признакам. Обучением и моделированием нейросетей занимаются люди. Специалистом по машинному обучению легко стать даже с минимальными знаниями математики и языка Python, знакомых еще с вуза, если знать, как выстроить процесс обучения. В этой статье рассмотрим путь специалиста по нейросетям и искусственному интеллекту, который хочет в будущем работать в этой сфере. Нейросети: с чего начать Нейросети и ИИ — это узкая специализация Data Scientist , специалиста по большим данным.
Поэтому сначала нужно изучить науку о данных, а потом выходить на следующий уровень. Обучение Data Science начинается с основ: математика, статистика, математический анализ и теория вероятности.
Что делают разработчики нейронных сетей: суть работы, обучение
Профессии, связанные с нейросетями: какой бывает работа будущего и как на нее устроиться. С нейросетями была знакома немного до обучения. Профессия требует не только применять нейросети, но также строить и обучать модели для новых задач.
«Моя мама учит нейросети говорить»: история многодетной челябинки, которая завязала с журналистикой
Создатель сайта Кремля предрек исчезновение ряда профессий из-за нейросетей. Найдите работу "специалист по нейросетям" В нашей базе бесплатно доступны 35 100 вакансий в Санкт-Петербурге. Вы научитесь не только эффективно взаимодействовать с нейросетями, но и интегрировать их в свою повседневную рутину и бизнес-процессы. При этом сейчас появляется всё больше профессий, связанных с созданием и обслуживанием нейросетей. Нейросеть сделала это за 5 минут с хорошей ла локальные компании от глобальных, рассказала про количество производственных площадок.