Реже специалистов по нейросетям ищут в госсекторе, строительстве, логистике, здравоохранении и тяжелом машиностроении – по 1% вакансий. Один из примеров, связанных с использованием нейросетей на рынке труда — это автоматизация работ, которые ранее выполняли люди.
ChatGPT отнимет у вас работу: нейросеть перечислила профессии в зоне наибольшего риска
— Конечно, нейронные сети помогают в большом количестве профессий делать работу быстрее. При этом 30% участников убеждены, что на их профессию нейросети и ИИ не повлияют вообще (чаще всего так отвечали представители производственных специальностей). При этом сейчас появляется всё больше профессий, связанных с созданием и обслуживанием нейросетей.
Незаменимых нет: вытеснят ли нейросети творческие профессии?
BING AI от Microsoft: как пользоваться умным чат-ботом для решения профессиональных задач — 6 часов Live-консультация по итогам модуля Графические нейросети: курс на высокое разрешение — 33 часа Тема 1. Основа генерации изображений в Midjourney. Правила формирования промптов. Контролируем искусственный интеллект — 6 часов Тема 2. Работа с изображениями в Kandinsky.
Предсказуемый перенос стиля — 6 часов Тема 3. Генерирование изображений в Dall-E — 6 часов Тема 4. Stable Diffusion для новичков. Эффектная работа с графикой без требовательного ПО — 9 часов Live-консультация по итогам модуля Нейросети как инструмент для генерации успешной карьеры — 10 часов Тема 1.
Развитие программ породило дискуссию о том, смогут ли они отнять работу у человека. Увольнение пророчат программистам, аналитикам, дизайнерам и многим другим. Но нейросети не умеют создавать контент самостоятельно: писать и уточнять запросы, проверять и анализировать результат должен человек. Программы лишь инструмент, который ускоряет выполнение рутинных задач.
И если научиться им грамотно пользоваться, то можно дать фору соискателям, которые с ИИ на вы. А ещё нейросети несовершенны. Иногда они выдумывают или искажают факты. Так происходит, например, когда у бота есть пробел в знаниях и он выдаёт пользователю наиболее статистически верную информацию.
Главный редактор журнала Wired Стивен Леви считает, что это может стимулировать человеческое творчество. Распространение таких «галлюцинаций» будет препятствовать тому, чтобы доверить всю работу ИИ. Как сформулировать запрос так, чтобы нейросеть как можно меньше искажала факты, расскажут на бесплатном курсе Яндекс Практикума « YandexGPT для начинающих ». На реальных кейсах из маркетинга, программирования и менеджмента вы попробуете сами решить задачи с помощью ИИ, а после курса сможете применять его в работе — автоматизировать рутинные задачи и улучшать процессы.
Например, это касается переводов, технической поддержки, подготовки аналитики, создания текста и дизайна. Менее 40 процентов респондентов могут обратиться к нейросети в деле ведении коммуникации, написания кода и задачах, связанных с обучением людей. При этом наиболее остро, на взгляд респондентов, во внедрении искусственного интеллекта нуждаются сферы IT и финансов, маркетинг и сфера услуг.
Поэтому мы на это смотрим совершенно нормально компенсируем это объемом, то есть проблема плагиата существенна, когда у вас стоимость каждой итерации очень большая, а дизайнер уходит на следующую итерацию, неделю молчит, пыхтит и так далее. Но когда вы можете еще одним щелчком сгенерировать еще 100 альтернатив, то, в целом, это перестает быть проблемой.
Но я предлагаю переходить от проекта Николай Иронов к другим генеративным технологиям, потому что летом прошлого года буквально весь интернет взорвала сеть Midjourney, которая создавала крутые классные визуальные картинки, и все были в полном восторге. Но вместе с этим восторгом действительно возник вопрос о том, что «Зачем мне условно в штате держать дизайнера, если я могу загрузить свой достаточно вариант брифа, и нейросеть выдаст мне несколько классных вариантов: совершенно удивительных и визуально привлекательных. Сергей, давайте поговорим немножко про это. Во-первых, как вы думаете, какие перспективы развития у этих нейросетей? Насколько действительно хорошо они генерируют визуальные изображения, и какие риски это несет для творческих профессий? Кулинкович: Спасибо за вопрос.
Поскольку возможна какая-то профдеформация, и мы довольно давно находимся от в этой области генеративного дизайна. Просто сейчас из-за того, что искусственный интеллект как понятие тиражируется и как-то ассоциируется с нейросетевыми технологиями, и это сейчас на всех полосах газет и всяких изданий, на это все прожекторы устремлены, на самом деле генеративный дизайн существовал ранее просто в других жанрах. И он как тогда, так и сейчас создавая новые возможности, новые рабочие места, то есть сейчас есть отдельные ребята, которые используют эту технологию для того, чтобы решать подобные задачи за деньги. Midjourney и другие ребята, они создают под себя, как Иронов, который создал новый рынок, который мы сделали, так и другие ребята. Они берут и просто используют это как инструмент. Раньше инструментом была кисть, к которой просто нужно было применить к ней механическое какое-то воздействие, и сколько-то лет опыта.
Но, в целом, она выдавала такие же результаты. Сейчас вместо этой кисти что-то другое. Завтра будет еще что-то другое. Но, в целом, какого-то такого слома я не наблюдаю. Просто появилась новая возможность делать то, что раньше требовало большого количества часов, быстро. Но фактически это просто расширяет, как сказать, перераспределяет усилия людей.
То есть сейчас мы видим, что появляются новые профессии. Они такие, околодизайнерские: наполовину дизайнерские, наполовину технические. Люди, которые занимаются промт-инжинирингом, которые учатся взаимодействовать с этим инструментом, задавать ему правильные вопросы и получают правильные ответы. Но по факту это тот же дизайн, просто инструментом дизайнера является уже не кисть, уже не какие-то программы редактирования графики. А просто нейросеть. Поэтому ничего не меняется на самом деле, просто трансформируются инструменты производства.
И это было и 100 лет назад, когда происходили какие-то переходы от ручного труда к фабричному, так и сейчас. Так я себе это представляю. Гребенников: Правильно, если простым языком сказать, когда нам говорили, что появилось телевидение, то театр умрет. Точно так же, как не умер театр, не умерло телевидение после появления интернета, точно так же и с появлением искусственного интеллекта, мне кажется, у дизайнера просто появилось больше инструментов для того, чтобы творить. Кулинкович: Да. Совершенно верно.
Более того, интересный эффект, что тот крафт, ручная такая работа, которая… Вот этот рынок объединял в себе большое количество профессионалов и сейчас кажется, что пришли нейросети и этот рынок разрушили. И, конечно, вода из этого моря утекла в моменте. Но при этом останутся мастера, как в случае с театрами, есть гениальные постановки, которые собирают огромные залы и оказываются суперактуальными и, возможно, даже более редкими и более неожиданными, чем они были ранее. Потому что ранее это был такой массовый продукт, то сейчас это штучный. Поэтому, когда все говорят, что нейросети убивают работу дизайнера, здесь, наоборот, я это вижу, как создание каких-то интересных локальных ниш, которые, наоборот, создают возможности. Они как бы преумножают варианты применения каких-то творческих усилий.
Коротнева: Сергей, вопрос о том, появится ли новая профессия на стыке дизайна и около какой-то научной истории Data Science. Вы уже сказали про профессию промт-инжиниринг. Кулинкович: Разные люди это называют по-разному. Мы в студии называем это «нейровод» — человек, который выбирает финальный вариант, потому что вариантов очень много, выбрать из них конечный — это и есть одна из самых сложных задач. У нас есть специальные нейроводы. Которые делают дизайн мозгами Николая, но принимают ответственность за принятие финального решения.
Гребенников: Сергей, такой вопрос. Николай — это все-таки когда-то был реальный человек или полностью вымышленный персонаж? Кулинкович: Это полностью вымышленный персонаж. С этим есть очень интересная история, потому что, когда мы начали получать работы, которые сопоставимы по качеству с живыми людьми, мы решили, это не просто прикол. Мы решили проверить, насколько… либо это наш глюк, либо это действительно похоже на то, что делает живой человек. Поэтому мы придумали Николая Иронова и начали под его именем отдавать эти работы нашим клиентам, которые не знали о том, что это генеративный дизайн, для того чтобы обойти вот этот блок предрассудков по поводу того, что если дизайн был синтезирован, значит, он какой-то не такой, какой-то недостаточно человеческий, недостаточно качественный.
И мы воспользовались вот этой секретностью и анонимностью. Более того, мы даже засекретили его внутри компании, завели ему там карточку в бухгалтерии, завели ему e-mail, Facebook и так далее, поддерживали какую-то социальную даже жизнь от его имени, придумали ему фоторобот. Мы скормили тоже генеративной системе портреты всех сотрудников студии, которые на тот момент были, и сделали усредненное лицо, загрузили его карточку в наш интернет и, собственно, прожили, пока шла разработка, мы жили с этим образом Николая Аронова. И дальше отдавали клиентам работы, подписанные этим именем. И только когда эти работы начали массово тиражироваться, появляться на объектах какого-то реального мира, на этикетках с напитками, на вывесках в кафе, только тогда мы раскрыли карты и сказали, что это не человек. Коротнева: Очень любопытно про Николая Иронова.
Но вернемся к нашим сетям, которыми мы пользуемся уже с прошлого года. Пытаемся как-то с ними играться, вдохновляться. Мне кажется, я поэтому и хочу ваше профессиональное мнение спросить, что нейросеть, в частности Midjourney, работает примерно в одном и том же направлении — накладывает один и тот же паттерн? Я имею в виду сюрреализм, абстракция, киберпанк. Как-то так она работает. Или нет?
Или она может работать во всех художественных направлениях, креативить совершенно разное? Кулинкович: Ее так научили. Но по факту, когда вы работаете с живым человеком, он тоже работает в одном направлении. Вы приходите к дизайнеру живому или иллюстратору и говорите: «Нарисуй мне кружку», и он вам нарисует, скорее всего, кружку таким образом, как он умел рисовать все эти годы до. И вы для того, чтобы ваш инструмент, для того, чтобы подобрать правильный стиль, найти правильного дизайнера, иллюстратора с правильной историей… Потому что в целом в реальном мире довольно мало людей живых, которые готовы рисовать в очень широком изобразительном диапазоне, создавать графические материалы. Так и с нейросетями.
И они рисуют то, чему их научили. Условно, какой-то сет они повидали, то они и выдают. Поэтому всегда можно найти некоторые групповые признаки у разных технологий. Гребенников: Сегодня применение искусственного интеллекта — это дань моде или это реальный инструмент, который делает нашу жизнь и наши сервисы немножко лучше? В Москве есть ресторан, который существует без шеф-повара, и там такая концепция, что все блюда придумывает искусственный интеллект, потому что искусственный интеллект лучше знает, что в целом, в среднем люди едят. И это дань моде или это реальный сервис, который помогает дизайнерам, музыкантам, тем, кто творит, тем, кто пишет какие-то книги, учебники?
Какое у вас мнение? Кулинкович: Во-первых, не стоит недооценивать дань моде. Потому что дань моде продолжает помогать продавать, помогает зарабатывать. И та обвязка, тот же самый продукт, на который навесили лейбл искусственный интеллект, он продается потенциально… В правильных руках он будет продавать с лучшей конверсией, с большей. Это даже без рассмотрения того, что стоит за концепцией искусственный интеллект. Это просто лучше продается.
В моменте. Это уже реальное применение. Я знаю, о каком ресторане вы говорите. Там очень вкусно. И я там бывал много раз. Я практически уверен, что это как раз именно эксплуатация первого сценария.
Потому что слишком хорошо для искусственного интеллекта, слишком вкусно. Второй момент, что мы видим, что люди используют… Это не игрушка. Если обращаться опять к Аронову, то у него несколько тысяч клиентов. И к нам приходят постоянно благодарные отзывы людей, которые просто смогли себе дешево сделать… И быстро сделать классный логотип, который они любят, используют. И этой возможности у них не было ранее. Это было либо дорого, либо они на это не решались.
В этом смысле я вижу… И помимо этого мы же разрабатываем и другие технологии. И я вижу, что это вполне себе для нас создает новые рынки внутри. И если рынки существуют, это значит, что… Если энергия в этих рынках как-то двигается, это значит, что есть люди, которые в конечном итоге расстаются с деньгами за результаты работы этих алгоритмов. А если люди расстаются с деньгами систематически, значит, в этом есть какая-то систематическая польза. Поэтому тут я виду просто главное узкое место не в самих технологиях, а в их правильном режиссировании.
Восстание машин: как нейросети «вытесняют» людей из профессий
За нейропилотированием будущее, направление развивается параллельно с БЛА. Искусственный интеллект полагает, что нейропилоты-профессионалы умеют управлять БЛА с помощью мозговых импульсов, а потому должны отличаться стрессоустойчивостью и самоконтролем. Это химик, инженер и эколог в одном лице. И такие профессионалы действительно не останутся без работы, считает эксперт hh. Обрабатывает и оцифровывает языковые данные, генерируя их в технологические и производственные процессы.
И поскольку эти вычисления очень сложные и очень приблизительные, то на выходе порой получаются сбои. И вообще, нейросети создаются для помощи людям, а не для того, чтобы их заменить. Это невозможно, особенно в таких областях, как медицина, например. Последнее слово всё равно остаётся за врачом, какие бы нейросети ни применялись для постановки диагноза. В своё время IBM пыталась продвинуть на американском рынке продукт Watson Health — планировалось, что ИИ найдёт применение в здравоохранении. Однако продукт так и не завоевал доверие врачей: нейросеть часто ошибалась, а в тех случаях, когда ставила точные диагнозы, давала очень узкие рекомендации по лечению.
Потому что выборка данных, на которой учат нейросети, — она всё-таки очень ограниченная. И нейросетям не присуща человеческая интуиция, широкая образованность. По сути, нейросеть живёт в информационном пузыре. Например, чат-боты позволяют автоматически генерировать простые официальные письма, справки. Ранее в новостях сообщалось, что руководство Сбербанка частично сократило юристов низшего звена, которые писали претензионные письма. Теперь эти функции выполняет нейросеть. Также по теме «Настанет день, когда машина обретёт сознание»: фантаст Франк Шетцинг о будущем человечества и инопланетном разуме Книги немецкого писателя-фантаста Франка Шетцинга расходятся большими тиражами, а экранизацией одного из его главных бестселлеров —... Однако нужно понимать, что возможности нейросетей очень ограниченны. По сути, появление нейросетей должно подстегнуть людей к развитию. Кроме того, создание, обслуживание и внедрение таких технологий приводит к появлению новых рабочих мест и специальностей.
Хотя, конечно, не массовых. Допустим, сейчас пишут о спросе на специалистов по составлению запросов для нейросетей — есть ли такая профессия? К слову, такое направление, как анализ данных data scientist , появилось уже очень давно, в 2000-е годы. Это, по сути, универсальный специалист, способный проанализировать данные, написать и внедрить нейросеть, а далее её сопровождать. Сейчас эта специальность уже уходит на второй план, появляются всё более специализированные направления, такие как ML-инженер: он не создаёт новый математический аппарат нейронных сетей, а занимается обучением существующих архитектур и вводом их в эксплуатацию. Ранее против владельцев популярных нейросетей подали иск художники — они обвинили IT-компании в нарушении авторских прав. Нарушают ли нейросети авторские права? И если да, то как этот вопрос может быть урегулирован?
Даже в названиях своих исследований ученые используют более мягкие формулировки: Насколько профессии восприимчивы к автоматизации?
Исследование компании McKinsey и вовсе показывает: только незначительное количество профессий будут полностью автоматизированы с помощью современных технологий. В остальных роботы или ИИ станут выполнять только отдельные задачи. Дело в том, что, хотя ChatGPT или Midjourney нейросеть, которая генерирует изображения способны быстрее человека обрабатывать огромные объемы информации и предлагать большое количество разных решений, запрос, корректировка и оценка работы остаются за людьми. Ведущая роль — роль креатора — по-прежнему принадлежит дизайнерам, копирайтерам, преподавателям или программистам. Но теперь их задача — правильно задать вопрос, чтобы быстрее получить результат, с которым можно работать. В этом смысле технологии остаются тем, чем и были ранее — инструментом в руках Homo sapiens. Хотя нейросети и учатся распознавать эмоции, они пока слабо приближаются к тому, чтобы обладать уникальным характером, харизмой, опытом и эмпатией, которую ценят в коммуникации. Робот все еще действует механистически и этим вызывает отторжение.
У MidJourney тоже есть платная версия. По мнению экспертов «ЮMoney», как только нейросети станут мейнстримом и начнут регулироваться государством или большим числом компаний, решивший их «нанять» малый и средний бизнес должен будет платить — как минимум за отдельные услуги. Новые решения выходят постоянно. Те, которые несколько месяцев назад стоили Х, теперь стоят 0,1Х. Но даже по первоначальной стоимости это в 10-100 раз дешевле, чем платить профильному специалисту, отмечает Иван Скоков. Такие сотрудники необходимы, чтобы обучать нейросети корректно обрабатывать любые запросы — не важно, просят их написать код или комментарий для пресс-релиза. По словам Ивана Скокова, работа специалиста по промтам становится все популярнее — уже есть вакансии с годовой зарплатой в 300 тысяч долларов. Компании ищут способы создавать контент высокого качества с помощью искусственного интеллекта, а навыки по отдельным скиллам для работы с нейросетями уже включают в некоторые вакансии в контент-маркетинге и SMM в России. Чтобы развивать навыки работы с нейросетями, есть курсы по ИИ, но качественной базы пока немного. Чтобы начать двигаться в этом направлении, эксперт «ЮMoney» рекомендует практиковаться и самостоятельно решать с помощью нейросетей разные задачи, а также изучать готовые промты. Иван считает, что спрос на специалистов по промтам будет расти по мере развития ИИ, поэтому люди должны быть готовы осваивать новые навыки. Для этого пишем запросы с максимальным количеством ключевых слов или словосочетаний на английском языке — с уточнением, что ответить нужно на русском. Так можно получить более осмысленный результат», — рассказывает Майя Новикова. Если внедрить в свои процессы или продукты ИИ пока не получается, можно потренироваться на инструментах, которые требуют меньше ресурсов и разработки. Например, сделать чат-бота в телеграме — сейчас есть много бесплатных способов, в том числе и в API мессенджера. Для предпринимателей, которые продают в интернете без сайта, в «ЮKassa» недавно сделали бота, который умеет выставлять счета клиентам в телеграме.
Другие сюжеты
- Нейросеть показала профессии будущего (фото)
- «Моя мама учит нейросети говорить»: история многодетной челябинки, которая завязала с журналистикой
- Маркетолог назвал профессии, которые могут исчезнуть из-за нейросетей
- Рекомендации
ТОЛЬКО ЦИФРЫ
- Специалист по нейросетям — что это за профессия
- Назван список профессий, по которым сильнее всего ударит ИИ. Программисты в безопасности - CNews
- Доцент ИТМО — о замещении профессий нейросетями и возможностях ИИ
- Как стать специалистом по нейросетям?
Треть российских соискателей полагает, что их профессию могут заменить нейросети
Инженер нейросетей – это перспективная профессия, представители которой востребованы в разных отраслях. Специалист по нейронным сетям создает саму модель, помогает ей обучаться и следит за ее работой. Специалист по нейронным сетям создает саму модель, помогает ей обучаться и следит за ее работой. — Конечно, нейронные сети помогают в большом количестве профессий делать работу быстрее. Искусственный интеллект и профессии: какие специальности, связанные с ИИ и нейросетями, ждет бурное развитие и высокий спрос.
5 профессий, которые появились в 2023 году благодаря искусственному интеллекту
Защита персональных данных. Практика защиты и разделения авторского права — 5 часов Чат-системы с искусственным интеллектом — 26 часов Тема 1. ChatGPT-помощник: для тех, кому некогда писать — 8 часов Тема 2. BING AI от Microsoft: как пользоваться умным чат-ботом для решения профессиональных задач — 6 часов Live-консультация по итогам модуля Графические нейросети: курс на высокое разрешение — 33 часа Тема 1. Основа генерации изображений в Midjourney. Правила формирования промптов. Контролируем искусственный интеллект — 6 часов Тема 2. Работа с изображениями в Kandinsky. Предсказуемый перенос стиля — 6 часов Тема 3.
А ещё биомиметика тесно связана с робототехникой: популярные вирусные ролики о робоживотных в стиле киберпанка — как раз про это. Среди ограничений своей профессии сами биомиметики или бионики называют излишнюю теоретизацию: далеко не все прототипы и модели, идеальные на бумаге, работают в реальном мире. Специалист по ИИ-этике Эксперт, ответственный за этичное использование наработок ИИ, рано или поздно потребуется в любой компании, которая планирует задействовать эти самые наработки. Даже сегодня к искусственному интеллекту возникают вопросы, связанные с интеллектуальной собственностью и использованием персональных данных, и по мере развития ИИ их количество многократно вырастет. Специалисты по нейроэтике обязаны одинаково хорошо разбираться в алгоритмах профильного ИИ, локальной и международной нормативной документации, ИТ-праве, этике и психологии. Прикладная этика — так называемая зависимая специальность, перспективы которой определяют темпы развития смежных сфер. Поэтому оценить возможный спрос на таких специалистов пока довольно сложно. Медиаполицейский В отличие от специалиста по кибербезопасности, медиаполицейский работает не с багами и уязвимостями, а с пользовательским контентом. Его задача — находить и проверять UGC-ресурсы на предмет соответствия законодательству, бороться с проявлениями экстремизма и преступлениями против личности, а также блокировать пиратские «сливы».
Стимулируйте ребенка читать книги, изучать новые технологии, следить за актуальными исследованиями и статьями. Помогите ему найти ресурсы и сообщества, где можно обмениваться опытом и учиться от других специалистов. Поддерживайте ребенка, поощряйте его интересы и предоставьте возможности для практического применения знаний. Таким образом, вы поможете ему подготовиться к будущей профессии оператора нейросетей и открыть двери в мир новых технологий. Преимущества, которые предоставляют нейронные сети, становятся все более широкими, и востребованность специалистов в этой области постоянно растет. Однако, чтобы успешно справиться с задачами оператора нейросетей, необходимо начать подготовку с раннего возраста. Ребенок должен освоить основы программирования, математики и статистики, а также развить навыки анализа данных. Онлайн-курсы, участие в соревнованиях и создание собственных проектов помогут ему получить практический опыт и применить знания на практике. Важно помнить, что профессия оператора нейросетей требует постоянного обучения и самообразования. Будущие специалисты должны быть готовы к непрерывным изменениям и развитию в сфере искусственного интеллекта. Поддержка со стороны родителей и наставников, доступ к актуальным ресурсам и подходящей образовательной среде помогут ребенку успешно освоить навыки, необходимые для деятельности оператора нейросетей. Начинать путь в новой профессии лучше с бесплатных видеоуроков и общеобразовательных курсов по программированию для детей. Дайте ребенку возможность познакомиться с этой увлекательной областью, развивать таланты и быть готовым к будущим вызовам. Специальность оператора нейросетей открывает новые горизонты и является ключом к карьерному успеху в мире технологий.
Сколько зарабатывает: от 75 тысяч рублей в месяц. Что нужно: проверять достоверность фактов; писать грамотные тексты, которые решают задачи людей, и редактировать чужие. Весной 2023 года «Яндекс» открыл набор кандидатов на вакансию AI-тренера. Представители новой профессии обучают нейросеть YaLM 2. Они определяют хорошие и плохие ответы, ранжируют их и сами пишут тексты, на которых учится нейросеть. Кандидатов, которые пройдут первичный отбор по резюме, ждёт задание из двух частей. В первой — тесты на грамотность, этику и фактчекинг. Во второй предстоит написать за нейросеть тексты на заданную тему. Пока AI-тренеров ищет только «Яндекс». Найти вакансию можно на сайте компании и на карьерных платформах вроде hh.
Что такое нейросети и как они стали популярными в России
- Описание профессии
- Нейросеть показала профессии будущего (фото)
- Какие профессии скоро может вытеснить нейросеть с рынка труда Metro
- Россиянам назвали самые перспективные профессии на ближайшие пять лет | 360°
Огонь нейросетей: как попасть в индустрию
Что делают разработчики нейронных сетей: суть работы, обучение | Развитие нейросетей в России создаст, в числе прочих, профессию специалиста по этике в сфере искусственного интеллекта (ИИ), также в вузах появятся профильные. |
Назван список профессий, по которым сильнее всего ударит ИИ. Программисты в безопасности - CNews | При этом сейчас появляется всё больше профессий, связанных с созданием и обслуживанием нейросетей. |
Маркетолог назвал профессии, которые могут исчезнуть из-за нейросетей
где учиться работе с нейросетями. Нейронные сети стремительно внедряются почти во все области жизни, и работа человека становится будто бы «ненужной». Специальность оператора нейросетей представляет собой перспективное направление развития, особенно в контексте быстро меняющегося мира IT. Из этой статьи вы узнаете о трех новых профессиях, которые стали востребованными на рынке после появления нейросетей, и какие навыки нужны для того, чтобы успешно в них развиваться.
ChatGPT отнимет у вас работу: нейросеть перечислила профессии в зоне наибольшего риска
Под удар могут попасть также социологи , политологи, специалисты по библиотечному делу, юристы по гражданским делам, судьи, клинические и школьные психологи и коучи. Ученые уверены, что на область юриспруденции ИИ повлияет сильнее всего. Также под раздачу могут попасть турагентства, грантовые фонды, спортивные агенты и музыкальные продюсеры. Программистов в списке не оказалось, хотя чат-бот умеет писать код. Для этого исследователи рассмотрели профессии как набор навыков и способностей, которые требуются сотрудникам, чтобы исполнять свои обязанности. Ученые взяли 10 самых распространенных приложений ИИ, которые умеют генерировать изображения или текст, и проанализировали, как они связаны с различными профессиональными навыками. Оказалось, что, к примеру, преподаватели вузов могут использовать ChatGPT для создания учебного плана или лекций.
Технология, уверены ученые, может «высвободить руки» высококлассных специалистов, которые раньше тратили время на рутинные задачи. В то же время ученые не пришли к консенсусу о том, какие именно рабочие места будут созданы в результате повсеместного внедрения ИИ-технологии. В беседе с CNews Кирилл Чеханков , руководитель отдела ИТ-решений Konica Minolta Business Solutions Russia , отметил, что в последние годы нейросети стали более популярными в таких сферах, как медицина, финансовый сектор, телеком, наука и других. Вырос также спрос на сотрудников, которые умеют работать с нейросетями, растет. Навык работы с ChatGPT и другими площадками для доступа к нейросетям, в основном, нужен разработчикам, так как они работают с кодом и программами, которые используют эти платформы. Но он может быть полезен и для исследователей данных, аналитиков, специалистов по машинному обучению.
Вообще-то лазурный автобус! А этот задорный рыжий юнец — не кто иной, как трамвай «Чижик». Так по мнению нейросети выглядел бы очеловеченный общественный транспорт Петербурга. Мечтаете, чтобы вас изобразил великий художник Пикассо или Малевич?
Проще простого — Русский музей запустил собственную нейросеть, которая генерирует портреты в стиле работ Брюллова, Серова, Врубеля и других гениев живописи. Художники творили свои произведения месяцами, нейросеть справится за несколько часов.
Когда данных становится много, у нас появляется возможность извлекать из них полезные знания, обходя ограниченность простых подходов. С помощью ML можно рассчитывать риски — например, предсказать, выплатит ли человек кредит, или рассчитать будущие цены на квартиры.
Есть отдельная группа задач, для которых нейросети особенно хороши: находить похожие картинки, звуки и посты, генерировать изображения и тексты. Конечно, искать похожие аудио можно и без нейросетей — приложение Shazam прекрасно работало даже в первых версиях. Но обучение алгоритмов с помощью нейросетей дает дополнительные возможности. Творчество нейросети Midjourney Как разрабатываются нейросети В этой части статьи будет немного хардовой информации, связанной с математикой и ML.
Если вы ничего не поймете или захотите понять больше, советуем пройти наш курс по математической логике для программистов Нейросеть — это формула, которая из одного массива чисел делает другой массив. Формула большая и длинная, может быть с миллионами параметров, но собирается из довольно простых операций — арифметики, элементарных функций синусы, косинусы, экспоненты и даже более простые, вроде взятия степени и суперпозиции. Выше пример одной из решаемых задачек: классификация изображений на условные тысячу классов. Входной массив здесь — просто массив пикселей картинки, выходной — вектор с вероятностями, что изображено на картинке.
Выходной массив может быть и картинкой например, как в задачах pix2pix на улучшение картинок или дорисовывание. Входной массив может быть не картинкой, а последовательностью слов — так, например, происходит в генерации картинок по тексту. С отдельными элементами входного массива обычно не работают: действия собирают в слои и применяют операцию ко всему массиву сразу. Котика на картинке распознают независимо от того, в какой части картинки он находится.
Саму формулу пишут не как аналитическую формулу, а вычислительным графом — это рецепт для калькулятора, в каком порядке и что делать с входным и промежуточным массивами. Очень популярная, старая и довольно простая моделька. Она может показаться сложной, но операции — простые, а концепция вычислительного графа позволяет работать со сложными формулами. В этих слоях скрываются числа, они же — веса — коэффициенты в большой формуле.
Сначала параметры инициализируют небольшими случайными числами, а затем улучшают с помощью градиентного спуска. Так система самообучается. Обвязку к этому движку обычно делают на Python. Но на них сейчас нейросети почти не пишут, кроме низкоуровневых сетей для устройств.
Знания Python достаточно, чтобы писать крутые вещи. Есть библиотеки, позволяющие упростить процесс разработки. Крутые обертки и сборники моделей — одна из причин, почему сейчас стало популярно разрабатывать нейросети. Например, проект Hugging Face — это платформа для разработки и использования моделей и приложений на основе искусственного интеллекта, особенно в области обработки естественного языка Natural Language Processing.
Интерфейсы моделей отвязаны от математики, это простые и конкретные инструкции, что именно сделать, чтоб получить результат. А вот при использовании фреймворков PyTorch, Jax и TensorFlow для работы с данными и машинного обучения придется плотнее взаимодействовать с математикой. Как попасть в индустрию Нейросетями можно заниматься как прикладной технологией в коммерческой разработке, так и использовать их в качестве инструмента для исследований в научных лабораториях. В 2016 году, чтобы попасть в лабораторию, занимающуюся нейросетями, ничего особенного знать и уметь не требовалось.
Сейчас порог входа в исследовательские лаборатории, где применяют эту технологию, увеличился. Нужно соответствовать высоким требованиям: знать математику, хорошо кодить, иметь научные публикации. Такой уровень экспертизы есть у небольшой части людей. Вакансий публикуется больше не в области исследований, а в прикладных проектах.
Прикладными проектами может заниматься обычный разработчик. Для этого нужно уметь кодить, решать задачи и использовать системный подход. Нужно учиться делать базовые вещи максимально аккуратно. А все остальное получится в свое время.
Самое тяжелое умение — на грани hard skills и soft skills — понимать, что делаешь.
Можно предположить, что одной из самых больших угроз, которые представляет искусственный интеллект для человечества, это автоматизация труда и безработица. Искусственный интеллект может автоматизировать многие задачи и работы, ранее выполнявшиеся людьми. Это может привести к повышению эффективности и производительности, но также вызовет и серьезную озабоченность по поводу безработицы и экономического неравенства. Стремительное развитие технологий ИИ и автоматизации вероятно приведет к заметной потере рабочих мест в различных отраслях, особенно в тех, где возникает много повторяющихся задач, а работникам достаточно низких профессиональных навыков. К работам с наибольшим риском автоматизации относятся те, которые связаны с повторяющимися задачами, такими как работа на конвейере, ввод данных и телемаркетинг. Однако ИИ также способен автоматизировать и более сложные задачи, такие как обслуживание клиентов, бухгалтерский учет и даже такие профессии как врачи, юристы и архитекторы. Это может привести к снижению спроса на людей, а в некоторых случаях и к полной автоматизации определенных профессий.
Вот несколько примеров профессий, которые рискуют быть захваченными ИИ: Репетиторы и преподаватели. ИИ может автоматизировать многие рутинные задачи, связанные с образованием. Например, алгоритмы искусственного интеллекта можно использовать для создания индивидуальных планов уроков и автоматической проверки и оценки заданий. ИИ также можно использовать для немедленной обратной связи со студентами и помощи им в разработке более эффективных стратегий обучения. Алгоритмы ИИ могут непрерывно анализировать результаты учащихся и адаптировать учебный план к их индивидуальным сильным и слабым сторонам и стилям обучения. Системы искусственного интеллекта можно обучить выполнению бухгалтерских задач, таких как ввод данных и сверка счетов.
ТОП-5 профессий в сфере ИИ, которые изменят мир
Представители новой профессии обучают нейросеть YaLM 2.0 (она же YandexGPT), чтобы та отвечала на вопросы «не хуже людей, разбирающихся в теме». Вакансии связанные с нейросетями могут быть найдены на специализированных ресурсах, таких как Тенденция к большей заинтересованности рынка в гуманитариях со знанием ИИ, нежели в аналогичных навыках у программистов, может быть связана с относительной "молодостью" нейросети, считает генеральный директор EvApps Альфред Столяров. Нейросети породили новые профессии, спрос на специалистов, умеющих с ними работать, растет день ото дня, отмечают крупные IT-компании. Уже сегодня к нейросетям возникают вопросы, связанные с интеллектуальной собственностью и использованием персональных данных, и по мере развития технологий эти проблемы будут неизбежно нарастать. Чтобы не поддаваться популистским уверениям, что роботы и нейросети отберут хлеб у трудящихся, и адаптироваться к новым технологиям, полезно в рамках своей профессии определить.