1) жаберные щели 2) дыхальца 3) клетки щупалец 4) всю поверхность тела. alt Биология. Поступление кислорода в тело гидры происходит через. Правильный ответ здесь, всего на вопрос ответили 2 раза: Поступление кислорода в тело гидры происходит через. Жизнедеятельность гидры Дыхание: • дышит растворенным в воде кислородом • поглощает кислород и выделяет.
Поступление кислорода в тело гидры происходит через
Жизнедеятельность гидры Дыхание: • дышит растворенным в воде кислородом • поглощает кислород и выделяет. 2) Какое ещё количество углеводов должно быть в пищевом рационе Василия в этот день, чтобы восполнить суточную потребность, если возраст подростка составляет 14 лет? 3) Каковы функции углеводов в организме подростка? Укажите одну из таких функций. Правильный ответ здесь, всего на вопрос ответили 2 раза: Поступление кислорода в тело гидры происходит через. Поступает кислород в тело гидры благодаря ее же телу. Т.е процесс всасывания кислорода из воды происходит всей поверхностью гидры, т.е всей поверхность тела.
Очеловечивание гидры: роль дыхания в организмах с множеством клеток
- Поступление кислорода в тело гидры происходит через1)жаберные щели 2)дыхальца 3)клетки щупалец
- Поступление кислорода в тело гидры происходит через… — школа и образование
- Общее строение
Пресноводная гидра особенности и схема строения
категория: биология. 41. alexej-golov. 4) всю поверхность тела. самое древнее чувство восприятия химического состава окружающей среды есть даже у одноклеточных организмов. 4. Существует целый ряд аномалий обоняния. Дыхание гидры происходит при помощи кислорода, растворенного в воде.
Класс гидроидные
Их в организме гидры больше всего. Вместо этого, гидра обменивается газами (включая кислород и углекислый газ) с окружающей средой через свою тонкую эпителиальную ткань. Гидра населяет пресные водоемы и обычно обитает в воде. Поступление кислорода в тело гидры происходит через1)жаберные щели 2)дыхальца 3)клетки щупалец 4)всю поверхность тела.
Задание №6 ОГЭ по Биологии
Эти вещества действительно были обнаружены. У человека он присутствует в гипоталамусе и кишечнике и в той же концентрации обладает нейротрофическим действием. У гидры и млекопитающих этот пептид обладает также митогенным действием и влияет на клеточную дифференцировку. Активатор ноги — тоже пептид с молекулярной массой, близкой к 1000 Да. Ингибиторы головы и ноги — низкомолекулярные гидрофильные вещества небелковой природы. В норме все четыре вещества выделяются нервными клетками гидры. Активатор головы имеет большее время полужизни около 4 ч , чем ингибитор 30 мин и медленнее диффундирует, так как связан с белком-носителем. Ингибитор головы в очень низкой концентрации подавляет выделение активатора, а в 20 раз большей концентрации — своё собственное выделение.
Ингибитор ноги также ингибирует выделение активатора ноги. Молекулярные механизмы регенерации Править Этот раздел статьи ещё не написан. Согласно замыслу одного или нескольких участников Википедии, на этом месте должен располагаться специальный раздел. Вы можете помочь проекту, написав этот раздел. Эта отметка установлена 31 декабря 2016 года. Получение «безнервных» гидр Править При регенерации, как и при росте и бесполом размножении, эпителиально-мускульные клетки делятся самостоятельно, причем клетки эктодермы и энтодермы — две независимые клеточные линии. Остальные типы клеток нервные, стрекательные и железистые развиваются из промежуточных.
Убив делящиеся промежуточные клетки высокой дозой радиации или колхицином , можно получить «безнервных», или эпителиальных гидр — они продолжают расти и почковаться, но отделяющиеся почки лишены нервных и стрекательных клеток. Культуру таких гидр удается поддерживать в лаборатории с помощью «насильственного» кормления. Известны также мутантные линии «безнервных» гидр, у которых нет промежуточных клеток и у которых промежуточные клетки могут давать только сперматозоиды, но не соматические клетки, а также мутантные линии, у которых промежуточные клетки погибают при повышенной температуре. Продолжительность жизни Править Ещё в конце XIX века была выдвинута гипотеза о теоретическом бессмертии гидры, которую пытались научно доказать или опровергнуть на протяжении всего XX века. В 1997 году гипотеза была доказана экспериментальным путём Даниэлем Мартинесом [8]. Эксперимент продолжался порядка четырёх лет и показал отсутствие смертности среди трёх групп гидр вследствие старения. Считается, что «бессмертность» гидр напрямую связана с их высокой регенерационной способностью.
Перед наступлением зимы, после перехода к половому размножению и созреванию покоящихся стадий, гидры в водоёмах средней полосы погибают. Видимо, это происходит не из-за нехватки пищи или непосредственного воздействия иных неблагоприятных факторов. Это говорит о наличии у гидр механизмов старения [9]. Местные виды Править В водоёмах России и Украины наиболее часто встречаются следующие виды гидр в настоящее время многие зоологи выделяют кроме рода Hydra ещё 2 рода — Pelmatohydra и Chlorohydra : гидра длинностебельчатая Hydra Pelmatohydra oligactis, синоним — Hydra fusca — крупная, с пучком очень длинных нитевидных щупалец, в 2—5 раз превышающих длину её тела. Эти гидры способны к очень интенсивному почкованию: на одной материнской особи порой можно встретить до 10-20 ещё не отпочковавшихся полипчиков. Щупальца в расслабленном состоянии не превышают длину тела, а если и превышают, то очень незначительно. Полипы мелкие, изредка достигают 15 мм.
Ширина капсул голотрих изориз превышает половину их длины. Предпочитает жить поближе к дну. Почти всегда прикрепляется на сторону предметов, которая обращена ко дну водоёма. Hydra oxycnida — щупальца в расслабленном состоянии не превышают длину тела, а если и превышают, то очень незначительно. Полипы крупные, достигают 28 мм. Ширина капсул голотрих изориз не превышает половины их длины. Симбионты Править У так называемых «зеленых» гидр Hydra Chlorohydra viridissima в клетках энтодермы живут эндосимбиотические водоросли рода Chlorella — зоохлореллы.
На свету такие гидры могут длительное время более четырёх месяцев обходиться без пищи, в то время как искусственно лишённые симбионтов гидры без кормления погибают через два месяца. Зоохлореллы проникают в яйцеклетки и передаются потомству трансовариально. Другие виды гидр в лабораторных условиях иногда удается заразить зоохлореллами, однако устойчивого симбиоза при этом не возникает. Именно с наблюдений за зелёными гидрами начал свои исследования А. Хищники и паразиты Править На гидр могут нападать мальки рыб, для которых ожоги стрекательных клеток, видимо, довольно чувствительны: схватив гидру, малёк обычно выплёвывает её и отказывается от дальнейших попыток съесть. На поверхности тела гидр в качестве паразитов или комменсалов часто обитают Kerona polyporum, триходина и другие инфузории. К питанию тканями гидр приспособлен ветвистоусый рачок из семейства хидорид Anchistropus emarginatus.
Тканями гидр могут также питаться турбеллярии микростомы , которые способны использовать непереваренные молодые стрекательные клетки гидр в качестве защитных клеток — клептокнид. История открытия и изучения Править Видимо, впервые описал гидру Антонио ван Левенгук. Подробно изучил питание, движение и бесполое размножение, а также регенерацию гидры Авраам Трамбле , который описал результаты своих опытов и наблюдений в книге «Мемуары к истории одного рода пресноводных полипов с руками в форме рогов» первое издание вышло на французском языке в 1744 г. Открытие Трамбле приобрело громкую славу, его опыты обсуждались в светских салонах и при французском королевском дворе. Эти опыты опровергли господствовавшее тогда убеждение, что отсутствие бесполого размножения и развитой регенерации у животных — одно из важнейших их отличий от растений. Считается, что изучение регенерации гидры опыты А. Трамбле положило начало экспериментальной зоологии.
Научное название роду в соответствии с правилами зоологической номенклатуры присвоил Карл Линней. Название содержит отсылку к многоголовой Лернейской гидре , победа над которой была одним из двенадцати подвигов Геракла. Вероятно, Линней имел в виду регенерационные способности: когда Лернейской гидре отрубали одну голову, на её месте тут же вырастала другая [10].
Четыре другие аналогичные банки он заполнил такими же кусками мяса, но оставил их открытыми. В закрытые банки мухи попасть не могли. Через некоторое время в мясе, лежавшем в открытых контрольных сосудах, появились черви. В закрытых банках червей обнаружено не было. В XIX в.
Пастер, предположивший, что жизнь в питательные среды заносится вместе с воздухом в виде спор. Учёный сконструировал колбу с горлышком, похожим на лебединую шею, заполнил её мясным бульоном и прокипятил на спиртовке. После кипячения колба была оставлена на столе, и вся комнатная пыль и микробы, находящиеся в воздухе, легко проникая через отверстие горлышка внутрь, оседали на изгибе, не попадая в бульон. Содержимое колбы долго оставалось неизменным.
На теле животного обычно в нижней трети туловища образуется почка, она растет, затем формируются щупальца и прорывается рот. Молодая гидра отпочковывается от материнского организма при этом материнский и дочерний полипы прикрепляются щупальцами к субстрату и тянут в разные стороны и ведёт самостоятельный образ жизни. Осенью гидра переходит к половому размножению. На теле, в эктодерме закладываются гонады — половые железы, а в них из промежуточных клеток развиваются половые клетки. При образовании гонад гидр формируется медузоидный узелок. Это позволяет предполагать, что гонады гидры — сильно упрощённые споросаки , последний этап в ряду преобразования утраченного медузоидного поколения в орган. Большинство видов гидр раздельнополы, реже встречается гермафродитизм. Яйцеклетки гидр быстро растут, фагоцитируя окружающие клетки. Зрелые яйцеклетки достигают диаметра 0,5—1 мм. Оплодотворение происходит в теле гидры: через специальное отверстие в гонаде сперматозоид проникает к яйцеклетке и сливается с ней. Зигота претерпевает полное равномерное дробление , в результате которого образуется целобластула. Затем в результате смешанной деламинации сочетание иммиграции и деламинации осуществляется гаструляция. Вокруг зародыша формируется плотная защитная оболочка эмбриотека с выростами-шипиками. На стадии гаструлы зародыши впадают в анабиоз. Взрослые гидры погибают, а зародыши опускаются на дно и зимуют. Весной продолжается развитие, в паренхиме энтодермы путём расхождения клеток образуется кишечная полость, затем формируются зачатки щупалец, и из-под оболочки выходит молодая гидра. Таким образом, в отличие от большинства морских гидроидных, у гидры отсутствуют свободноплавающие личинки, развитие у неё прямое. Рост и регенерация Править Миграция и обновление клеток Править В норме у взрослой гидры клетки всех трёх клеточных линий интенсивно делятся в средней части тела и мигрируют к подошве, гипостому и кончикам щупалец. Там происходит гибель и слущивание клеток. Таким образом, все клетки тела гидры постоянно обновляются. При нормальном питании «избыток» делящихся клеток перемещается в почки, которые обычно образуются в нижней трети туловища. Регенеративная способность Править Гидра обладает очень высокой способностью к регенерации. При разрезании поперек на несколько частей каждая часть восстанавливает «голову» и «ногу», сохраняя исходную полярность — рот и щупальца развиваются на той стороне, которая была ближе к оральному концу тела, а стебелек и подошва — на аборальной стороне фрагмента. При этом сам процесс регенерации не сопровождается усилением клеточных делений и представляет собой типичный пример морфаллаксиса. Гидра может регенерировать из взвеси клеток, полученных путём мацерации например, при протирании гидры через мельничный газ. В экспериментах показано, что для восстановления головного конца достаточно образования агрегата из примерно 300 эпителиально-мускульных клеток. Показано, что регенерация нормального организма возможна из клеток одного слоя только эктодермы или только энтодермы. Фрагменты разрезанного тела гидры сохраняют информацию об ориентации оси тела организма в структуре актинового цитоскелета : при регенерации ось восстанавливается, волокна направляют деление клеток. Изменение структуры актинового скелета может привести к нарушениям в регенерации образованию нескольких осей тела [7]. Опыты по изучению регенерации и модели регенерации Править Уже ранние опыты Абраама Трамбле показали, что при регенерации сохраняется полярность фрагмента. Если разрезать тело гидры поперек на несколько цилиндрических фрагментов, то на каждом из них ближе к бывшему оральному концу регенерируют гипостом и щупальца в экспериментальной эмбриологии гидры закрепился термин «голова» для обозначения орального конца тела , а ближе к бывшему аборальному полюсу — подошва «нога». При этом у тех фрагментов, которые располагались ближе к «голове», быстрее регенерирует «голова», а у располагавшихся ближе к «ноге» — «нога». Позднее опыты по изучению регенерации были усовершенствованы в результате применения методики сращивания фрагментов разных особей. Если вырезать из боковой стороны туловища гидры фрагмент и срастить его с телом другой гидры, то возможны три исхода опыта: 1 фрагмент полностью сливается с телом реципиента; 2 фрагмент образует выступ, на конце которого развивается «голова» то есть превращается в почку ; 3 фрагмент образует выступ, на конце которого образуется «нога». Выяснилось, что процент образования «голов» тем выше, чем ближе к «голове» донора взят фрагмент для пересадки и чем дальше от «головы» реципиента он помещен. Эти и аналогичные опыты привели к постулированию существования четырёх веществ-морфогенов, регулирующих регенерацию — активатора и ингибитора «головы» и активатора и ингибитора «ноги». Эти вещества, согласно данной модели регенерации, образуют концентрационные градиенты: в районе «головы» у нормального полипа максимальна концентрация как активатора, так и ингибитора головы, а в районе «ноги» — максимальна концентрация и активатора, и ингибитора ноги. Эти вещества действительно были обнаружены. У человека он присутствует в гипоталамусе и кишечнике и в той же концентрации обладает нейротрофическим действием. У гидры и млекопитающих этот пептид обладает также митогенным действием и влияет на клеточную дифференцировку. Активатор ноги — тоже пептид с молекулярной массой, близкой к 1000 Да. Ингибиторы головы и ноги — низкомолекулярные гидрофильные вещества небелковой природы. В норме все четыре вещества выделяются нервными клетками гидры. Активатор головы имеет большее время полужизни около 4 ч , чем ингибитор 30 мин и медленнее диффундирует, так как связан с белком-носителем. Ингибитор головы в очень низкой концентрации подавляет выделение активатора, а в 20 раз большей концентрации — своё собственное выделение. Ингибитор ноги также ингибирует выделение активатора ноги. Молекулярные механизмы регенерации Править Этот раздел статьи ещё не написан. Согласно замыслу одного или нескольких участников Википедии, на этом месте должен располагаться специальный раздел. Вы можете помочь проекту, написав этот раздел. Эта отметка установлена 31 декабря 2016 года. Получение «безнервных» гидр Править При регенерации, как и при росте и бесполом размножении, эпителиально-мускульные клетки делятся самостоятельно, причем клетки эктодермы и энтодермы — две независимые клеточные линии. Остальные типы клеток нервные, стрекательные и железистые развиваются из промежуточных. Убив делящиеся промежуточные клетки высокой дозой радиации или колхицином , можно получить «безнервных», или эпителиальных гидр — они продолжают расти и почковаться, но отделяющиеся почки лишены нервных и стрекательных клеток.
Гидра, как и другие низшие многоклеточные животные, не имеет кровеносной системы. Газообмен и питание осуществляются путем диффузии непосредственно через поверхность тела. Кислород и питательные вещества поступают из окружающей воды. Отходы и углекислый газ удаляются тем же путем. Таким образом, гидрам не требуется циркулирующая жидкость например, кровь для переноса питательных веществ, кислорода и отходов. Что помогает гидре регенерировать? Гидра обладает исключительной способностью к регенерации благодаря своим: Поперечной и продольной ампутации: Гидра может восстанавливать недостающие части тела, независимо от направления среза. Реагрегации клеток: Диссоциированные клетки гидры могут объединяться и регенерировать в целых особей. Почему гидры бессмертны? Гидры уникальны, потому что их стволовые клетки существуют в состоянии постоянного обновления. При хранении в безопасности и изоляции эти организмы не проявляют признаков старения. Чувствует ли гидра боль? Реакция гидры на боль Гидра, представитель типа кишечнополостных, демонстрирует исключительную способность к регенерации, которая делает ее практически бессмертной. Поскольку гидра лишена центральной нервной системы и болевых рецепторов, ее способность чувствовать боль остается неизвестной. Дополнительная информация: Гидра обладает радиальной симметрией, что означает, что ее тело не имеет определенной передней или задней части. У нее есть две основные формы тела: полип прикрепленный и медуза плавающая. Гидра питается мелкими водными организмами, используя свои стрекательные клетки для парализации добычи.
Каков процесс питания гидры?
- Остались вопросы?
- Пресноводная гидра — строение, питание, размножение, регенерация
- Гидра пресноводная: внешний вид, способ дыхания, размножение и местообитание
- Простейшие Дыхание Подавляющее большинство простейших аэробные организмы
- Гидры — Википедия
- Внутреннее строение гидры
Представители класса гидроидные и основные их особенности
Другие представители класса Гидроидные Обелия Этот организм, в отличие от гидры пресноводной, рассмотренной ранее, обитает в морской воде, а в жизненном цикле есть смена поколений, хоть и преобладающей стадией развития является бесполое поколение — полип. Полипы обелии образуют колонии. Морской кораблик португальский кораблик — крупный колониальный полип, щупальце которого обращены вниз. Класс Медузы сцифоидные медузы или сцифомедузы Общая характеристика медуз Морские животные В жизненном цикле преобладает медуза. У некоторых видов стадия полипа, а следовательно, и чередование поколений отсутствует на ЕГЭ считаем, что все кишечнополостные, кроме гидры пресноводной и коралловых полипов, имеют чередование поколений Движение за счет сокращение колокола тела медузы реактивное движение. Очень развита мезоглея. Достигают гораздо более крупных размеров, чем гидроидные медузы, например диаметр медузы цианеи волосистой достигает двух метров. Нервная система диффузного типа, однако, в отличие от гидры имеет значительные скопления нервных клеток по краю зонтика.
Размножение медуз Гонады развиваются в энтодерме. Медузы — раздельнополые животные. Оплодотворение в основном наружное. После оплодотворения образуется яйцо, из которого выходит личинка — планула.
Вместо этого, гидра обменивается газами включая кислород и углекислый газ с окружающей средой через свою тонкую эпителиальную ткань. Гидра населяет пресные водоемы и обычно обитает в воде. Она поглощает кислород, находящийся в воде, и выделяет углекислый газ, осуществляя дыхание путем диффузии.
В теле животного созревают яйцеклетки и сперматозоиды. Мужские клетки, покинув тело, оплодотворяют яйцеклетки других гидр. После функции размножения взрослые особи гибнут, а плодом их творения становятся зиготы, покрытые плотным «куполом» для того, чтобы выжить суровой зимой. Весной зигота активно делится, растет, а затем прорывает оболочку и начинает самостоятельную жизнь. Чем питается гидра Для питания гидры характерен рацион, состоящий из миниатюрных обитателей водоемов — инфузорий, водяных блох, планктонных рачков, насекомых, мальков рыб, червей. Если жертва небольшая, гидра заглатывает ее целиком. Если же добыча крупного размера, хищница способна широко раскрыть рот, и значительно растянуть тело. Регенерация гидры обыкновенной Гидра обладает уникальной способностью: она не стареет. Каждая клеточка животного обновляется через пару-тройку недель. Даже потеряв часть тела, полип способен отрастить точно такую же, восстановив симметрию. Гидра, разрезанная пополам, не умирает: из каждой части вырастает новое существо. Биологическое значение гидры пресноводной Гидра пресноводная — незаменимый элемент в пищевой цепочке. Это уникальное животное играет важную роль в очищении водоемов, регулируя популяцию других его обитателей. Гидры — ценный объект исследования ученых в биологии, медицинской и научной областях.
Часть 2 27. Рассмотрите рисунок с изображением стопы человека. Как называют нарушение формы стопы, изображённое на рисунке под цифрой 2? Назовите одну из причин появления такого заболевания у человека. Прочитайте текст и выполните задание 28. Начало этим представлениям, получившим название «Теория самозарождения», положил древнегреческий философ Аристотель. В XVII в. Реди высказал предположение о том, что живое рождается только от живого и никакого самозарождения нет. С этой целью он провел эксперимент.
Гидра: удивительное животное, которое почти невозможно убить
Рис. 5. Строение стенки тела гидры. Рис. 5. Строение стенки тела гидры. Дыхание у гидры осуществляется всей поверхностью тела. ФАЙЛ ПО СТРОЕНИЮ ГИДРЫ Забирай из ВК — из Телеграм-канала — +0BlroBuXgs05ZTQy Готовься к ОГЭ вместе с Умскул! Гидра относится к типу Кишечнополостные, для которых нехарактерно наличие дыхательной системы, поэтому дышит гидра через всю поверхность тела.
Дыхание гидры: особенности и механизмы
это первый вариант: всю повер. Определи переднюю и заднюю часть тела инфузории туфельки. Образовательные, основные, проводящие, запасающие, покровные, механические Поступление кислорода в тело гидры происходит через 1) жаберные щели2).
Реалные Ответы и Задание Пробные ОГЭ по Биологии 9 класс(75 регион) 20.02.2024г
Именно его раздражение становится катализатором выброса стрекательной нити. При помощи стрекательных клеток гидра реализует прикрепленный образ жизни, а также нападет на добычу, парализует ее и замедляет приближение опасности. Дыхание гидры происходит при помощи кислорода, растворенного в воде. Собственных органов дыхания у нее нет. Поглощение кислорода происходит всей поверхностью тела. В ходе собственного питания гидра способна к «окислению» даже довольно крупной добычи.
Проглоченная животным пища следует в гастральную полость. Ротовое отверстие гидры характеризуется довольно большой растяжимостью. С помощью псевдоподий клетки энтодермы затягивают частицы пищи внутрь, где они и перевариваются. Замечание 2 Результатом процесса пищеварения является скопление питательных веществ в клетках энтодермы, а также появление зернышек продуктов выделения. Эти зернышки периодически выбрасываются в гастральную полость небольшими порциями.
Кровеносная система и размножение Кровеносной системы у гидры тоже нет. Углекислый газ и другие ненужные вещества выводятся через эктодерму. Нервная система довольно примечательна: под кожно-мускульными клетками находятся нервные клетки звездчатой формы.
Для многих кишечнополостных характерно чередование поколений. К примеру, из полипов образуются медузы, а из их оплодотворенных личинок происходит развитие планул.
Последние, в свою очередь, дают начало полипам. Также гидры способны к восстановлению утраченных частей тела — это возможно благодаря регенерации. Она заметно увеличивает возможности адаптации организмов к условиям окружающей среды. Стрекательные клетки и дыхание Значимым для пресноводной гидры ароморфозом является и наличие стрекательных клеток. Стрекательные клетки располагаются в овальной капсуле и заполнены жидкостью.
Под стрекательной нитью понимают тонкий осязательный волосок. Именно его раздражение становится катализатором выброса стрекательной нити. При помощи стрекательных клеток гидра реализует прикрепленный образ жизни, а также нападет на добычу, парализует ее и замедляет приближение опасности. Дыхание гидры происходит при помощи кислорода, растворенного в воде. Собственных органов дыхания у нее нет.
Поглощение кислорода происходит всей поверхностью тела. В ходе собственного питания гидра способна к «окислению» даже довольно крупной добычи.
Запишите в таблицу выбранные цифры под соответствующими буквами. Расположите в правильном порядке пункты инструкции по проращиванию семян. Запишите цифры, которыми обозначены пункты инструкции, в правильной последовательности в таблицу.
История открытия механизмов дыхания у гидры Исследования механизмов дыхания гидры начали проводиться в XIX веке. Одним из первых ученых, кто обратил внимание на это явление, был немецкий зоолог Эрнст Геккель. В 1871 году Геккель опубликовал результаты своих исследований, в которых он показал, что гидра имеет особую систему дыхания, связанную с обменом газов. Согласно его наблюдениям, гидра обладает способностью кислородного и азотного обмена с окружающей средой.
Изначально этот обмен осуществляется через эпителиальный слой тела гидры. Для этого организм использует специальные клетки — эпителиоциты. С течением времени другие ученые продолжили исследования и выяснили, что дыхание у гидры не ограничивается только эпителиальным слоем. Гидра также способна проводить газообмен через свои оконечности — в том числе и через тентакли.
Это открытие привело к расширению наших знаний о механизмах дыхания у этого многоклеточного организма. Сегодня, благодаря усилиям многих ученых, мы имеем более полное представление о том, как гидра дышит и какую роль играет дыхание в ее жизни. Изучение дыхательных процессов у гидры помогает нам лучше понять эволюцию и адаптацию многоклеточных организмов к различным условиям окружающей среды. Анатомическое строение гидры и его взаимосвязь с дыхательной системой Гидра представляет собой пресноводное многоклеточное животное из класса полипов.
Она имеет уникальную анатомическую структуру, которая обеспечивает ей способность к дыханию и выполнению других жизненно важных процессов.