Для сравнения — в проекте международного термоядерного реактора ITER предполагается достижение ионной температуры в 8 и выше килоэлектронвольт. После первого запуска британский термоядерный реактор выпустил расплавленную массу заряженного газа. Личным рекордом по длительному удержанию разогретой плазмы может похвастаться термоядерный реактор под названием Experimental Advanced Superconducting Tokamak (EAST. В плазменном реакторе производится плавление практически любых материалов, после чего из них получаются полезные композиты.
Меню сайта
Российские учёные разработали новый материал для термоядерного реактора | Первая плазма в Международном экспериментальном термоядерном реакторе будет получена в 2025-2026 годах. |
#Плазменный_реактор_Мехрана_Кеше.День №3 Отслоился #нано_слой_плазма_стала_четкой | • Термоядерный реактор Zap сначала вдувает газ в камеру, затем мощный импульс энергии ионизирует его в плазменную нить, проводящую сверхсильный ток. |
Металлурги Росатома начали изготовление реакторной установки для АЭС «Пакш-2» в Венгрии
В отличие от урана торий представлен в природе практически одним изотопным состоянием, и поэтому он легко и с малыми затратами выделяется из природного сырья. При поглощении нейтронов изотоп тория 232Th превращается в изотоп урана 233U, который хорошо делится тепловыми нейтронами. По количеству выделяемой энергии эта реакция сопоставима с реакцией, используемой в ядерных реакторах с топливным циклом, использующем только природные изотопы урана 235U и 238U. Особенность применения ториевого топлива состоит в том, что в такой гибридной энерговыделяющей установке при прекращении поступления дополнительных нейтронов от внешнего источника ядерные реакции деления сразу же затухают. Таким образом, гибридные реакторы на ториевом топливе не способны к «саморазгону», что обеспечивает значительно большую безопасность ториевой энергетики. В настоящее время уже существуют различные проекты гибридных реакторов, в которых плазменным источником нейтронов служит токамак. Альтернативой может стать использование в качестве источника дополнительных нейтронов длинной магнитной ловушки. О принципах работы длинной магнитной ловушки в качестве источника нейтронов рассказывает главный научный сотрудник ИЯФ СО РАН, доктор физико-математических наук профессор Андрей Аржанников: «На начальном этапе при помощи специальных плазменных пушек создается относительно холодная плазма, количество которой поддерживается дополнительной подпиткой газом из атомов тяжелого водорода — дейтерия.
Инжекция в такую плазму нейтральных атомарных пучков с энергией частиц масштаба 100 кэВ обеспечивает образование в ней высокоэнергетичных ионов дейтерия и трития это тяжелые изотопы водорода , а также поддержание необходимой температуры. Сталкиваясь друг с другом, ионы дейтерия и трития соединяются в ядро гелия, при этом происходит выделение высокоэнергетических нейтронов.
Использование установки позволит испытать прототипы теплозащитной облицовки камеры для будущего термоядерного реактора ИТЭР, которые создаются в России", - сказали ТАСС в университете. НИУ "МЭИ" также исследует методы охлаждения при длительной эксплуатации компонентов будущего экспериментального реактора, расположенных внутри камеры, уточнили в вузе.
Установка ПЛМ представляет собой магнитную ловушку для получения и нагрева плазмы.
Старт изготовлению деталей в торжественной обстановке дан в присутствии российской и венгерской делегаций, в которые вошли президент — генеральный директор АЭС «Пакш-2» Гергей Якли, мэр города Пакш Петер Сабо, вице-президент АО «Атомстройэкспорт» — директор проекта по сооружению АЭС «Пакш» Виталий Полянин, первый замглавы машиностроительного дивизиона Росатома Андрей Синяков. Обечайки — важный конструктивный элемент корпуса реактора. Они представляют собой пустые цилиндры, которые свариваются между собой. Детали изготавливают на одном из крупнейших в Европе автоматизированном кузнечном комплексе.
Затем они будут направлены на специализированные крупногабаритные токарно-карусельные станки для механической обработки. Работы для этого ведутся параллельно как на строительной площадке в Пакше, так и в нескольких тысячах километров от Венгрии — в Санкт-Петербурге.
Это позволяет атомам сливаться, выделяя огромное количеств энергии. Примером этой реакции служит Солнце, в недрах которого водород превращается в гелий и ряд тяжелых элементов.
Однако поскольку термоядерная плазма состоит из двух компонентов, ядер и электронов, которые отличаются по массе, они нагреваются и остывают с разной скоростью. Быстрое охлаждение электронов может воспрепятствовать нагреву плазмы. Что умеют программные роботы Стартап Zap Energy был основан как раз для решения проблемы преждевременного охлаждения электронов. В основу своего подхода физики положили известный Z-пинча, который вместо сложных и дорогих магнитных катушек использует для фиксации плазмы электромагнитное поле, возникающее внутри нее самой.
Термоядерный реактор KSTAR смог удержать раскалённую плазму в течение 30 секунд
Выдано Роскомнадзор. Учредитель — федеральное государственное унитарное предприятие «Всероссийская государственная телевизионная и радиовещательная компания». Главный редактор — Панина Елена Валерьевна. Все права на любые материалы, опубликованные на сайте, защищены в соответствии с российским и международным законодательством об авторском праве и смежных правах.
От энергетики до космоса: новые возможности плазмы» Комплексная программа развития техники, технологий и научных исследований в области использования атомной энергии в РФ продлена до 2030 года. Указ об этом подписал президент Владимир Путин.
Оно остается наиболее распространенной и наблюдаемой формой материи в нашей Вселенной.
Одним из свойств, характеризующих плазму, остается ее способность поддерживать коллективное движение, при котором электроны и ионы колеблются в унисон. Эти вибрации подобны ритмичному танцу.
Например, сдвиги средней энергии нейтронов от номинального значения в 14 мегаэлектронвольт связаны с температурой ионов, средней кинетической энергией ионов и скоростью плазмы. Материалы по теме:.
Глава российского агентства ИТЭР рассказал о планах по созданию демореактора
Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER | Пуск экспериментального термоядерного реактора и получение на нем первой плазмы запланирован на 2025 год. |
Впервые в мире термоядерную плазму протестировали в токамаке нового поколения | Обслуживающие реактор JT-60SA специалисты пока не сообщили о параметрах полученной в реакторе плазмы. |
В термоядерном реакторе США обнаружили аномалию: Наука: Наука и техника: | Этот реактор использует магнитные поля от сверхпроводящих катушек для удержания ионизированного газа в вакуумной камере в форме пончика, с целью стимулирования слияния. |
Глава российского агентства ИТЭР: Первую плазму реактора зажгут не раньше 2025 года | В рамках эксперимента внутри реактора плазму разогрели до 50 миллионов градусов Цельсия. |
В России запущена уникальная плазменная установка
Хотя плазма удерживается и сжимается при помощи магнитного поля, её потоки всё равно могут соприкасаться со стенкой реактора. Они создают магнитное поле вокруг плазменного тора индукцией 11,8 Тл и запасают энергию 41 гигаджоулей. После первого запуска британский термоядерный реактор выпустил расплавленную массу заряженного газа. Указ об этом подписал президент Владимир Путин Федеральный проект "Термоядерные и плазменные технологии". Новый реактор потребовался после того, как в прошлом году компания продемонстрировала увеличение срока жизни плазмы в Z-pinch реакторе своей конструкции при силе тока более.
В Бурятии протестируют плазменный реактор по утилизации отходов
Термоядерный реактор основан на реакции синтеза изотопов водорода, поэтому он гораздо более экологичный и безопасный по сравнению с существующими атомными реакторами. В комплексе термоядерного синтеза NIF обнаружили аномальные энергии ионов плазмы. Красильников заявил, что первую плазму термоядерного реактора ИТЭР зажгут не раньше 2025 года.
Российские ученые сделали важный шаг в разработке будущего термоядерного реактора ДЕМО
На Совете по науке и инновациям учёные предложили использовать передвижной агрегат в местах массового отдыха туристов, где скапливается наибольшее количество пластикового мусора. Установка экологична — выделяемые при сжигании вредные газы под воздействием высоких температур разлагаются на безвредные составляющие. Минприроды и Минпрому поручено проработать вопрос по установке агрегата в медучреждениях для утилизации медицинских отходов, а в дальнейшем провести испытания по переработке бытового мусора.
Как известно из курса механики, в замкнутых системах существует закон сохранения момента импульса, который проявляется в том, что если вы попытаетесь наклонить вращающееся тело, то возникнет возвращающая сила, именуемая гироскопической. Именно этот закон сохранения обеспечивает вашу устойчивость при движении на двухколёсном велосипеде. То же самое справедливо и для движущихся заряженных частиц: если происходит искривление силовой линии магнитного поля магнитное поле меняется по длине установки , то на частицу неизбежно начинает действовать сила, которая будет возвращать частицу в исходное положение, и если эта сила больше некоторого значения, то частица от такого «искривления силовой линии» отразится в противоположную сторону, как от зеркала поэтому в иностранной литературе установки, реализующие данный принцип, называются магнитными зеркалами, в русскоязычной нотации — пробкотрон. Однозначно говорить о «преимуществах» или «недостатках» одной системы над другой кажется не совсем корректно, — это две разные концепции, которые преследуют одну и ту же цель. Однако можно отметить принципиальные отличия.
Во-первых, в открытых ловушках более эффективно используется магнитное поле, удерживающее плазму. Дело в том, что давление плазмы в термоядерном реакторе уравновешивается давлением удерживающего магнитного поля. Закрытые системы устроены так, что для устойчивого удержания давление плазмы может составлять только малую долю от давления магнитного поля установки. В открытых же, наоборот, можно удерживать очень плотную плазму. Кроме того, они «видятся» проще в инженерном плане если для термоядерного синтеза в принципе можно говорить о простоте конструкции. Магнитная система состоит из простых катушек, поэтому установка может состоять из отдельных модулей, что делает её конструкцию более дешёвой и лёгкой в сборке, а её ремонт в случае выхода из строя отдельного модуля может быть выполнен гораздо быстрее. С другой стороны, в отличие от ловушек закрытого типа, в открытых ловушках силовые линии магнитного поля пересекают торцевые поверхности плазмы, что приводит к большим потерям частиц из системы.
Требуется прилагать дополнительные усилия для того, чтобы ограничить вытекание плазмы из ловушки вдоль магнитного поля. Один из основных методов, которые мы рассматриваем, это запирание потока плазмы многопробочными секциями на торцах установки. Иной стороной этого же «недостатка» является то, что вместе с рабочим веществом систему покидают тяжёлые примеси и продукты термоядерных реакций. То, что является существенной проблемой для закрытых систем, в открытых решается автоматически. Проводятся ли работы в области прикладной физики материаловедение? Идея многопробочного удержания плазмы была предложена в 1971 г. Будкером, В.
Мирновым и Д.
Сахаров, преподававший в МЭИ на кафедре электрофизики, предложил использовать магнитное поле для удержания плазмы с целью достижения управляемого термоядерного синтеза, а сейчас уже мы смогли найти многие решения этих проблем и предложений", - приводит пресс-служба вуза слова его ректора Николая Рогалева. Новости по теме.
Однако поскольку термоядерная плазма состоит из двух компонентов, ядер и электронов, которые отличаются по массе, они нагреваются и остывают с разной скоростью. Быстрое охлаждение электронов может воспрепятствовать нагреву плазмы. Что умеют программные роботы Стартап Zap Energy был основан как раз для решения проблемы преждевременного охлаждения электронов. В основу своего подхода физики положили известный Z-пинча, который вместо сложных и дорогих магнитных катушек использует для фиксации плазмы электромагнитное поле, возникающее внутри нее самой. Сильные токи, проходя через жгуты плазмы, нагревают и сжимают ее. Проблема заключается в том, что такую плазму сложно долго удерживать, пишет IE.
Глава российского агентства ИТЭР рассказал о планах по созданию демореактора
Россия отправила во Францию катушку для получения плазмы в термоядерном реакторе | НИУ "МЭИ" также исследует методы охлаждения при длительной эксплуатации компонентов будущего экспериментального реактора, расположенных внутри камеры, уточнили в вузе. |
В РФ успешно получена первая термоядерная плазма на токамаке Т-15МД — | Сварка защитной оболочки плазменного реактора установки плазменной газификации ПЛАЗАРИУМ MGS-100. |
Компактный реактор установил рекорд по нагреву плазмы
Разработка новых сплавов и методов обработки поверхности требует постоянного проведения дореакторных испытаний. Эффект от каждого минимального изменения в составе сплава или в технологии его обработки должен быть проверен в условиях, приближенных к реакторным. Для этого берется специальный стальной автоклав с толстыми стенками, в который заливается определенное количество воды и помещаются исследуемые образцы новых материалов. После этого автоклав герметизируется и устанавливается в печь, в которой нагревается до эксплуатационной температуры оболочек твэлов. А вот дальше придется запастись терпением, потому как прежде, чем можно будет сделать какой-то вывод о коррозионной стойкости исследуемых образцов, должен пройти не один месяц.
Ведь если даже в активной зоне реактора коррозия оболочек твэлов длится годами, то что уж говорить про условия водной среды автоклава, где, в отличие от реактора, нет химически активных продуктов радиолиза воды и реакторного облучения, ускоряющего коррозию. Очевидно, что в условиях, когда каждый шаг разработчика должен верифицироваться испытаниями, длящимися месяцами, невозможно говорить об интенсивном развитии реакторных материалов. Поэтому со стороны материаловедов давно назрел запрос на какой-то экспресс-метод коррозионных испытаний. ТВС, загруженная в активную зону реактора Как можно ускорить процесс?
Но как ускорить коррозионные испытания материалов, если даже в сверхагрессивной среде водного теплоносителя процесс коррозии оболочек твэлов занимает годы? Что может быть еще агрессивнее? Это плазма. Если поместить испытательный образец в частично ионизованную низкотемпературную плазму, то поток химически активных ионов и радикалов, контактирующих с поверхностью объекта, окажется даже более интенсивным, чем это бывает в активной зоне легководного реактора.
До этого холодная война достигла своего пика: сверхдержавы бойкотировали Олимпиады, наращивали ядерный потенциал и на какие-либо переговоры идти не собирались. Этот саммит двух стран на нейтральной территории примечателен и другим важным обстоятельством. Спустя год между американскими, советскими, европейскими и японскими учеными было достигнуто соглашение по проекту, началась проработка концептуального дизайна крупного термоядерного комплекса ITER.
Проработка инженерных деталей затянулась, США то выходили, то возвращались в проект, к нему со временем присоединились Китай, Южная Корея и Индия. Участники разделяли обязанности по финансированию и непосредственным работам, а в 2010 году наконец стартовала подготовка котлована под фундамент будущего комплекса. Его решили строить на юге Франции возле города Экс-ан-Прованс.
Так что же такое ITER? Это огромный научный эксперимент и амбициозный энергетический проект по строительству самого большого токамака в мире. Сооружение должно доказать возможность коммерческого использования термоядерного реактора, а также решить возникающие физические и технологические проблемы на этом пути.
Из чего состоит реактор ITER? Токамак — это тороидальная вакуумная камера с магнитными катушками и криостатом массой в 23 тыс. Как уже понятно из определения, у нас есть камера.
Глубокая вакуумная камера. В случае с ITER это будет 850 кубометров свободного объема камеры, в котором на старте будет всего 0,1 грамма смеси дейтерия и трития. Вакуумная камера, где и обитает плазма.
Инжектор нейтрального луча и радиочастотный нагрев плазмы до 150 млн градусов. Сверхпроводящие магниты, которые обуздают плазму. Бланкеты, защищающие камеру и магниты от бомбардировки нейтронами и нагрева.
Дивертор, который отводит тепло и продукты термоядерной реакции. Инструменты диагностики для изучения физики плазмы. Включают манометры и нейтронные камеры.
Криостат — огромный термос с глубоким вакуумом, который защищает от нагрева магниты и вакуумную камеру А вот так выглядит «маленькая» вакуумная камера с моделями работников внутри. Она 11,4 метра в высоту, а вместе с бланкетами и дивертором будет весить 8,5 тыс. Внутри них циркулирует вода.
Вырывающиеся из плазмы свободные нейтроны попадают в эти бланкеты и тормозятся водой. Из-за чего она нагревается. Сами бланкеты защищают всю остальную махину от теплового, рентгеновского и уже упомянутого нейтронного излучения плазмы.
Такая система необходима для того, чтобы продлить срок работы реактора. Каждый бланкет весит порядка 4,5 тонны, их будет менять роботизированная рука примерно раз в 5—10 лет, так как этот первый ряд обороны будет подвержен испарению и нейтронному излучению. Но это далеко не все.
К камере присоединяется внутрикамерное оборудование, термопары, акселерометры, уже упомянутые 440 блоков бланкетной системы, системы охлаждения, экранирующий блок, дивертор, магнитная система из 48 элементов, высокочастотные нагреватели плазмы, инжектор нейтральных атомов и т. И все это находится внутри огромного криостата высотой 30 метров, имеющего такой же диаметр и объем 16 тыс.
Он [токамак] с первого момента запустился. Сложнейшая дорогостоящая установка запустилась сразу и сейчас работает, набирает мощность и выходит на мировые параметры. Устойчиво работает», — сказал Ковальчук.
Производством этих кристаллов занята лаборатория во Фрайбурге. Всего для ITER будет поставлено 60 алмазных окон [28]. Ion Cyclotron Resonance Heating разогревает ионы плазмы. Принцип этого нагрева такой же, как и бытовой СВЧ-печи. Частицы плазмы под воздействием электромагнитного поля высокой мощности с частотой от 40 до 55 МГц начинают колебаться, получая дополнительную кинетическую энергию от поля. При столкновениях ионы передают энергию другим частицам плазмы. Система состоит из мощного радиочастотного генератора на тетродах будет установлен в Здании радиочастотного нагрева плазмы , системы волноводов для передачи энергии и излучающих антенн [29] , расположенных внутри вакуумной камеры. Инжектор нейтральных атомов[ править править код ] Инжектор «выстреливает» в плазменный шнур мощный пучок из атомов дейтерия, разогнанных до энергии 1 МэВ. Эти атомы, сталкиваясь с частицами плазмы, передают им свою кинетическую энергию и тем самым нагревают плазму. Поскольку разогнать в электрическом поле нейтральный атом невозможно, его нужно сперва ионизировать. Затем ион по сути, ядро дейтерия разгоняется в циклотроне до необходимой энергии. Теперь быстродвижущийся ион следует снова превратить в нейтральный атом. Если этого не сделать, ион будет отклонён магнитным полем токамака. Поэтому к разогнанному иону следует присоединить электрон. Для деионизации ион проходит через ячейки, наполненные газом. Здесь ион, захватывая электрон у молекул газа, рекомбинирует. Не успевшие рекомбинировать ядра дейтерия отклоняются магнитным полем на специальную мишень, где тормозятся, рекомбинируют и могут быть использованы вновь. Требования к мощности «фабрики атомов» ITER настолько велики, что на этой машине впервые пришлось применить систему, которой не было на предшествующих токамаках. Это система отрицательных ионов. На таких высоких скоростях положительный ион просто не успевает превратиться в нейтральный атом в газовых ячейках. Поэтому используются отрицательные ионы, которые захватывают электроны в специальном радиочастотном разряде в среде плазмы дейтерия, экстрагируются и разгоняются высоким положительным потенциалом 1 МВ по отношению к источнику ионов , затем нейтрализуются в газовой ячейке. Оставшиеся заряженными ионы отклоняются электростатическим полем в специальную охлаждаемую водой мишень. При потреблении примерно 55 МВт электроэнергии, каждый из двух планируемых на ITER инжекторов нейтральных атомов способен вводить в плазму до 16 МВт тепловой энергии. Криостат[ править править код ] Криостат [30] [31] — самый большой компонент токамака. Внутри криостата будут располагаться остальные элементы машины. Криостат, помимо механических функций опора деталей токамака и их защита от повреждений будет выполнять роль вакуумного «термоса», являясь барьером между внешней средой и внутренней полостью. Для этого на внутренних стенках криостата размещены тепловые экраны, охлаждаемые азотным контуром 80 К. Криостат имеет множество отверстий для доступа к вакуумной камере, трубопроводов системы охлаждения, фидеров питания магнитных систем, диагностики, дистанционного манипулятора, систем нагрева плазмы и других. Доставить сборку таких размеров целиком тяжело и дорого, поэтому было принято решение конструктивно разбить криостат на четыре крупных фрагмента поддон, две цилиндрические обечайки и крышка.
#Плазменный_реактор_Мехрана_Кеше.День №3 Отслоился #нано_слой_плазма_стала_четкой
Термоядерный реактор, способный дать человечеству принципиально новый источник энергии, строится во Франции недалеко от Марселя. Размером с девятиэтажное здание даже недостроенная установка представляет собой фантастическое зрелище. Кроме проведения испытаний России самой поручено изготовить 25 узлов. Среди них самый крупный элемент — суперпроводниковая катушка для магнитного удержания плазмы. В феврале готовую и испытанную 200-тонную деталь сначала по морю, а потом по земле доставили из Петербурга во Францию. Какие бы не были сложности сейчас в международных отношениях, это никак не влияет на нашу работу. Человеческие отношения никак не поменялись». Пуск экспериментального термоядерного реактора и получение на нем первой плазмы запланирован на 2025 год.
Однако поскольку термоядерная плазма состоит из двух компонентов, ядер и электронов, которые отличаются по массе, они нагреваются и остывают с разной скоростью. Быстрое охлаждение электронов может воспрепятствовать нагреву плазмы. Что умеют программные роботы Стартап Zap Energy был основан как раз для решения проблемы преждевременного охлаждения электронов. В основу своего подхода физики положили известный Z-пинча, который вместо сложных и дорогих магнитных катушек использует для фиксации плазмы электромагнитное поле, возникающее внутри нее самой. Сильные токи, проходя через жгуты плазмы, нагревают и сжимают ее. Проблема заключается в том, что такую плазму сложно долго удерживать, пишет IE.
В NIF запуск термоядерных реакций проводится с помощью лазеров, которые нагревают так называемые хольраумы — небольшие золотые цилиндры, внутри которых находится капсула с термоядерным топливом, смесью трития и дейтерия. Лазеры облучают внутреннюю стенку цилиндра, которая генерирует тепловое рентгеновское излучение, вызывающее взрыв капсулы. Дейтериево-тритиевое топливо сжимается до давления в сотни гигабар, что создает в его центре горячую точку с температурой около 10 миллионов кельвинов.
После своего тренировочного окна ИИ перешел на следующий уровень — применяя в реальном мире то, чему он научился в симуляторе. Управляя токамаком SPC с переменной конфигурацией TCV , ИИ преобразовывал плазму в различные формы внутри реактора, в том числе такую, которая никогда ранее не наблюдалась в TCV: стабилизирующие «капли», в которых две плазмы сосуществовали одновременно внутри реактора. Визуализация управляемых форм плазмы. Каждое из этих проявлений обладает разным потенциалом для сбора энергии в будущем, если мы сможем поддерживать реакции ядерного синтеза.
Эра термоядерного синтеза
Достоинство этого метода заключается в том, что его можно будет применять непосредственно в реакторе, замеряя количество поглощенного водорода между плазменными разрядами. 22 видео-конференции “Про Плазму” – это основной источник информации про плазму и плазменную воду Мехрана Кеше от русскоязычного плазменного сообщества. В настоящее время уже существуют различные проекты гибридных реакторов, в которых плазменным источником нейтронов служит токамак. Магнитное поле удерживает плазменный жгут от соприкосновения со стенками реактора и не даёт плазме остыть, а также повредить стенки реактора, вследствие чего происходит. Нестабильность плазмы, особенности переноса плазмы и потери из-за волн и турбулентности были серьезной проблемой для удержания плазмы в реакторах термоядерного синтеза. Впервые термоядерный реактор KSTAR Корейского института термоядерной энергетики (KFE) достиг температуры, в семь раз превышающей температуру ядра Солнца.