Катушка полоидального поля нужна для удержания плазмы в термоядерном реакторе ИТЭР. Термоядерный реактор ИТЭР возводят уже несколько десятков лет недалеко от Марселя. Красильников заявил, что первую плазму термоядерного реактора ИТЭР зажгут не раньше 2025 года. Достоинство этого метода заключается в том, что его можно будет применять непосредственно в реакторе, замеряя количество поглощенного водорода между плазменными разрядами.
Термоядерный реактор KSTAR смог удержать раскалённую плазму в течение 30 секунд
На каждую пятитысячную молекулу воды приходится одна молекула тяжёлой воды. Суммарная масса дейтерия в стакане всего несколько микрограмм. Если сжечь дейтерий, который находится в этой воде и только дейтерий! При этом это отнюдь не самая энергетически эффективная реакция синтеза! Если термоядерный синтез будет освоен, то это должно решить все энергетические проблемы человечества.
Следует сразу оговориться, что для синтеза более тяжёлых ядер из лёгких необходимо, чтобы исходные лёгкие ядра сблизились на очень малые расстояния, где начинают играть роль ядерные силы притяжения, превалирующие над электрическими силами отталкивания. Для того чтобы в веществе шли интенсивно термоядерные реакции, оказывается, что его нужно нагреть до таких температур или сжать до таких давлений , что оно заведомо будет находиться в плазменном состоянии. Именно по этой причине задача управляемого термоядерного синтеза стала практически неразрывно связанной с физикой плазмы. Удержание плазмы в лабораторных условиях осуществляется при помощи внешних магнитных полей.
В нашей стране в начале 50-х годов XX века было предложено несколько схем магнитных ловушек. Так, в 1950 году А. Сахаров и И. Тамм предложили удерживать плазму в тороидальном магнитном поле, дополнительно пропуская по плазме электрический ток для её нагрева и стабилизации.
Поскольку силовые линии магнитного поля являются замкнутыми, то такие системы называются закрытыми. Именно это направление сейчас является наиболее развитым. Аналогичную идею удержания плазмы в закрытых системах высказал Лайман Спитцер в 1951 году, который предложил создавать дополнительное магнитное поле не током, протекающим по плазме, а внешними магнитными катушками достаточно сложной формы. Подобные системы называются стеллараторами от лат.
По проекту первая плазма на данной установке будет получена в 2025 году, а к 2035 году токамак должен будет экспериментально продемонстрировать физическую возможность получения энергетически эффективной термоядерной реакции в квазистационарном режиме. Будкером был предложен иной способ удержания плазмы во внешнем магнитном поле такой же способ удержания, независимо от Г. Будкера, был выдвинут Р.
Например, там будут использоваться высокотемпературные сверхпроводники, которые пока нигде не применялись. Они используются при изготовлении катушек.
Аналогичные разработки ведутся в США и в Великобритании. Гаспарян уточнил, что термоядерный реактор безопаснее, потому что в обычном происходит самоподдерживающаяся реакция деления, которая в случае аварии, как на «Фукусиме», может приводить к нежелательным последствиям. В термоядерном реакторе такого сценария быть не может.
Сейчас всё внимание приковано к международному проекту ITER Международный экспериментальный термоядерный реактор. Россия получила ценный опыт при разработке отдельных элементов проекта. С учетом него сейчас проектируется установка ТРТ токамак с реакторными технологиями », — рассказал специалист.
По его словам, помимо уже полученных навыков там будут отрабатываться новые технологии, необходимые для создания реактора, которых еще нет в ITER. Например, там будут использоваться высокотемпературные сверхпроводники, которые пока нигде не применялись.
Такие установки нового поколения на базе импульсных плазменных ускорителей наряду с токамаками могут рассматриваться как один из вариантов внешнего нейтронного источника для гибридного термоядерного реактора, особенно на начальной стадии разработки его компонентов. Высокая энергетическая эффективность, компактность и относительно низкая стоимость по сравнению с ядерными реакторами делают их также конкурентоспособными при производстве ряда изотопов для ядерной медицины, особенно короткоживущих. Для справки: Разрабатываемый источник на базе столкновения сгустков дейтериевой плазмы должен обеспечить получение нейтронного выхода реакции синтеза 1013 нейтронов за импульс в 2023 году. При условии завершения реконструкции энергетической базы питания плазменных ускорителей в 2023 году, к концу 2024 года нейтронный выход планируется увеличить до 1014 нейтронов за импульс.
Термоядерный реактор KSTAR смог удержать раскалённую плазму в течение 30 секунд
Металлурги Росатома начали изготовление реакторной установки для АЭС «Пакш-2» в Венгрии | Специалисты Национального исследовательского университета "МЭИ" запустили плазменную установку, которая позволит испытать облицовку камеры будущего термоядерного реактора. |
Во Франции стартовала последняя фаза сборки крупнейшего в мире термоядерного реактора | Первая плазма в Международном экспериментальном термоядерном реакторе будет получена в 2025-2026 годах. |
Выбор сделан - токамак плюс | Чтобы продлить существование плазмы, загрязненный поток направляют на специальный элемент реактора, дивертор. |
Выбор сделан - токамак плюс - Российская газета | Магнитное поле удерживает плазменный жгут от соприкосновения со стенками реактора и не даёт плазме остыть, а также повредить стенки реактора, вследствие чего происходит. |
Заявка успешно отправлена!!
- Реквизиты компании
- Telegram: Contact @plazma_station
- Реквизиты компании
- Компактный термоядерный реактор американского стартапа разогрел плазму до 37 млн °С
- Россия первой в мире запускает термоядерный реактор | Пикабу
Проблема термоядерного реактора оказалась преимуществом для плазменного двигателя
Магнитное поле удерживает плазменный жгут от соприкосновения со стенками реактора и не даёт плазме остыть, а также повредить стенки реактора, вследствие чего происходит. Предполагается, что плазма, выдаваемая реактором, будет самонагреваться и выдавать в 10 раз больше тепла, чем в нее заложено. В распоряжении ученых нет реактора размером с Солнце, тяготение которого сжимает плазму так, что она становится в 20 раз плотнее стали. Плазма в реакторе ИТЭР должна быть в десять раз горячее солнечного ядра, а температура в его криостате в 30 раз ниже, чем в морозильнике.
Прорыв в физике: ИИ успешно управляет плазмой в эксперименте по ядерному синтезу
Основная проблема заключается в том, чтобы получить от него большее количества энергии , чем он потребит. Основным минусом реакторов типа токамак является такая высокая температура плазмы, которой на Земле просто не существует. Именно поэтому плазму приходится удерживать электромагнитным полем, на поддержание которого уходит большая часть энергии, потребляемой реактором. Ранее Readovka сообщала что правительство РФ выделит Правительство РФ выделит 1,2 трлн на наукуЧернышенко назвал объем финансирования 1,2 трлн на науку.
Однако специалистам Zap Energy удалось подобрать решение этой проблемы нестабильности методом сглаживания потоков плазмы.
Постепенно они увеличивали силу тока и оптимизировали соотношение температуры, плотности и продолжительности Z-пинча для получения стабильной и производительной термоядерной плазмы. Измерения температуры электронов в плазме реактора FuZe показали, что она находится на том же высоком уровне, что и температура ядер, а плазма сохраняет оптимальное тепловое равновесие. В ней будет обновлен блок питания и повышена сила тока до уровня достижения точки «энергетической безубыточности» — момента, когда энергия, выходящая из Z-пинча, будет больше, чем энергия, затрачиваемая на создание плазмы и удерживающего ее магнитного поля.
Снизить издержки переработки такого сырья можно за счет использования плазменных реакторов, в которых химические реакции осуществляются с участием низкотемпературной плазмы. Такие реакторы не требуют использования водорода и дорогостоящих катализаторов и при этом позволяют получать в качестве побочных продуктов ценные вещества. Например, при плазменном пиролизе нефти под воздействием электрических разрядов образуются радикалы и ионы, которые возбуждают молекулы органических соединений. Это приводит к «запуску» специфических реакций, в результате крупные молекулы расщепляются на более мелкие, которые можно использовать во многих химических процессах.
Альфа-нагрев приводит к увеличению реактивности топлива, поскольку повышается средняя кинетическая энергия ионов в образующейся при взрыве капсулы плазме. Предполагается, что температуру ионов, связанную с их кинетической энергией, можно определить по измерению спектров энергии нейтронов, возникающих в реакции синтеза. Такие спектры должны содержать информацию о свойствах нагретой плазмы.
Британский термоядерный реактор сгенерировал первую плазму
НИУ МЭИ запустил одну из мощнейших в мире плазменных установок для будущего реактора ИТЭР | Им удалось разогреть плазму в собственном термоядерном реакторе HL-2M Tokamak (EAST), размещенном в городе Хэфэй. |
В России запущена уникальная плазменная установка | Новости электротехники | Элек.ру | Строительство первого в мире международного термоядерного реактора вышло на новый этап. |
Британский термоядерный реактор сгенерировал первую плазму
Она стала первой подобной установкой в РФ и является одной из 10 наиболее мощных в мире. Использование установки позволит испытать прототипы теплозащитной облицовки камеры для будущего термоядерного реактора ИТЭР, которые создаются в России», - сказали ТАСС в университете. НИУ «МЭИ» также исследует методы охлаждения при длительной эксплуатации компонентов будущего экспериментального реактора, расположенных внутри камеры, уточнили в вузе.
Поэтому со стороны материаловедов давно назрел запрос на какой-то экспресс-метод коррозионных испытаний. ТВС, загруженная в активную зону реактора Как можно ускорить процесс? Но как ускорить коррозионные испытания материалов, если даже в сверхагрессивной среде водного теплоносителя процесс коррозии оболочек твэлов занимает годы? Что может быть еще агрессивнее? Это плазма. Если поместить испытательный образец в частично ионизованную низкотемпературную плазму, то поток химически активных ионов и радикалов, контактирующих с поверхностью объекта, окажется даже более интенсивным, чем это бывает в активной зоне легководного реактора. Если зажечь плазму в парах воды, то на образец, помещенный в нее, будет воздействовать тот же самый ансамбль частиц, что и в водном теплоносителе реактора, но при этом гораздо интенсивнее за счет большего вклада от ионов и радикалов. В результате, сохраняя неизменными механизмы оксидирования и наводороживания то есть насыщения водородом циркониевых сплавов, плазменное облучение заставит протекать эти процессы существенно быстрее по сравнению не только с водной средой автоклава, но и с реальными условиями реактора.
Будущая технология открывает широкие возможности Ученые кафедры физики плазмы Института ЛаПлаз при поддержке Института промышленных ядерных технологий НИЯУ МИФИ работают над тем, чтобы сделать технологию ускоренных плазменных испытаний реальностью. На данный момент им удалось уже значительно продвинуться в этом направлении. В частности, была экспериментально подтверждена гипотеза о воспроизводимости результатов автоклавных испытаний отдельных циркониевых сплавов при плазменном облучении. При этом были найдены режимы облучения, позволяющие ускорить процессы оксидирования и наводороживания циркониевых сплавов в десятки и сотни раз. Сейчас ученые углубляются в изучение физических особенностей протекания процессов оксидирования и наводороживания при плазменном воздействии на сплавы различного состава и различной обработки поверхности, для того, чтобы определить границы применимости плазменного метода и найти режимы облучения, позволяющие достоверно воспроизводить в ускоренном режиме результаты автоклавных испытаний для широкого спектра вариантов модификации сплавов.
В новостных и политических постах действует Особый порядок размещения постов и комментариев. В конце декабря 2020 года в Курчатовском институте будет запущена разрабатываемая с 1950 года экспериментальная термоядерная установка Токамак Т-15МД. Подробнее: В теории термоядерный реактор работает просто.
Дейтерий и тритий помещаются в камеру реактора и разогревается до температуры в миллионы градусов после чего происходит термоядерная реакция с выделением огромного количества энергии, с помощью которой вырабатывается электричество. Главная проблема этого с виду несложного процесса, в том, что удержать разогретую до миллионов градусов субстанцию не способно ни одно вещество во вселенной и в большинстве установок это делают с помощью магнитного моля неимоверной мощности. При этом, плазма должна быть идеально чистой и свободной от каких либо примесей иначе она мгновенно разрушается.
Например, при плазменном пиролизе нефти под воздействием электрических разрядов образуются радикалы и ионы, которые возбуждают молекулы органических соединений. Это приводит к «запуску» специфических реакций, в результате крупные молекулы расщепляются на более мелкие, которые можно использовать во многих химических процессах. Чтобы оценить эти преимущества, ученые из Нижегородского государственного технического университета собрали установку плазменного пиролиза нефти, состоящую из реактора, системы регистрации электрических зарядов и блока сбора образующихся газов. Объем реактора составил 300 куб.
В России протестировали самую мощную плазменную установку в мире
Компактный термоядерный реактор американского стартапа разогрел плазму до 37 млн °С | Собираем плазменные реакторы Кеше. Изготавливаем Тензорные кольца, гармонизаторы и нановосьмерки. |
Глава российского агентства ИТЭР: Первую плазму реактора зажгут не раньше 2025 года | В частности, будут исследованы механизмы взаимодействия плазменных потоков и характеристики нейтронного излучения реакции DD-синтеза. |
Как плазменные технологии помогут ускорить развитие ядерных реакторов | Официальный сайт НИЯУ МИФИ | Дело в том, что давление плазмы в термоядерном реакторе уравновешивается давлением удерживающего магнитного поля. |
Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER
Функционирует при финансовой поддержке Министерства цифрового развития, связи и массовых коммуникаций Российской Федерации Регион Глава российского агентства ИТЭР рассказал о планах по созданию демореактора Глава российского агентства ИТЭР: Первую плазму реактора зажгут не раньше 2025 года Первую плазму международного экспериментального термоядерного реактора ИТЭР зажгут не раньше 2025 года. Красильников заявил, что первую плазму термоядерного реактора ИТЭР зажгут не раньше 2025 года. И далее десять лет эксплуатации, скорее всего, [она будет длиться] до 2040 года.
Надо ли говорить, насколько агрессивна такая среда по отношению ко всему, с чем она соприкасается? Особенно несладко приходится как раз оболочкам твэлов. Водная среда наносит ей двойной удар: кислород создает подверженный растрескиванию оксидный слой на поверхности оболочки, а водород, проникая в цирконий, делает его более хрупким, что тоже способствует развитию трещин. Из-за недостаточной коррозионной стойкости оболочки, топливо отрабатывает лишь небольшую долю своего ресурса, прежде чем твэл приходится извлекать из реактора. А повышение мощности реакторов вообще выглядит несбыточной мечтой, поскольку оно сопряжено с увеличением температуры активной зоны реактора, что неизбежно приведет к резкому ускорению коррозионных процессов в оболочках твэлов.
Таким образом, перспективы развития всего направления легководных реакторов при нынешних материалах оболочек твэлов представляются туманными. Ученые всего мира начали работать над усовершенствованием материалов оболочек еще в середине XX века, и эти работы продолжаются до сих пор. Разрабатываются новые коррозионностойкие циркониевые сплавы, способные эффективнее сопротивляться агрессивному воздействию теплоносителя. Кроме того, рассматриваются различные варианты обработки поверхности циркониевых оболочек твэлов и нанесения на них защитных покрытий. Однако появление тех или иных удачных технологических решений может занимать даже не годы, а десятилетия. Почему так долго? Разработка новых сплавов и методов обработки поверхности требует постоянного проведения дореакторных испытаний.
Эффект от каждого минимального изменения в составе сплава или в технологии его обработки должен быть проверен в условиях, приближенных к реакторным.
Лазеры с высоким КПД должны интенсивно, а главное — однородно облучать мишени; при этом важны сверхточная фокусировка лазеров, скрупулезное соблюдение размеров мишеней, их строго сферическая форма. Несколько ампул за секунду должны быть загружены в реактор с фиксированным положением по центру — это особенно сложно осуществить, учитывая масштабы реактора. Самая крупная экспериментальная установка, работающая по принципу инерционного синтеза, — это Национальный центр зажигания National Ignition Facility , расположенный в США, в Ливерморской национальной лаборатории им. NIF — самая мощная лазерная система в мире, насчитывающая 192 лазерных пучка. Принцип работы тот же, но в LMJ 176 лазерных луча. ТОП-7 событий в области термояда в 2018 году: В марте специалисты отдела оптики низкотемпературной плазмы ФИАН представили систему контроля концентрации водяного пара в плазме, которая обеспечит безопасность водяной системы охлаждения термоядерного реактора. В апреле ученые Института ядерной физики им. Будкера представили технологию, позволяющую в реальном времени наблюдать поведение конструкционных материалов при термоядерном синтезе.
В июле американская Lockheed Martin запатентовала дизайн компактного реактора CFR, прототипы которого были представлены еще в 2017 году. В августе в Оксфордском университете запущена импульсная установка FLF. В сентябре специалисты Токийского университета представили устройство для создания магнитного поля с полностью контролируемыми параметрами, причем магнитное поле экспериментально удается продержать 100 мкс — это абсолютный рекорд. В декабре исследователи из Управления по атомной энергии Великобритании сообщили о создании уникальной системы для охлаждения плазмы в токамаке охлаждение — одна из ключевых проблем в токамаках. Международный проект ИТЭР International Thermonuclear Experimental Reactor ITER — самый крупный в мире токамак, сложнейшая термоядерная экспериментальная машина, призванная продемонстрировать осуществимость технологий термоядерного синтеза и доказать, что термоядерная реакция может быть управляемой. Идея ИТЭР состоит в том, чтобы на выходе вырабатывать в 10 раз больше энергии, чем на входе. Основан проект ИТЭР на российской концепции токамака с магнитным удержанием плазмы. Строительные работы ИТЭР официально начались в октябре 2007 года, после ратификации cоглашения о проекте всеми сторонами. Стройка развернулась в Кадараше, на юге Франции.
Львиная доля вложений приходит не в денежном выражении, а в виде компонентов и оборудования для реактора. А поскольку центральная организация ИТЭР не контролирует расходы семи партнеров, определить фактическую стоимость проекта крайне сложно. Изготовление компонентов, производство оборудования и разработка диагностик для ИТЭР распределены между всеми участниками консорциума. Над дизайном основного элемента реактора, криостата, работала Индия, присоединившаяся к консорциуму в 2005 году. Основа криостата, весом 1250 тонн, будет одной из самых тяжелых одиночных нагрузок при сборке машины весом 23 тыс. Европейский союз ответственен за вакуумную камеру, однако для оптимизации проекта и минимизации задержек часть работ была поручена Корее, которая продемонстрировала высочайший уровень собственных технологий, запустив токамак со сверхпроводящей магнитной системой KSTAR Korean Superconducting Tokamak Advanced Research , получивший первую плазму в 2008 году, и продемонстрировав рекордную 70-секундную высокопроизводительную плазму в 2016 году. Китай вместе с Россией работают над созданием сверхпроводников, первая поставка которых была осуществлена в июне 2014 года. Шесть кольцеобразных полоидальных магнитов с полевой катушкой будут окружать машину ИТЭР для формирования плазмы и обеспечения ее стабильности путем отстранения от стенок вакуумного реактора. Россия отвечает за широкий спектр электротехнических компонентов, из которых состоят коммутационные сети, блоки быстрого разряда, комплекты поставки измерительной аппаратуры.
Налажено производство сборных шин и переключающих сетевых резисторов, завершается программа НИОКР для компонентов блока быстрой разгрузки. Японские инженеры и ученые также работают над магнитной системой, в частности, над дизайн-проектом катушек тороидального поля и над получением сверхпроводящих ниобий-оловянных стрендов.
При условии завершения реконструкции энергетической базы питания плазменных ускорителей в 2023 году, к концу 2024 года нейтронный выход планируется увеличить до 1014 нейтронов за импульс. Нейтроны — это нейтральные частицы, способные гораздо глубже проникать в материалы, чем пучки ионов или рентгеновские лучи. Одним из применений такого проникновения является трехмерное отображение напряжений, возникающих глубоко внутри достаточно крупных инженерно-технических объектов, например таких, как блоки двигателя.
Прорыв или распил? Россия тратит миллиарды на термоядерную установку
- Росатом Госкорпорация «Росатом» ядерные технологии атомная энергетика АЭС ядерная медицина
- Прототип российского термоядерного реактора: для чего он необходим?
- На российском токамаке Т-15МД получена первая термоядерная плазма
- Компактный реактор установил рекорд по нагреву плазмы
Физики разработали гибридный реактор на основе плазменной открытой ловушки
Снизить издержки переработки такого сырья можно за счет использования плазменных реакторов, в которых химические реакции осуществляются с участием низкотемпературной. Этот реактор использует магнитные поля от сверхпроводящих катушек для удержания ионизированного газа в вакуумной камере в форме пончика, с целью стимулирования слияния. В России также проводятся исследования по удержанию плазменных разрядов при сверхвысоких температурах.
Глава российского агентства ИТЭР рассказал о планах по созданию демореактора
Плазма в реакторе ИТЭР должна быть в десять раз горячее солнечного ядра, а температура в его криостате в 30 раз ниже, чем в морозильнике. Реактор станет одним из основных источников электроэнергии для завода по производству полипропилена, входящего в состав Уральской горно-металлургической компании. В России также проводятся исследования по удержанию плазменных разрядов при сверхвысоких температурах. Главные проблемы в разработке промышленного реактора — нагрев и удержание плазмы с термоядерными параметрами."Идея эксперимента такая. Плазменный физический реактор – сложное оборудование, обеспечивающее нормальное выполнение химической реакции.
Физики разработали гибридный реактор на основе плазменной открытой ловушки
#Плазменный_реактор_Мехрана_ №3 Отслоился #нано_слой_плазма_стала_четкой. Владелец реактора — Институт физики плазмы при Академии наук КНР. Реактор станет одним из основных источников электроэнергии для завода по производству полипропилена, входящего в состав Уральской горно-металлургической компании. В 2021 году на японском реакторе произошло короткое замыкание в катушке сверхпроводящего магнита. О том, сможет ли реактор обеспечить страну практически неограниченным количеством чистой и безопасной энергии, — в материале Катушка полоидального поля нужна для удержания плазмы в термоядерном реакторе ИТЭР. Термоядерный реактор ИТЭР возводят уже несколько десятков лет недалеко от Марселя.