Новый реактор потребовался после того, как в прошлом году компания продемонстрировала увеличение срока жизни плазмы в Z-pinch реакторе своей конструкции при силе тока более. Основным минусом реакторов типа токамак является такая высокая температура плазмы, которой на Земле просто не существует. Достоинство этого метода заключается в том, что его можно будет применять непосредственно в реакторе, замеряя количество поглощенного водорода между плазменными разрядами. Пуск экспериментального термоядерного реактора и получение на нем первой плазмы запланирован на 2025 год. Снизить издержки переработки такого сырья можно за счет использования плазменных реакторов, в которых химические реакции осуществляются с участием низкотемпературной.
PRL: открытие новых колебаний плазмы позволит улучшить ускорители и реакторы
В плазменном фокусе: «Росатом» и МИФИ разработали термоядерный мини-реактор | В 2024 году Росатом завершит прототип плазменного ракетного двигателя, сообщили на панельной сессии «Атом для лучшей жизни». |
В Бурятии протестируют плазменный реактор по утилизации отходов | На плазменных установках в лабораториях НИЯУ МИФИ начнется цикл испытаний материалов, которые помогут защитить внутреннюю стенку реактора ITER. |
Проблема термоядерного реактора оказалась преимуществом для плазменного двигателя | При плазменной обработке, в частности, образуется угарный газ, который надо тщательно дожигать или пускать в переработку в химическую промышленность», — объяснил ученый. |
Российские ученые масштабировали установку плазменного пиролиза нефти
Разогрев плазменного шнура происходит за счет пропускания сквозь него очень сильного электрического тока, что также способствует удержание шнура в равновесии в вакууме камеры, за счет создания разности магнитных потенциалов. Но ученые призывают не торопиться праздновать победу и не перестают повторять, что до практического применения еще довольно далеко. Пока еще реактор потребляет много больше энергии, чем может выработать. Это лишь очередной успешный эксперимент, который говорит о том, что управлять плазмой можно и сам по себе термоядерный реактор возможен.
Артём Шабанов Простой способ наполнить свою жизнь здоровьем. Артём Шабанов 02 марта 2023 Просмотров: 875 Русских людей победить нельзя. Они всегда придумывают что-то такое, что сразу выводит их на лидирующие позиции в Мире.
Вот и здесь.
Эти знания позволят повысить производительность компактных ускорителей частиц и термоядерных реакторов. Плазма или ионизированный газ — четвертое агрегатное состояние материи. Оно остается наиболее распространенной и наблюдаемой формой материи в нашей Вселенной.
Она стала первой подобной установкой в РФ и является одной из 10 наиболее мощных в мире. Использование установки позволит испытать прототипы теплозащитной облицовки камеры для будущего термоядерного реактора ИТЭР, которые создаются в России", - сказали ТАСС в университете. НИУ "МЭИ" также исследует методы охлаждения при длительной эксплуатации компонентов будущего экспериментального реактора, расположенных внутри камеры, уточнили в вузе.
В России протестировали самую мощную плазменную установку в мире
Модернизация корейского термоядерного реактора позволила ему побить собственный рекорд: новые компоненты способны поддерживать закрученную плазму температурой 100 миллионов. Чтобы продлить существование плазмы, загрязненный поток направляют на специальный элемент реактора, дивертор. Токамак ITER станет первым термоядерным реактором, который будет вырабатывать больше энергии, чем необходимо для нагрева самой плазмы. Стартап по разработке термоядерного реактора General Fusion из Канады завершил очередной раунд сбора инвестиций, в этот раз собрав 65 миллионов долларов. В традиционных конструкциях эта схема разделяет лазерный луч на два потока, один из которых огибает плазму в реакторе, а другой проходит сквозь нее.
Российские ученые сделали важный шаг в разработке будущего термоядерного реактора ДЕМО
Какие именно технологии и системы для этого нужны? Виктор Ильгисонис: Это инновационные разработки магнитных систем, конструктивных элементов бланкета, дивертора, первой стенки. Это оригинальные системы топливного цикла, нагрева плазмы и отвода энергии и многое другое. Плазма в реакторе ИТЭР должна быть в десять раз горячее солнечного ядра, а температура в его криостате в 30 раз ниже, чем в морозильнике А разве этого нет в проекте ИТЭР? Виктор Ильгисонис: В том-то и дело. Наши решения оригинальны, таких нет ни в проекте ИТЭР, ни в национальных проектах зарубежных коллег. Абсолютно закономерно, что проект ТРТ возник в России - он способен вернуть нашей стране прежнее лидерство, во многом утраченное за постсоветское время. Так что ТРТ - не мутант, а, скорее, естественный продукт эволюции. И его перспективы будут зависеть от той поддержки со стороны правительства в финансировании программы РТТН, о которой мы уже говорили. К концу 2024 года планируем завершить разработку эскизного проекта и отработать ряд ключевых элементов технического проекта.
Так что при одобрении "сверху" сооружение ТРТ к 2030 году - вполне реальная задача. У "Росатома" есть действующее соглашение с РАН. Как оцениваете участие академических институтов в совместной реализации федерального проекта "Термоядерные и плазменные технологии"? Виктор Ильгисонис: Как абсолютно необходимое. Дело в том, что все академические институты - участники проекта "Термоядерные и плазменные технологии" - имеют собственные уникальные компетенции, освоение которых в контуре "Росатома" заведомо нецелесообразно, если мы исповедуем государственный подход. О других и не говорим… Виктор Ильгисонис: Так вот: уже упомянутый мною Институт прикладной физики в Нижнем Новгороде разрабатывает и производит лучшие в мире гиротроны - специальные устройства для мощного нагрева электронной компоненты плазмы. Новосибирский ИЯФ создает источники ионов и нейтральных атомов высокой энергии, которые приобретаются всеми ведущими мировыми лабораториями. Санкт-Петербургский физтех - признанный авторитет в методах высокочастотного нагрева плазмы… Список можно продолжать. И сказанное в полной мере относится не только к институтам РАН, но и к организациям НИЦ "Курчатовский институт", к вовлеченным в проект университетам.
Какие риски здесь можно и должно прогнозировать с учетом нарастающих антироссийских санкций? Виктор Ильгисонис: Вопрос о пользе нашего участия задают уже лет пятнадцать - с того момента, как проект стартовал. Очевидная и главная польза - это ожидаемое появление в мире уникального экспериментального устройства, создание которого оказалось непосильным ни для одной страны.
Дело в том, что все академические институты - участники проекта "Термоядерные и плазменные технологии" - имеют собственные уникальные компетенции, освоение которых в контуре "Росатома" заведомо нецелесообразно, если мы исповедуем государственный подход. О других и не говорим… Виктор Ильгисонис: Так вот: уже упомянутый мною Институт прикладной физики в Нижнем Новгороде разрабатывает и производит лучшие в мире гиротроны - специальные устройства для мощного нагрева электронной компоненты плазмы. Новосибирский ИЯФ создает источники ионов и нейтральных атомов высокой энергии, которые приобретаются всеми ведущими мировыми лабораториями.
Санкт-Петербургский физтех - признанный авторитет в методах высокочастотного нагрева плазмы… Список можно продолжать. И сказанное в полной мере относится не только к институтам РАН, но и к организациям НИЦ "Курчатовский институт", к вовлеченным в проект университетам. Какие риски здесь можно и должно прогнозировать с учетом нарастающих антироссийских санкций? Виктор Ильгисонис: Вопрос о пользе нашего участия задают уже лет пятнадцать - с того момента, как проект стартовал. Очевидная и главная польза - это ожидаемое появление в мире уникального экспериментального устройства, создание которого оказалось непосильным ни для одной страны. Причем не только в денежном или техническом плане, но и в интеллектуальном.
А практическая польза - это освоение здесь, на родине, новых технологий и производства высочайшего качества. ИТЭР - это легитимная возможность "приземлить" у себя дома современные, в том числе уникальные зарубежные технологии, в создание которых вложились ведущие мировые разработчики. Мы получаем законное право использовать их в национальных целях. Сегодня ИТЭР - реальный драйвер технологического развития. И я искренне рад, что мировое термоядерное сообщество оказалось способным отделить решение глобальной задачи человечества от сиюминутной политической риторики. Когда говорят о термоядерных исследованиях и пытаются объяснить назначение сложнейших систем того же ИТЭР, приводят для сравнения процессы внутри Солнца и других звезд.
Заголовок в газете "Солнце в морозильнике" - это не сильное преувеличение к тому, что всем миром строят и обещают показать во французском Кадараше? Виктор Ильгисонис: Имеется в виду, полагаю, сравнение температур горячей плазмы внутри токамака и сверхпроводника в его магнитной системе? Если так, то это образное сравнение серьезно не дотягивает до итэровских реалий: плазма ИТЭРа должна быть в десять раз горячее солнечного ядра, а температура в его криостате - в тридцать раз ниже, чем в морозильнике! А в космосе, если сумеем "приручить" термояд, он какие открывает для человека возможности? Виктор Ильгисонис: Здесь вы, что называется, бьете в самую точку. Я уверен, что истинное место термояда - как раз в космосе.
Просто его там будет легче осуществить!
Разогретые ионы сталкиваются друг с другом, благодаря чему выделяется энергия, превышающая затраченные на нагревание ресурсы. Этот избыток можно использовать потом в промышленности и энергетике. Однако из-за очень высокой температуры плазма не может удерживаться стенками токамака, поэтому в установке создается специальное магнитное поле, которое отделяет плазму от стенок и позволяет контролировать термоядерную реакцию. Основная цель ученых — создать плазму с достаточно высоким значением тройного произведения синтеза: плотностью и температурой плазмы, а также временем удержания энергии, обозначающим, насколько хорошо тепловая энергия удерживается в плазме. Проще говоря, это критерии эффективности термоядерной реакции. К примеру, «зажигание» дейтерий-тритиевой плазмы требует очень высокого значения тройного произведения, которое в результате даст количество энергии, достаточное для запуска отдельной энергетической установки. Но количество выработанной энергии зависит от того, насколько стабильной будет плазма в реакторе. В обычных токамаках эффективность использования магнитного поля достаточно низкая из-за возникающей магнитной неустойчивости, что приводит к высокой стоимости электромагнитной системы. В этой ситуации необходимо искать способы увеличения стабильности плазмы.
Проект реализуется на основе российско-венгерского межправительственного соглашения от 14 января 2014 года и трех базовых контрактов о сооружении новой станции. Основная лицензия на строительство АЭС «Пакш-2» была выдана венгерским регулятором в августе 2022 года. Получение строительной лицензии подтвердило соответствие проекта венгерским и европейским нормам безопасности. Россия последовательно развивает международные торгово-экономические взаимоотношения с зарубежными партнерами. Продолжается реализация крупных международных проектов в сфере энергетики. Госкорпорация «Росатом» принимает активное участие в этой работе и является мировым лидером по строительству новых энергоблоков АЭС: на разной стадии реализации находятся проекты 33 блоков в 10 странах.
На российском токамаке Т-15МД получена первая термоядерная плазма
Измерения температуры электронов в плазме реактора FuZe показали, что она находится на том же высоком уровне, что и температура ядер. «Французский термоядерный реактор тоже строится не так быстро, как хотелось бы. Ионные температуры свыше 5 кэВ ранее не достигались ни в одном СТ и были получены только в гораздо более крупных устройствах со значительно большей мощностью нагрева плазмы. После первого запуска британский термоядерный реактор выпустил расплавленную массу заряженного газа. По словам ученых, в практическом смысле управление колебаниями плазмы может упростить работу термоядерных реакторов.
Ученые: Уран пахнет тухлыми яйцами
- В РФ успешно получена первая термоядерная плазма на токамаке Т-15МД —
- Проблема термоядерного реактора оказалась преимуществом для плазменного двигателя
- Форма поиска
- Вступай в наши группы и добавляй нас в друзья :)
- Прорыв или распил? Россия тратит миллиарды на термоядерную установку
Петербургские инженеры испытывают детали для экспериментального термоядерного реактора
НИУ "МЭИ" также исследует методы охлаждения при длительной эксплуатации компонентов будущего экспериментального реактора, расположенных внутри камеры, уточнили в вузе. Для реактора на DT нейтронное излучение, уносящее 86% энергии термоядерной реакции будет настоящим бичом, быстро разрушающим и активирующим конструкционные материалы. Реактор станет одним из основных источников электроэнергии для завода по производству полипропилена, входящего в состав Уральской горно-металлургической компании.
Петербургские инженеры испытывают детали для экспериментального термоядерного реактора
Наконец удалось получить плазменный разряд с температурой в 40 млн градусов по Цельсию, что вдвое выше температуры в центре Солнца. Благодаря новому процессу — динамическому потоку через плазму, удалось преодолеть проблему кратковременности жизни плазмы, сообщает Physical Review Letters (PRL). Главные сахалинские новости за день от Реактор станет одним из основных источников электроэнергии для завода по производству полипропилена, входящего в состав Уральской горно-металлургической компании. В 2021 году на японском реакторе произошло короткое замыкание в катушке сверхпроводящего магнита.