№1. Найдите объем многогранника, изображенного на рисунке (все двугранные углы многогранника прямые).
Решение заданий В11 (часть 1) по материалам открытого банка задач ЕГЭ по
Объем конуса равен 128. Ответ: 16 4. Радиус основания цилиндра равен 2, высота равна 3. Найдите площадь боковой поверхности цилиндра, деленную на. Ответ: 12 4. Стороны основания правильной четырехугольной пирамиды равны 10, боковые ребра равны 13. Найдите площадь поверхности этой пирамиды. Ответ: 340 4. Стороны основания правильной шестиугольной пирамиды равны 10, боковые ребра равны 13. Найдите площадь боковой поверхности этой пирамиды.
Ответ: 360 4. В правильной четырехугольной пирамиде высота равна 12, объем равен 200. Найдите боковое ребро этой пирамиды. Ответ: 13 4. Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 5, а высота — 10. Ответ:300 5.
Ответы 1 Марго2 14 сент. Площадь оставшейся фигуры будет равна 38 76 - 38. Dovganicha 2 янв. Nikitavoron29 29 февр.
Kristinas15 13 нояб. Vlad21232 17 апр. Aram8991 7 янв. Megadatsenko 8 окт. Все двугранные углы многогранника прямые. Алияяяяяяя 13 апр.
После полного погружения в воду детали уровень воды в баке поднялся в 1,2 раза. Найдите объём этой детали. Ответ дайте в кубических сантиметрах, зная, что в одном литре 1000 кубических сантиметров. Задача 40. Ящик, имеющий форму куба с ребром 20 см без одной грани, нужно покрасить со всех сторон снаружи. Найдите площадь поверхности, которую необходимо покрасить. Задача 41.
Вписанные и описанные тела вращения. В демонстрационных вариантах ЕГЭ по математике 2022 года задачи по стереометрии встречаются под номерами 13 и 16 для базового уровня и под номерами 5 и 13 для профильного уровня. Здесь мы рассмотрим задачи, которые содержат многогранник с прямыми двугранными углами. Чтобы обратиться к другим типам этого задания по стереометрии варианты с конусом, цилиндром, прямоугольным параллелепипедом, призмой и пирамидой перейдите по ссылкам справа или в нижней части страницы. Многогранник Многогранником называется тело, поверхность которого состоит из конечного числа плоских многоугольников. Многоугольники называются гранями, их стороны - ребрами, а вершины - вершинами многогранника. Углы, образуемые двумя соседними гранями и их продолжениями, являются двугранными углами. Мерой двугранного угла служит соответствующий ему линейный угол. Линейный угол расположен в плоскости, перпендикулярной ребру двугранного угла, и образован двумя полупрямыми - линиями пересечения этой плоскости с гранями. Обратите внимание, что в условии всех задач, которые мы будем решать ниже, встречается фраза "Все двугранные углы многогранника прямые". Опираясь на это и определение меры двугранного угла, легко доказать, что грани плоские многоугольники также имеют только прямые углы 90о или 270о. А это, в свою очередь, означает, что грани либо прямоугольники, либо фигуры, которые легко разбить на прямоугольники. У прямоугольника, как известно, противоположные стороны равны. Поэтому все размеры, данные на чертежах следующих задач, можно переносить с одного ребра на другое, если эти ребра параллельны и являются сторонами одного прямоугольника. Вспомним также, что мы уже рассматривали похожий случай. Прямоугольный параллелепипед - это тело, все грани которого прямоугольники. Поэтому для решения следующих задач мы можем использовать свойства, теоремы и алгоритмы из 3-его раздела.
3.3. Составные тела (Задачи ЕГЭ профиль)
Найдите площадь поверхности многогранника, изображённого на рисунке все двугранные углы прямые Найдите площадь поверхности многогранника, изображённого на рисунке все двугранные углы прямые Найдите площадь поверхности многогранника, изображённого на рисунке все двугранные углы прямые. Для этого передвигаем лицевую, правую и нижнюю грани выреза соответственно на 2 единицы к передней грани, на 1 единицу влево и на 2 единицы вверх.
В чём же дело? Далеко не все обладают хорошим пространственным мышлением, чтобы сразу увидеть все грани и параллелепипеды из которых «состоят» многогранники.
Даже если вы умеете делать это очень хорошо, можете мысленно сделать такую разбивку, всё-таки следует не торопиться и воспользоваться рекомендациями из этой статьи. Кстати, пока работал над данным материалом, нашёл ошибку в одной из задач на сайте. Нужна внимательность и ещё раз внимательность, вот так.
Итак, если стоит вопрос о площади поверхности, то на листе в клетку постройте все грани многогранника, обозначьте размеры. Далее внимательно вычисляйте сумму площадей всех полученных граней. Если будете предельно внимательны при построении и вычислении, то ошибка будет исключена.
Найдите площадь поверхности многогранника, изображенного на рисунке все двугранные углы прямые. Используем оговоренный способ. Он нагляден.
На листе в клетку строим все элементы грани в масштабе. Если длины рёбер будут большими, то просто подпишите их.
Радиус основания цилиндра увеличили в 3 раза, а его высоту уменьшили в 4 раза. Во сколько раз увеличится объём цилиндра? Решение: Задачи на Конусы При подготовке необходимо повторить свойства конуса, формулы для вычисления площади поверхности и объёма конуса, площади круга и длины окружности.
Размещено 4 года назад по предмету Алгебра Размещено 3 года назад по предмету Геометрия Практикум по теме «Площадь поверхности составного многогранника» 15 января 2020 г. Задачи из открытого банка задач. Площадь поверхности заданного многогранника равна разности площади поверхности прямоугольного параллелепипеда с ребрами 2, 3, 1 и двух площадей прямоугольников со сторонами 2, 1: Найдите площадь поверхности многогранника, изображенного на рисунке все двугранные углы прямые. Площадь поверхности заданного многогранника равна разности площади поверхности прямоугольного параллелепипеда с ребрами 3, 3, 5 и двух площадей квадратов со стороной 1: Площадь поверхности заданного многогранника равна разности площади поверхности прямоугольного параллелепипеда с ребрами 3, 4, 5 и площади двух квадратов со стороной 1: Площадь поверхности заданного многогранника равна площади поверхности прямоугольного параллелепипеда с ребрами 3, 5, 5: Найдите площадь поверхности многогранника, изображенного на рисунке все двугранные углы прямые. Площадь поверхности заданного многогранника равна площади поверхности прямоугольного параллелепипеда с ребрами 3, 5, 4: Примечание для тех, кто не верит в это решение. Посчитайте площадь поверхности, сложив площади всех девяти граней данного многогранника, и смиритесь: Площадь поверхности заданного многогранника равна сумме площадей поверхности прямоугольного параллелепипеда с ребрами 6, 4, 4 и двух прямоугольников со сторонами 1 и 4, уменьшенной на площадь двух прямоугольников со сторонами 1 и 2: Площадь поверхности заданного многогранника равна сумме площадей поверхности прямоугольного параллелепипеда с ребрами 4, 4, 5 и двух прямоугольников со сторонами 1 и 4, уменьшенной на площадь двух прямоугольников со сторонами 1 и 3: Площадь поверхности заданного многогранника равна сумме площадей прямоугольников со сторонами 1, 3, 4 и 1, 2, 3, уменьшенной на удвоенную площадь прямоугольника со сторонами 2, 3: Найдите площадь поверхности многогранника, изображенного на рисунке все двугранные углы прямые. Площадь поверхности заданного многогранника равна сумме площадей параллелепипедов с ребрами 1, 6, 4 и 1, 4, 4 уменьшенной на удвоенную площадь квадрата стороной 4: Площадь поверхности заданного многогранника равна площади прямоугольного параллелепипеда с ребрами 6, 4, 2 уменьшенной на 4 площади квадратов со стороной 1: Площадь поверхности заданного многогранника равна сумме площадей большого и маленького параллелепипедов с ребрами 1, 5, 7 и 1, 1, 2, уменьшенной на 4 площади прямоугольника со сторонами 1, 2 — передней грани маленького параллелепипеда, излишне учтенной при расчете площадей поверхности параллелепипедов: Площадь поверхности заданного многогранника равна сумме площадей параллелепипедов со сторонами 2, 3, 3 и 5, 4, 3 уменьшенной на удвоенную площадь прямоугольника со сторонами 3, 2: Найдите площадь поверхности многогранника, изображенного на рисунке, все двугранные углы которого прямые. Площадь поверхности заданного многогранника складывается из четырех площадей квадратов со стороной 1, двух прямоугольников со сторонами 1 и 2 и двух граней передней и задней , площади которых в свою очередь складываются из трех единичных квадратов каждая. Найдите площадь поверхности пространственного креста, изображенного на рисунке и составленного из единичных кубов. Поверхности креста составлена из шести поверхностей кубов, у каждого из которых отсутствует одна грань. Тем самым, поверхность креста состоит из 30 единичных квадратов, поэтому ее площадь равна 30. Площадь поверхности данного многогранника равна сумме площадей поверхностей прямоугольных параллелепипедов с рёбрами 6, 6, 2 и 3, 3, 4, уменьшенной на две площади прямоугольников со сторонами 3 и 4: Площадь поверхности тела равна сумме поверхностей трех составляющих ее параллелепипедов с ребрами 2, 5, 6; 2, 5, 3 и 2, 2, 3, уменьшенная на удвоенные площади прямоугольников со сторонами 5 ,3 и 2, 3: Площадь поверхности тела равна сумме поверхностей трех составляющих его параллелепипедов с измерениями 2, 4, 6; 1, 6, 2 и 2, 2, 2: Найдите площадь поверхности многогранника, изображённого на рисунке все двугранные углы прямые. Площадь поверхности и объем составного многогранника Что ты хочешь узнать?
ЕГЭ профильный уровень. №3 Площадь поверхности и объем составного многогранника. Задача 3
Найдите площадь поверхности многогранника, изображенного на рисунке(все двугранные углы прямые). № 25601 Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые). 2. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые). Как решать задачи с нахождением площади поверхности? Решение: Найдем площадь поверхности искомой детали многогранника как сумму прямоугольников. Чтобы найти площадь многогранника, изображенного на рисунке, нужно от площади поверхности внешнего многогранника отнять площадь передней и задней грани внутреннего многогранника и затем прибавить площади четырех боковых граней внутреннего.
Урок 5 Задание 8 типы 1 -6
Найдите площадь поверхности многогранника, изображенного на рисун. отвечают эксперты раздела Математика. 57)Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые). Площадь боковой поверхности равна произведению периметра указанного основания многогранника на его высоту, равную $1$. Данный многогранник можно разбить на 10 прямоугольниковS верхнего прямоугольника = 5*1 =5 см²S прямоугольника справа (начиная сверху). Ошибки пособий. Новости.
Как найти площадь многогранника с вырезом
Деталь имеет форму изображённого на рисунке многогранника все двугранные углы прямые. Числа на рисунке обозначают длины рёбер в сантиметрах. Найдите объём этой детали. Ответ дайте в кубических сантиметрах. Ответ 28.
Правильный ответ: 300 62 Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 6 и 8, и боковым ребром, равным 10. Правильный ответ: 248 63 Найдите боковое ребро правильной четырехугольной призмы, если сторона ее основания равна 5, а площадь поверхности равна 190. Правильный ответ: 7 64 Через среднюю линию основания треугольной призмы, площадь боковой поверхности которой равна 24, проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсеченной треугольной призмы.
Правильный ответ: 12 65 Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 3 и 5. Объем призмы равен 30. Найдите ее боковое ребро. Правильный ответ: 4 66 Найдите объем правильной шестиугольной призмы, стороны основания которой равны 1, а боковые ребра равны 3.
Правильный ответ: 4,5 67 Через среднюю линию основания треугольной призмы, объем которой равен 32, проведена плоскость, параллельная боковому ребру. Найдите объем отсеченной треугольной призмы. Правильный ответ: 8 68 Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Объем отсеченной треугольной призмы равен 5.
Найдите объем исходной призмы. Правильный ответ: 20 69 Найдите объем призмы, в основаниях которой лежат правильные шестиугольники со сторонами 2, а боковые ребра равны 2 3 и наклонены к плоскости основания под углом 30o. Правильный ответ: 18 70 От треугольной призмы, объем которой равен 6, отсечена треугольная пирамида плоскостью, проходящей через сторону одного основания и противоположную вершину другого основания. Найдите объем оставшейся части.
Правильный ответ: 4 71 Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, высота призмы равна 10. Найдите площадь ее поверхности. Правильный ответ: 288 72 В основании прямой призмы лежит ромб с диагоналями, равными 6 и 8. Площадь ее поверхности равна 248.
Найдите боковое ребро этой призмы. Правильный ответ: 10 73 В треугольной призме две боковые грани перпендикулярны. Их общее ребро равно 10 и отстоит от других боковых ребер на 6 и 8. Найдите площадь боковой поверхности этой призмы.
Правильный ответ: 240 74 Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8. Площадь ее поверхности равна 288. Найдите высоту призмы. Правильный ответ: 10 75 Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру.
Площадь боковой поверхности отсеченной треугольной призмы равна 8. Найдите площадь боковой поверхности исходной призмы. Правильный ответ: 16 76 Объем куба равен 12. Найдите объем треугольной призмы, отсекаемой от него плоскостью, проходящей через середины двух ребер, выходящих из одной вершины и параллельной третьему ребру, выходящему из этой же вершины.
Правильный ответ: 6 84 Стороны основания правильной четырехугольной пирамиды равны 10, боковые ребра равны 13. Найдите площадь поверхности этой пирамиды. Правильный ответ: 340 85 Стороны основания правильной шестиугольной пирамиды равны 10, боковые ребра равны 13. Найдите площадь боковой поверхности этой пирамиды.
Найдите объем треугольной пирамиды ABCA1. Правильный ответ: 1,5 87 Во сколько раз увеличится объем правильного тетраэдра, если все его ребра увеличить в два раза? Правильный ответ: 8 88 Основанием пирамиды является прямоугольник со сторонами 3 и 4. Ее объем равен 16.
Найдите высоту этой пирамиды.
Где же ошибка? Ответ: 124. Разберём ещё подобные задачи. Ответ: 18.
Слайд 11 Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1 и 3. Площадь поверхности этого параллелепипеда равна 262. Найдите третье ребро, выходящее из той же вершины.
Нахождение площади поверхности многогранника
№1. Найдите объем многогранника, изображенного на рисунке (все двугранные углы многогранника прямые). Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые). Найдите площадь поверхности пространственного креста, изображенного на рисунке и составленного из единичных кубов. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые). Площадь поверхности заданного многогранника равна разности площади поверхности прямоугольного параллелепипеда с ребрами 2, 3, 1 и двух площадей. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).№5Решение:Площадь поверхности заданного многогранника равна сумме площадей.
Сборник для подготовки к ЕГЭ (базовый уровень).Прототип задания № 13
57)Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые). Чтобы найти площадь многогранника, изображенного на рисунке, нужно от площади поверхности внешнего многогранника отнять площадь передней и задней грани внутреннего многогранника и затем прибавить площади четырех боковых граней внутреннего. Задача 9422 Найдите площадь поверхности Условие. ViktoriyaDanilova2.