Подключим источник питания — плюс к катоду, минус к аноду. Стоит отметить, что функции анода и катода могут меняться в зависимости от того, какой процесс происходит — разряд батареи или электролиз, и неверно было бы описывать анод или катод исключительно как «плюс» или «минус». При разряде гальванического элемента анод – минус, катод – плюс, при зарядке наоборот.
Катод у полупроводниковых приборов
- Как определить полярность диода
- Анод и катод: что это такое, где плюс и где минус на диоде
- Как определить анод и катод
- Подробно о полярностях светодиодных ламп
Катод и анод что это: что это такое, как их определить, применение
Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-. Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры — Закон Джоуля-Ленца. Главный параметр стабилитрона — это напряжение стабилизации Uст. Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт.
Также есть диапазон силы тока, при котором будет работать стабилитрон — это минимальный и максимальный ток Imin, Imax Выглядят стабилитроны точно также, как и обычные диоды: На схемах обозначаются вот так: Светодиоды Светодиоды — особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет — это свет в инфракрасном или ультрафиолетовом диапазоне. Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже. Предельное обратное напряжение Uобр может достигать 10 Вольт. Максимальный ток Imax будет ограничиваться для простых светодиодов порядка 50 мА.
Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом. Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево. Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво. На схемах светодиоды обозначаются так: Не забываем, что светодиоды делятся на индикаторные и осветительные.
Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления Ну и осветительные светодиоды — это те, которые используются в ваших китайских фонариках, а также в LED-лампах Светодиод — это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода номинальной мощности, цвета, температуры. Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе: Как проверить светодиод можно узнать из этой статьи. Тиристоры Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода — управляющего электрода УЭ. Основное применение тиристоров — это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры примерно как диоды или транзисторы.
У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр — Iос,ср. Немаловажным параметром является напряжение открытия тиристор — Uу , которое подается на управляющий электрод и при котором тиристор полностью открывается. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы — это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током. Диодный мост и диодные сборки Производители также несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности.
Таким образом получаются диодные сборки. Диодные мосты — одна из разновидностей диодных сборок. На схемах диодный мост обозначается вот так: Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки и тд. Для того, чтобы их всех описать, нам не хватит и вечности. Катод должен отдавать с единицы поверхности большой ток эмиссии при возможно низкой температуре нагрева и обладать большим сроком службы. Нагрев катода в электровакуумном приборе производится протекающим по нему током. Катоды прямого накала представляют собой металлическую нить, которая непосредственно разогревается током накала и служит для излучения электронов.
Поверхность излучения катодов прямого накала невелика, поэтому от них нельзя получить большой ток эмиссии. Малая теплоемкость нити не позволяет использовать для нагрева переменный ток. Кроме того, при нагреве переменным током температура катода не постоянна во времени, а следовательно, меняется во времени и ток эмиссии. Положительным свойством катода прямого накала является его экономичность, которая достигается благодаря малому количеству тепла, излучаемого в окружающую среду вследствие малой поверхности катода. Катоды прямого накала изготовляются из вольфрамовой и никелевой проволоки. Для повышения экономичности катода вольфрамовую или никелевую проволоку керн «активируют» — покрывают пленкой другого элемента. Такие катоды называются активированными.
Если на поверхность керна нанесена электроположительная пленка пленка из цезия, тория или бария, имеющих меньшую работу выхода, чем материал керна , то происходит поляризация пленки: валентные электроны переходят в керн, и между положительно заряженной пленкой и керном возникает разность потенциалов, ускоряющая движение электрона при выходе его из керна. Работа выхода катода с такой мономолекулярной электроположительной пленкой оказывается меньше работы выхода электрона как из основного металла, так и из металла пленки. При покрытии керна электроотрицательной пленкой, например кислородом, работа выхода катода увеличивается. Подогревные катоды выполняются в виде никелевых гильз, поверхность которых покрывается активным слоем металла, имеющим малую работу выхода. Внутри катода помещается подогреватель— вольфрамовая нить или спираль, подогрев которой может осуществляться как постоянным, так и переменным Как работает гальванизация.
Катод у полупроводниковых приборов Изделия этой категории отличаются большим электрическим сопротивлением, по сравнению с проводниками, но меньшим — чем в диэлектриках.
Специально подобранная комбинация материалов типового диода p-n переход не создает больших препятствий прохождению тока только в одном направлении. Схема подключения и внешний вид диодов На верхней части рисунка показаны обозначения источника питания постоянного тока и полупроводникового прибора. По стандартным рисункам на плате и утолщенным линиям несложно определить соответствующий вывод. Прозрачный корпус миниатюрных моделей не препятствует визуальной идентификации. Правильные выводы можно сделать при внимательном изучении светодиодов. Более крупная часть в том и другом примере — это катод.
Тиристор создан по аналогии с ламповыми аналогами. С помощью третьего электрода управляют работой электронного ключа. Знак катода Ошибки в применении понятий возникают по причине разных подходов. Химики рассматривают процессы окисления и восстановления анод — это «плюс», а катод — «минус». Соответствующее подключение внешнего источника питания активизирует движение ионов и отдельные химические реакции. В гальванических элементах наблюдаются обратные процессы.
Избыточное количество электронов на одном из функциональных компонентов обеспечивает окисление цинкового или другого электрода. В этом примере при подключении нагрузки восстанавливается второй элемент катод — это контакт батареи, обозначенный знаком «плюс».
Плюс подключается к аноду, а минус к катоду. Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса! Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.
Как определить анод и катод у диодов 1Вт и более В фонариках и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон. Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт. Как узнать полярность SMD? SMD активно применяются практических в любой технике: Лампочки; фонарики; индикация чего-либо. Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода. Например, на корпусе SMD 5050 есть метка на углу в виде среза.
Все выводы, расположенные со стороны метки — это катоды. В его корпусе расположено три кристалла, это нужно для достижения высокой яркости свечения. Подобное обозначение у SMD 3528 тоже указывает на катод, взгляните на эту фотографию светодиодной ленты. Маркировка выводов SMD 5630 аналогична — срез указывает на катод. Его можно распознать еще и по тому, что теплоотвод на нижней части корпуса смещён к аноду. Как определить плюс на маленьком SMD? В отдельных случаях SMD 1206 можно встретить еще один способ обозначения полярности светодиодов: с помощью треугольника, П-образной или Т-образной пиктограммы на поверхности диода. Выступ или сторона, на которую указывает треугольник, является направлением протекания тока, а вывод расположенный там — катодом. Определяем полярность мультиметром При замене диодов на новые, вы можете определить плюс и минус питания вашего прибора по плате.
Светодиоды в прожекторах и лампах обычно распаяны на алюминиевой пластине, поверх которой нанесён диэлектрик и токоведущие дорожки. Сверху она обычно имеет белое покрытие, на нём часто указана информация о характеристиках источника питания, иногда и распиновка. Но как узнать полярность светодиода в лампочке или матрице если на плате нет сведений? Например, на этой плате указаны полюса каждого из светодиодов и их наименование — 5630. Чтобы проверить на исправность и определить плюс и минус светодиода воспользуемся мультиметром. Черный щуп подключаем в минус, com или гнездо со знаком заземления. Обозначение может отличаться в зависимости от модели мультиметра. Далее выбираем режим Омметра или режим проверки диодов. Затем подключаем поочередно щупы мультиметра к выводам диода сначала в одном порядке, а потом наоборот.
Когда на экране появятся хоть какие-то значения, или диод загорится — значит полярность правильная. На режиме проверки диодов значения равны 500-1200мВ. В режиме измерения значения будут подобными тем, что на рисунке. Единица в крайнем левом разряде обозначает превышение предела, либо бесконечность. Другие способы определения полярности Самый простой вариант для определения где плюс у светодиода — это батарейки с материнской платы, типоразмера CR2032. Её напряжение порядка 3-х вольт, чего вполне хватит чтобы зажечь диод. Подключите светодиод, в зависимости от его свечения вы определите расположение его выводов. Таким образом можно проверить любой диод. Однако это не очень удобно.
Можно собрать простейший пробник для светодиодов, и не только определять их полярность, но и рабочее напряжение. Схема самодельного пробника При правильном подключении светодиода через него будет протекать ток порядка 5-6 миллиампер, что безопасно для любого светодиода. Вольтметр покажет падение напряжения на светодиоде при таком токе. Если полярность светодиода и пробника совпадёт — он засветится, и вы определите цоколевку. Знать рабочее напряжение нужно, так как оно отличается в зависимости от типа светодиода и его цвета красный берет на себя менее 2-х вольт. И последний способ изображен на фото ниже. Включите на тестере режим Hfe, вставьте светодиод в разъём для проверки транзисторов, в область помеченной как PNP, в отверстия E и C, длинной ножкой в E. Так можно проверить работоспособность светодиода и его распиновку. Если светодиод выполнен в другом виде, например, smd 5050, вы можете воспользоваться этим способом просто — вставьте в E и C обычные швейные иглы, и прикоснитесь к ним контактами светодиода.
Любому любителю электроники, да и самоделок вообще нужно знать, как определить полярность светодиода и способы их проверки. Будьте внимательны при выборе элементов вашей схемы. В лучшем случае они просто быстрее выйдут из строя, а в худшем — мгновенно вспыхнут синем пламенем. Исторически электроника берёт своё начало от электровакуумных приборов. Дело в том, что лампы, которые многие помнят из старых телевизоров и приёмников, носили названия типа диод, триод, пентод и т. Название заключало в себе количество электродов или ножек прибора. Полупроводниковые диоды были изобретены в начале прошлого века. Их использовали для детектирования радиосигнала. Главное свойство диода — характеристики проводимости, зависящие от полюсовки приложенного к выводам напряжения.
Обозначение диода указывает нам на проводящее направление. Движение тока совпадает со стрелкой на УГО диода. УГО — условное графическое обозначение. Иначе говоря, это значок, которым обозначается элемент на схеме. Давайте разберем как отличать обозначение светодиода на схеме от других подобных элементов. Диоды, какие они бывают? Кроме отдельных выпрямительных диодов их группируют по области применения в один корпус. Обозначение диодного моста Например, так изображается диодный мост для выпрямления однофазного напряжения переменного тока. А ниже внешний вид диодных мостов и сборок.
Другим видом выпрямительного прибора является диод Шоттки — предназначен для работы в высокочастотных цепях. Выпускается как в дискретном виде, так и в сборках. Обычно на сборках Шоттки на корпусе указывается его цоколевка и внутренняя схема включения. Специфичные диоды Выпрямительный диод мы уже рассмотрели, давайте взглянем на диод Зенера, который в отечественной литературе называют — стабилитрон. Обозначение стабилитрона диод Зенера Внешне он выглядит как обычный диод — черный цилиндр с меткой на одной из сторон. Часто встречается в маломощном исполнении — небольшой стеклянный цилиндр красного цвета с черной меткой на катоде. Обладает важным свойством — стабилизация напряжения, поэтому включается параллельно нагрузке в обратном направлении, то есть к катоду подключается плюс питания, а анод к минусу. Следующий прибор — варикап, принцип его действия основан на изменении величины барьерной емкости, в зависимости от величины приложенного напряжения. Используется в приемниках и в цепях, где нужно производить операции с частотой сигнала.
Обозначается как диод, совмещенный с конденсатором. Варикап — обозначение на схеме и внешний вид Динистор — обозначение которого выглядит как диод, перечеркнутый поперек. По сути так и есть — он из себя представляет 3-х переходный, 4-х слойный полупроводниковый прибор. Благодаря своей структуре обладает свойством пропускать ток, при преодолении определенного барьера напряжения. Например, динисторы на 30В или около того часто используются в лампах «энергосберегайках», для запуска автогенератора и других блоках питания, построенных по такой схеме. Обозначение динистора Светодиоды и оптоэлектроника Раз диод излучает свет, значит обозначение светодиода должно быть с указанием этой особенности, поэтому к обычному диоду добавили две исходящие стрелки. В реальности есть много разных способов определить полярность, подробнее об этом есть целая статья. Ниже, для примера, распиновка зеленого светодиода. Обычно у светодиода маркировка выводов выполняется либо меткой, либо ножками разной длины.
Короткая ножка — это минус. Фотодиод, прибор обратный по своему действию от светодиода. Он изменяет состояние своей проводимости в зависимости от количества света, попадающего на его поверхность. Его обозначение: Такие приборы используются в телевизорах, магнитофонах и прочей аппаратуре, которая управляется пультом дистанционного управления в инфракрасном спектре. Такой прибор можно сделать, спилив корпус обычного транзистора. Часто применяется в датчиках освещенности, на устройствах автоматического включения и выключения осветительных цепей, например таких: Оптоэлектроника — область которая получила широкое распространения в передаче данных и устройствах связи и управления. Благодаря своему быстродействию и возможности осуществить гальваническую развязку, она обеспечивает безопасность для питаемых устройств в случае возникновения высоковольтного скачка на первичной стороне. Однако не в таком виде как указано, а в виде оптопары. В нижней части схемы вы видите оптопару.
Включение светодиода здесь происходит замыканием силовой цепи с помощью оптотранзистора в цепи светодиода. Когда вы замыкаете ключ, ток идёт через светодиод в оптопаре, в нижнем квадрате слева. Он засвечивается и транзистор, под действием светового потока, начинает пропускать ток через светодиод LED1, помеченный зеленым цветом. Такое же применение используется в цепях обратной связи по току или напряжению для их стабилизации многих блоков питания. Сфера применения начинается от зарядных устройств мобильных телефонов и блоков питания светодиодных лент, до мощных питающих систем. Диодов существует великое множество, некоторые из них похожи по своим характеристикам, некоторые имеют совершенно необычные свойства и применения, их объединяет наличие всего лишь двух функциональных выводов. Вы можете встретить эти элементы в любой электрической схеме, нельзя недооценивать их важность и характеристики. Правильный подбор диода в цепи снаббера, например, может значительно повлиять на КПД и тепловыделение на силовых ключах, соответственно на долговечность блока питания. Если вам было что-нибудь непонятно — оставляйте комментарии и задавайте вопросы, в следующих статьях мы обязательно раскроем все непонятные вопросы и интересные моменты!
Есть также стабилитроны, диодные сборки, стабисторы и тд. Но я их не отношу к какому то определенному классу. На фото ниже у нас простой диод и светодиод. Диод состоит из P-N перехода, поэтому весь прикол в проверке диода в том, что он пропускает ток только в одном направлении, а в другом не пропускает. Если это условие выполняется, то можно дать диагноз диоду — асболютно здоров. Берем наш известный мультик и крутилку ставим на значок проверки диодов. Подробнее об этом и других значках я говорил в статье Как измерить ток и напряжение мультиметром?. Хотелось бы добавить пару слов о диоде. Диод, как и резистор, имеет два конца.
И называются они по особенному — катод и анод. Если на анод подать плюс, а на катод минус, то ток через него спокойно потечет, а если на катод подать плюс, а на анод минус — ток НЕ потечет. Проверяем первый диод. Один щуп мультиметра ставим на один конец диода, другой щуп на другой конец диода. Как мы видим, мультиметр показал напряжение в 436 миллиВольт. Значит, конец диода, который касается красный щуп — это анод, а другой конец — катод. По моим наблюдениям, это напряжение может быть от 400 и до 700 миллиВольт для кремниевых диодов, а для германиевых от 200 и до 400 миллиВольт. Далее меняем выводы диода местами. Единичка на мультиметре означает, что сейчас электрический ток не течет через диод.
Следовательно, наш диод вполне рабочий. А как же проверить светодиод? Да точно также! Светодиод — это точно тот же самый простой диод, но фишка его в том, что он светится, когда на его анод подают плюс, а на катод — минус. Смотрите, он маленько светится! Значит вывод светодиодика, на котором красный щуп — это анод, а вывод на котором черный щуп — катод. Мультиметр показал падение напряжения 1130 миллиВольт.
Анодом в нем является двуокись свинца, а котодом — губчатый свинец. При протекании этой реакции расходуется серная кислота, а в результате реакции образуется вода. При разряде ток внутри аккумулятора протекает от катода к аноду. Пленочный сепаратор, находящийся между положительными и отрицательными электродами, играет важную роль при работе серебряно-цинковых аккумуляторов. Знак анода и катода Каким знаком обозначается «К», каким «А», зависит от того, какая процедура и в какой области рассматривается. В электрохимии есть два устройства, имеющие различие в обозначении знаками: электролизёр и гальванический элемент. При электролизе окислительно-восстановительном химическом взаимодействии под влиянием внешнего ИП минусом «-» обозначают катод. Именно на нём восстанавливаются металлы, из-за избытка электронов. Знаки зарядов при электролизе В гальваническом элементе окисление происходит без внешнего воздействия электричества. Если взять в качестве примера медно-цинковую батарею, то большое количество электронов минус скапливается на аноде. Они при продвижении по внешней цепи участвуют в восстановлении меди. Значит, в этом случае положительным электродом будет катод. У гальванических элементов плюсом является катод, минусом — анод. У электролизёров наоборот — плюсом считают анод, минусом — катод Знаки зарядов у гальванической батареи У полупроводниковых приборов, как знак, так и термин, чётко закреплены за выводами детали. Анод — это «плюс», катод — это «минус» диода. Положительно заряженный электрод Положительно заряженный электрод анод обозн. Положительно заряженный электрод, на котором происходит восстановление анионов, называют анодом. Положительно заряженный электрод анод имеет форму пластины или стержня. На положительно заряженном электроде аноде проходят реакции окисления, характер которых зависит от того, способен ли растворяться металлический анод в конкретных условиях электролиза или он находится в инертном пассивном состоянии. Анод — положительно заряженный электрод электровакуумного прибора, к которому под действием ускоряющего электрического поля движутся электроны, испускаемые катодом. Кинетическая энергия электронов, входящих в анод, переходит в тепловую, которая может вызвать значительное повышение температуры анода и даже расплавить его. Поэтому важным параметром электровакуумного прибора является максимально допустимая мощность, рассеиваемая анодом в виде тепла. Для обеспечения хорошего отвода тепла от анодов их поверхности делают темными — покрывают слоем угля, циркония или титана, которые имеют наибольший коэффициент излучения. Аноды изготовляют из молибдена, тантала, никеля или графита в виде цилиндров, плоскостей или колпачков. Со стороны положительно заряженных электродов на частицу действует отталкивающая оила, а оо стороны отрицательно заряженных-притягивающая. По действием этих сил частицы претерпевают незначительные отклонения и выходят за пределы системы электродов. Возникновение короны у положительно заряженного стержня. При развитии короны вблизи положительно заряженного электрода происходит постоянное расширение области, охваченной короной. Под действием сил электрического поля легкие электроны лавины передвигаются к стержню и поглощаются им, тяжелые положительные ионы направляются к катоду. Электрон может двигаться к положительно заряженному электроду за счет туннельного просачивания через потенциальные барьеры под влиянием приложенного напряжения. Перемещения такого рода приводят к миграции положительной дырки к отрицательному электроду и создает дырочный ток. Полируемая деталь всегда подвешивается на положительно заряженный электрод — анод. Основной недостаток электрохимического полирования — сглаживание острых углов при полировании деталей сложной формы. Плотность тока на остриях детали наибольшая, поэтому острые углы растворяются быстрее, чем остальная часть детали.
Анод и катод
В этой статье мы расскажем, что это такое анод и катод, а также как определить где они находятся в электролизере, диоде и у батарейки, что из них плюс, а что минус. У гальванических элементов плюсом является катод, минусом – анод. Итак, важно подвести итоги, отвечая на вопрос – как запомнить, где плюс, а где же минус у анода и катода?
Что такое анод, а что такое катод
Анод и катод - что это и как правильно определить? | В катоде столько же букв, сколько в слове «минус», а в аноде соответственно столько же, сколько в термине «плюс». |
Диод: анод и катод, полярность | Чтобы успешно решать задания по этой теме и писать реакции, необходимо разделять процессы на катоде и аноде. |
Анод и катод. Физико-химический процесс электролиза | В этой статье мы расскажем, что это такое анод и катод, а также как определить где они находятся в электролизере, диоде и у батарейки, что из них плюс, а что минус. |
Анод и катод: что это такое, где плюс и где минус на диоде | Катод и анод это плюс или минус: как определить, где у диода плюс и минус по обозначениям на схеме, внешнему виду и подаче тока. |
Определяем полярность диода: катод и анод | У гальванических элементов плюсом является катод, минусом – анод. |
Как определить анод и катод
За плюс отвечает анод из диоксид свинца, за минус – свинцовый катод. В катоде столько же букв, сколько в слове «минус», а в аноде соответственно столько же, сколько в термине «плюс». Ток будет идти через диод, если отвод анод подключить к «плюсу», отвод «катод» — к «минусу». При разряде гальванического элемента анод – минус, катод – плюс, при зарядке наоборот. Получается, что при зарядке у аккумулятора плюс становится анодом, а минус катодом.
Анод и катод – разберемся что это такое и как их определять в разных контекстах
Катод и анод: где плюс и минус. В электрохимии и электрических цепях, обозначения «плюс» и «минус» зависят от конкретного контекста. Минус у светодиода (катод) имеет большие размеры, чем плюс (анод). Если подать на анод плюс, а на катод минус, то у нас диод “откроется” и электрический ток спокойно по нему потечет. В этой статье мы расскажем, что это такое анод и катод, а также как определить где они находятся в электролизере, диоде и у батарейки, что из них плюс, а что минус. При разряде элемента гальваники элемента анод является минусом, а катод плюсом, при зарядке все будет наоборот.
Анод и катод - что это и как правильно определить? Куда течет ток или где же этот чертов катод
Дабы этого достигнуть применяют полупроводниковые материалы с разной проводимостью. Всего есть два метода передачи энергии: при помощи электронов; при помощи дырок. Про электроны многие знают. У атома хоть какой материи есть ядро и электроны. В металлах главным носителем энергии служат электроны, так как их довольно просто можно оторвать от ядер. В диодиках применяется другой материал — полупроводник. До полупроводников применялись вакуумные лампы, где главным носителем также были электроны.
Этот материал отличается от металлов и диэлектриков тем, что в обыкновенном состоянии он является диэлектриком — практически не пропускает через себя ток. При нагревании возникают освободившиеся электроны, которые могут участвовать в переносе заряда, другими словами принимают характеристики металлов, хотя и не полностью. Хотя для сотворения диодика могут употребляться различные материалы, к примеру, металл, диэлектрик и подобные, мы побеседуем о обширно применяемых диодиках, состоящих из 2-ух полупроводников. Материалом может служить: кремний; германий; соединения галлия и индия. Это только некоторые материалы, но их в большинстве случаев применяют. Дальше к полупроводнику добавляют другой хим элемент, который при соединении с полупроводником или дает ему электрон в данном случае молвят, что примесь донорная , или конфискует тогда примесь именуется акцепторной.
В первом случае в полупроводнике наблюдается излишек электронов, во 2-м случае их недостает. Дабы найти полярность диодика, принципиально знать, какой тип полупроводника находится с одной и с другой стороны. Всего существует два типа: N-тип именуют полупроводник с примесью, в каком основными носителями служат электроны, так как в этом материале их излишек. P-тип — полупроводник с недочетом электронов. Такую проводимость именуют дырочной. Если эти два типа соединить вкупе, то получим диодик.
Как работает диодик База работы диодика заключается в разной проводимости 2-ух полупроводников в этой статье речь только о них , соединенных совместно. Полупроводник типа n пропускает электроны, а p-типа — дырки. Если полярность диодика соблюдена, другими словами на n-тип подается минус, а на p-тип — плюс, то на каждый тип подается прямое напряжение и диодик открыт. Если знаки питания поменять местами, другими словами подать оборотное напряжение, то диодик будет закрыт. Почему такое происходит? В месте соединения 2-ух полупроводников разной проводимостью появляется маленькая область смещения.
Это когда электроны с n-типа отчасти перебегают в область p-типа. В этом месте нет свободных электронов и дырок. Во время подключения прямого напряжения недочет электронов и дырок восполняется источником питания, другими словами закрытая для перехода носителей заряда зона практически исчезает. Электроны, под действием электродвижущей силы, действующей в источнике питания, перепрыгивая из дырки в дырку, проходят участок p-типа и попадают на проводник. Что будет, если поменять полярность питания: к участку n-типа подключить плюс, а к p-типа — минус? В данном случае электроны на участке n-типа отодвинутся к источнику питания, расширяя закрытую зону, тем увеличив внутреннее сопротивление диодика.
В данном случае диодик будет закрыт. Естественно, если повысить напряжение на диодике, то электроны сумеют перескочить насыщенную область и через диодик пойдет ток. Некоторые диоды работают конкретно в таком режиме, их именуют стабилитронами. Но выпрямительные диоды не «любят» такие условия и могут выйти из строя. Ну и для стабилитронов оговаривается не только лишь оборотное напряжение, но и ток, при котором они могут работать. Если превысить обозначенные значения, то может произойти необратимый процесс — термический пробой и устройство выйдет из строя.
Катод и анод: где плюс и минус Хотя у устройства всего два вывода следует знать, как найти полярность диодика, дабы не поставить его в оборотном направлении? У диодика имеется: Слово, переведенное с греческого как анод, может означать ввысь либо от него. Вакуумные диоды на схемах изображаются в виде вытянутого круга, вверху которого размещается анод в виде перевернутой буковкы «Т». Катод размещается понизу и обозначается горизонтальной круглой скобкой с отводом. Электроны отрываются от катода и летят ввысь, в сторону анода. Попадая на анод, они выходят во внешнюю цепь «от него».
В данном случае анод должен быть подключен к положительному полюсу источника питания, а катод — к отрицательному. Про диодик молвят, что он открыт и пропускает ток через себя. Когда полярность изменяется, другими словами на анод подается отрицательное напряжение, а на катод положительное — диодик запирается. В полупроводниковых диодиках анодом именуется вывод от полупроводника p-типа, а катодом — вывод от полупроводника n-типа. В остальном механизм работы остается этим же самым. Методы определения полярности диодов Дабы найти полярность диодика, существует несколько методов: при помощи маркировки на корпусе; практическим методом; используя устройство; по таблицам и справочникам.
Кстати, производители оставляют за собой право применять тот либо другой способ, потому самым надежным будет ознакомление с технической документацией. Но этот метод пока оставим и разберем самый обычной. Как выяснить полярность диодика по маркировке Обычно производители дают подсказку, делая маркировку полярности диодика. На больших устройствах могут быть проставлены значки диодика — треугольник, упирающийся верхушкой в маленький отрезок. Вывод со стороны основания треугольника является анодом, он должен быть подключен к плюсу питания. Другой вывод, расположенный со стороны верхушки треугольника с отрезком, будет катодом.
К нему, соответственно, необходимо будет подключить минус питания. Если это выпрямительный диодик, то он ставится в схему с переменным током.
Электролиты являются проводниками второго рода.
В этих растворах и расплавах имеет место электролитическая диссоциация — распад на положительно и отрицательно заряженные ионы. Химия электролиза. Если в сосуд с электролитом — электролизер поместить электроды, присоединенные к электрическому источнику энергии, то в нем начнет протекать ионный ток, причем положительно заряженные ионы — катионы будут двигаться к катоду это в основном металлы и водород , а отрицательно заряженные ионы — анионы хлор, кислород — к аноду.
У анода анионы отдают свой заряд и превращаются в нейтральные частицы, оседающие на электроде. У катода катионы отбирают электроны у электрода и также нейтрализуются, оседая на нем, причем выделяющиеся на электродах газы в виде пузырьков поднимаются кверху. Читайте также: Назначение и принцип действия токовой отсечки.
Расчет уставок и коэффициента чувствительности токовой отсечки. Электрический ток во внешней цепи представляет собой движение электронов от анода к катоду. При этом раствор обедняется, и для поддержания непрерывности процесса электролиза приходится его обогащать.
Так осуществляют извлечение тех или иных веществ из электролита электроэкстракцию. Если же анод может растворяться в электролите по мере обеднения последнего, то частицы его, растворяясь в электролите, приобретают положительный заряд и направляются к катоду, на котором осаждаются, тем самым осуществляется перенос материала с анода на катод. Так как при этом процесс ведут так, чтобы содержащиеся в металле анода примеси не переносились на катод, такой процесс называется электролитическим рафинированием.
Если электрод поместить в раствор с ионами того же вещества, из которого он изготовлен, то при некотором потенциале между электродом и раствором не происходит ни растворения электрода, ни осаждения на нем вещества из раствора. Такой потенциал называется нормальным потенциалом вещества. Если на электрод подать более отрицательный потенциал, то на нем начнется выделение вещества катодный процесс , если же более положительный, то начнется его растворение анодный процесс.
Значение нормальных потенциалов зависит от концентрации ионов и температуры. Принято считать нормальный потенциал водорода за нуль. В табл.
Кроме того, в водных растворах всегда имеются ионы водорода, которые будут выделяться ранее, чем все металлы, имеющие отрицательный нормальный потенциал, поэтому при электролизе последних значительная или даже большая часть энергии затрачивается на выделение водорода. Два разнополярных электрода Путем специальных мер можно воспрепятствовать в известных пределах выделению водорода, однако металлы с нормальным потенциалом меньше 1 В например, магний, алюминий, щелочноземельные металлы получить электролизом из водного раствора не удается. Их получают разложением расплавленных солей этих металлов.
Нормальные электродные потенциалы веществ являются минимальными, при них начинается процесс электролиза, практически требуются большие значения потенциала для развития процесса. Разность между действительным потенциалом электрода при электролизе и нормальным для него потенциалом называют перенапряжением. Оно увеличивает потери энергии при электролизе.
С другой стороны, увеличивая перенапряжение для ионов водорода, можно затруднить его выделение на катоде, что позволяет получить электролизом из водных растворов ряд таких более отрицательных по сравнению с водородом металлов, как свинец, олово, никель, кобальт, хром и даже цинк. Это достигается ведением процесса при повышенных плотностях тока на электродах, а также введением в электролит некоторых веществ. Это интересно!
Все о полупроводниковых диодах. Течение катодных и анодных реакций при электролизе определяется следующими двумя законами Фарадея. В действительности масса выделившегося вещества всегда меньше указанной, что объясняется рядом побочных процессов, проходящих в ванне например, выделением водорода на катоде , утечками тока и короткими замыканиями между электродами.
Выход по току существенно зависит от плотности тока на электроде. С увеличением плотности тока на электроде выход по току растет и повышается эффективность процесса. Устройство гальванической цепи.
Из этой мощности только первая составляющая расходуется на проведение реакций, остальные являются тепловыми потерями процесса. Лишь при электролизе расплавленных солей часть теплоты, выделяющейся в электролите IUэ, используется полезно, так как расходуется на расплавление загружаемых в электролизер солей. Эффективность работы электролизной ванны, может быть оценена массой вещества в граммах, выделяемого на 1 Дж затраченной электроэнергии.
Эта величина носит название выхода вещества по энергии. В результате, длина и диаметр анода уменьшились. По мере эрозии, аноды подлежат регулярной замене.
Критерии, по которым определяют необходимость замены анода, обычно указаны в заводской инструкции. Производители электроводонагревателей рекомендуют через один год с начала эксплуатации выполнить осмотр и оценку степени износа анода и величины отложений накипи на ТЭНах. По результатам оценки определяют периодичность замены анода и чистки от накипи.
Анод протекторной защиты оказывает незначительное влияние на образование накипи на ТЭНах водонагревателя. Увеличение интенсивности электрохимических процессов на поверхности металла способствует некоторому разрыхлению слоя накипи. Камень из солей жесткости становится менее плотным и легче отделяется от металла.
Как поменять?
В случае электролиза, из-за источника питания появляется химическая реакция, а не наоборот. Тогда, показатель анода будут отрицательными, а катода — положительными, но, при этом, контакты будут иметь совершенно противоположные значения. При том, что в значение плюса аккумулятора поступает положительный показатель вывода источника питания, электроды для подзарядки аккумулятора меняют свои значения. Тогда, заряжаемый электрод называют анодом. Гальванотехника являет собой осаждение металлов на поверхности металлических и неметаллических изделий при помощи электролиза. После такого осаждения поверхность имеет высокий степень защиты от коррозии и более красивый вид. Так же, в некоторых случаях, улучшается твердость поверхности и большая стойкость от истирания.
Примером данного процесса могут быть покрытые различными металлами украшения. В данном случае, анод имеет положительное значение, а катод — отрицательное. Таким образом, металл осаждается на электроде с минусовым значением.
Предназначение катода — испускать электроны под действием нагрева электрическим током до определенной температуры. Посредством испущенных электронов создается пространственный заряд между катодом и анодом. Самые быстрые электроны устремляются к аноду, преодолевая отрицательный потенциальный барьер объемного заряда. Анод принимает эти частицы. Создается анодный ток во внешней цепи. Электронным потоком управляют с помощью дополнительных электродов, подавая на них электрический потенциал. Посредством диодов переменный ток преобразуется в постоянный.
Применение в электронике Сегодня используется полупроводниковые типы диодов. В электронике широко используется свойство диодов пропускать ток в прямом направлении и не пропускать в обратном. Работа светодиода основана на свойстве кристаллов полупроводников светиться при пропускании через p-n переход тока в прямом направлении. Гальванические источники постоянного тока — аккумуляторы Химические источники электрического тока, в которых протекают обратимые реакции, называются аккумуляторами: их перезаряжают и используют многократно. При работе свинцового аккумулятора происходит окислительно-восстановительная реакция. Металлический свинец окисляется, отдает свои электроны, восстанавливая диоксид свинца, принимающего электроны. Металлический свинец в аккумуляторе — анод, он заряжен отрицательно. Диоксид свинца — катод и заряжен положительно. По мере разряда аккумулятора расходуются вещества катода и анода и их электролита, серной кислоты. Чтобы зарядить аккумулятор, его подключают к источнику тока плюсом к плюсу, минусом к минусу.
Направление тока теперь обратное тому, какое было при разряде аккумулятора. Электрохимические процессы на электродах «обращаются». Теперь свинцовый электрод становится катодом, на нем проходит процесс восстановления, а диоксид свинца — анодом, с протекающей процедурой окисления. В аккумуляторе вновь создаются вещества, необходимые для его работы.
Катод это плюс либо минус
Анод и катод - что это и как правильно определить? Куда течет ток или где же этот чертов катод | Полярность катода по отношению к аноду может быть положительной или отрицательной в зависимости от того, как работает устройство. |
Полярность светодиода: как определить катод и анод самостоятельно | У гальванических элементов плюсом является катод, минусом — анод. |
Катод и анод что это: что это такое, как их определить, применение | Внутри батареи аноды и катоды соединены металлическим проводником для прохождения электронов. |
Как определить полярность светодиода | Эти свойства катодов и анодов нашли широкое применение в промышленности при очистке металла и в гальваностегии. |
Катод и анод — где минус, а где плюс? | При разряде гальванического элемента анод – минус, катод – плюс, при зарядке наоборот. |
Диод: анод и катод, полярность
Каких частиц? Да, любых заряженных! Это могут быть и электроны несущие отрицательный заряд и обделенные электронами частицы — атомы или молекулы, в растворах и плазме — ионы, в полупроводниках — «свободные электроны» или вообще «дырки», что бы это не значило. Так вот, во всем этом зоопарке проще всего разобраться так: ток течет от плюса к минусу, и все. Запомнить это очень просто: «плюс» — интуитивно — это там где чего-то «больше», больше в данном случае зарядов еще раз — не важно каких! Все остальные подробности, непринципиальны. Ну, и последнее — батарейка. Обозначение тоже всем известно, две палочки подлинней потоньше и покороче потолще. Так вот покороче и потолще символизирует собой минус — эдакий «жирный минус» — как в школе, помните: «ставлю тебе четыре с жирным минусом».
Обычно это SMD-приборы с несколькими кристаллами в одном корпусе, соединенными последовательно. Но для определения полярности цилиндрических светодиодов обычно трех вольт достаточно. Мнение эксперта Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники. Задать вопрос эксперту Важно! Ни в коем случае не повышайте напряжение и не используйте мощные батарейки для такой проверки. В первом случае при неправильном подключении кристалл будет пробит большим обратным напряжением, во втором при правильном подключении он может быть пробит запредельным прямым током. Включите прибор в режим проверки диодов и вызвоните полупроводник. При подключении черного щупа вывод СОМ прибора к катоду диод засветится. Есть еще один вариант. Он подойдет мультиметрам, способным проверять транзисторы. Устанавливаем прибор в этот режим. Вставляем диод в гнезда подключения коллектора и эмиттера транзистора типа n-p-n. Светодиод будет светиться, если анод полупроводника подключен к гнезду коллектора.
Также обстоит ситуация и с тиристором, назначение выводов и «однополярное» применение этих трёхногих компонентов делают его управляемым диодом: У вакуумного диода анод тоже подключается к плюсу, а катод к минусу, что изображено на схеме ниже. Хотя при приложении обратного напряжения — названия этих элементов не изменятся, несмотря на протекание электрического тока в обратном направлении, пусть и незначительного. С пассивными элементами, такими как конденсаторы и резисторы дело обстоит иначе. У резистора не выделяют отдельно катод и анод, ток в нём может протекать в любом направлении. Вы можете дать любые названия его выводам, в зависимости от ситуации и рассматриваемой схемы. У обычных неполярных конденсаторов также. Реже такое разделение по названиям контактов наблюдается в электролитических конденсаторах. Анод и катод у полупроводниковых приборов Что такое диод — принцип работы и устройство Полупроводниковые элементы проводят электричество в определённом направлении. Если рассматривать полупроводниковый диод, то его электроды также носят название «катод» и «анод». При прикладывании к нему прямого напряжения: положительный заряд к аноду, диод открыт. Если положительный потенциал приходит на катод, диод закрыт. Такой диод имеет p-n переход между двумя этими областями и требователен к приложенной полярности. Вывод элемента из p-области именуется «А», из n-области — «К». Полупроводниковый диод Назначение диода, анод диода, катод диода, как проверить диод мультиметром Назначение диода — проводить электрический ток только в одном направлении. Когда-то давно применялись ламповые диоды. Но сейчас используются в основном полупроводниковые диоды. В отличие от ламповых они значительно меньше по размеру, не требуют цепей накала и их очень просто соединять различным образом. Условное обозначениедиода на схеме На рисунке показано условное обозначение диода на схеме. Буквами А и К соответственно обозначены анод диода и катод диода. Анод диода — это вывод, который подключается к положительному выводу источника питания, непосредственно или через элементы схемы. Катод диода — это вывод из которого выходит ток положительного потенциала и далее через элементы схемы попадает на отрицательный электрод источника тока. А в обратном направлении диод ток не пропускает. Если каким-то из своих выводов диод подключается к источнику переменного напряжения, то на другом его выводе получается постоянное напряжение с полярностью, зависящей от того, как диод подключен. Если он подключен анодом к переменному напряжению, то с катода мы получим положительное напряжение. Если он подключен катодом, то с анода будет получено соответственно отрицательное напряжение. Как проверить диод мультиметром Выводы диода Как проверить диод мультиметром или тестером — такой вопрос встаёт тогда, когда есть подозрение, что диод неисправен. Но, ответ на этот вопрос даёт ещё один ответ, где у диода анод, а где катод. Если диод исправен, наш прибор будет показывать прохождение тока только в одном из вариантов. Если диод пропускает ток в обоих вариантах — диод пробит. Если он не пропускает ни в каком варианте, диод перегорел и также неисправен. В случае исправного диода, когда он проводит ток, смотрим на клеммы прибора, тот вывод диода, что подключен к положительному выводу тестера, является анодом диода, а тот, что к отрицательному — катодом диода. Проверка диодов очень похожа на проверку транзисторов. Знак анода и катода Каким знаком обозначается «К», каким «А», зависит от того, какая процедура и в какой области рассматривается. В электрохимии есть два устройства, имеющие различие в обозначении знаками: электролизёр и гальванический элемент. При электролизе окислительно-восстановительном химическом взаимодействии под влиянием внешнего ИП минусом «-» обозначают катод. Именно на нём восстанавливаются металлы, из-за избытка электронов. Читайте также: Инсоляция помещений жилых зданий — нормы, правила и рекомендации Знаки зарядов при электролизе В гальваническом элементе окисление происходит без внешнего воздействия электричества. Если взять в качестве примера медно-цинковую батарею, то большое количество электронов минус скапливается на аноде. Они при продвижении по внешней цепи участвуют в восстановлении меди. Значит, в этом случае положительным электродом будет катод. У гальванических элементов плюсом является катод, минусом — анод. У электролизёров наоборот — плюсом считают анод, минусом — катод. Знаки зарядов у гальванической батареи У полупроводниковых приборов, как знак, так и термин, чётко закреплены за выводами детали. Анод — это «плюс», катод — это «минус» диода. Процесс электролиза или зарядки аккумулятора Эти процессы похожи и обратны гальваническому элементу, поскольку здесь не энергия поступает за счет химической реакции, а наоборот — химическая реакция происходит за счет внешнего источника электричества. В этом случае плюс источника питания всё также называется катодом, а минус анодом. Зато контакты заряжаемого гальванического элемента или электроды электролизера уже будут носить противоположные названия, давайте разберемся почему! При разряде гальванического элемента анод — минус, катод — плюс, при зарядке наоборот. Так как ток от плюсового вывода источника питания поступает на плюсовой вывод аккумулятора — последний уже не может быть катодом. Ссылаясь на вышесказанное можно сделать вывод, что в этом случае электроды аккумулятора при зарядке условно меняются местами. Тогда через электрод заряжаемого гальванического элемента, в который втекает электрический ток, называют анодом. Получается, что при зарядке у аккумулятора плюс становится анодом, а минус катодом. Почему существует путаница Всё происходит от того, что нет чёткой привязки минуса и плюса к компонентам, которые называются «К» и «А».
Электрод, на котором происходит окислительная реакция — называется восстановителем. Катод — электрод на котором протекает восстановительная реакция, то есть он принимает электроны. Электрод, на котором происходит восстановительная реакция — называется окислителем. Отсюда возникает вопрос — где плюс, а где минус у батарейки? Исходя из определения, у гальванического элемента анод отдаёт электроны. В ГОСТ 15596-82 дано официальное определение названий выводов химических источников тока, если кратко, то плюс на катоде, а минус на аноде. В данном случае рассматривается протекание электрического тока по проводнику внешней цепи от окислителя катода к восстановителю аноду. Так как электроны в цепи текут от минуса к плюсу, а электрический ток наоборот, тогда катод — это плюс, а анод — это минус. Внимание: ток всегда втекает в анод! Или то же самое на схеме: Процесс электролиза или зарядки аккумулятора Эти процессы похожи и обратны гальваническому элементу, поскольку здесь не энергия поступает за счет химической реакции, а наоборот — химическая реакция происходит за счет внешнего источника электричества. В этом случае плюс источника питания всё также называется катодом, а минус анодом. Зато контакты заряжаемого гальванического элемента или электроды электролизера уже будут носить противоположные названия, давайте разберемся почему! При разряде гальванического элемента анод — минус, катод — плюс, при зарядке наоборот. Так как ток от плюсового вывода источника питания поступает на плюсовой вывод аккумулятора — последний уже не может быть катодом.
Катод и анод в теории и практике
Домен припаркован в Timeweb | У электролизёров наоборот — плюсом считают анод, минусом — катод. |
Катоды и аноды отрицательно и положительно заряженные электроды | Минус у светодиода (катод) имеет большие размеры, чем плюс (анод). |
Катод и анод
определяем где минус, где плюс. Понятие катода и анода, а точнее плюса и минуса в вакуумных и полупроводниковых приборах связано с возможностью протекания тока только в одном направлении или в двух. Понятие катода и анода, а точнее плюса и минуса в вакуумных и полупроводниковых приборах связано с возможностью протекания тока только в одном направлении или в двух. Что называют анодом и катодом, теоретические положения, принципы работы и способы применения в электрике на практике. В данной сфере анод и катод являются ключевыми понятиями, в процессе прохождения электрохимических реакций, используемых в основном для восстановления металлов. Что называют анодом и катодом, теоретические положения, принципы работы и способы применения в электрике на практике.