Черная дыра, как известно, поглощает свет и не отдает его. Вымышленная сверхмассивная Черная дыра Гаргантюа имеет массу в 100 миллионов солнц и находится в 10 миллиардах световых лет от Земли. Она вращается со скоростью, близкой к световой, и своей гравитацией затягивает окружающие объекты. Помните, как черная дыра Гаргантюа искривляет лучи света, искажая вид звездного неба?
Горизонт событий
Образно говоря, это позволило бы читать газету в Нью-Йорке, сидя в кафе в Париже». На то, чтобы его сделать, ушло почти 100 лет Впервые о существовании черных дыр заговорили почти сто лет назад, когда немецкий физик Карл Шварцшильд вывел из общей теории относительности Эйнштейна существование областей, где вещество и энергия сосредоточены так плотно, что гравитация не выпустит свет и искривит пространство. Несмотря на то что астрономы не могли наблюдать черную дыру непосредственно, в их существовании никто не сомневался. Но саму черную дыру все равно не увидеть Поскольку черная дыра ничего не излучает, ее нельзя увидеть просто так. Но зато можно увидеть вещество, которое с большой скоростью падает на черную дыру. Если поставить рядом с ней звезду или поместить черную дыру в облако газа и пыли, то за счет гравитации она начнет притягивать вещество. Оно будет падать на черную дыру, вокруг дыры сформируется аккреционный диск, который разогреется до сотен миллионов градусов и начнет светиться.
Но можно определить ее массу и положение по воздействию на ближайшие объекты, например на звезды. Если звезда вращается вокруг точки, то, вероятно, это черная дыра. Радиационное излучение, которое выделяет черная дыра, может стать мощным источником энергии для внешних двигателей и протонных осцилляционных двигателей, которые могут значительно сократить время путешествия в космосе.
С их помощью можно изучать природу гравитации, время и пространство. Изучение черных дыр важно для понимания корней происхождения всего существующего во вселенной и для создания новых технологий космической инженерии.
Настолько незначительной, что ни сам космический аппарат, не живые существа, находящиеся на его борту, вероятнее всего, их даже не заметят. На этом графике показана физическая нагрузка на стальную раму космического аппарата с его приближением к центру вращающейся черной дыры. В маленькой вставке показана детализированная картина нагрузки, которая будет отмечаться при максимальном сближении аппарата. Важно отметить, что нагрузка сильно возрастет в точке максимального сближения с черной дырой, но не будет расти в бесконечность. Другими словами, аппарат и его экипаж могут пережить такое путешествие Важным моментом здесь является то, что физические эффекты, оказываемые на корабль, не будут растут бесконечно.
Они ограничены определенным пределом, даже несмотря на то, что будет казаться, что нагрузка на корабль будет расти бесконечно с приближением к черной дыре. Конечно же, в исследовании Маллари есть несколько важных упущений и допущений, с учетом которых в ином случае конечный результат может быть совсем другим. Например, в представленной модели предполагается, что черная дыра полностью изолирована от воздействия внешних факторов, таких как постоянные гравитационные и иные возмущения, вызываемые, например, расположенной рядом звездой или же попадающим в черную дыру внешним излучением. Следует понимать, что обычно вокруг настоящих черных дыр скапливается очень много различного материала: пыль, газ, радиация и так далее. Исходя из всего этого, логичным продолжением работы Маллари будет повторное исследование данного контекста, но уже с учетом условий более реалистичных астрофизических черных дыр.
Источник: kinorium. Во-первых, как трехмерные объекты могли выйти в гиперпространство? Нужно понимать, что они «бегут» по поверхности с таким же количеством измерений, но никак не ныряют в многомерное пространство.
Во-вторых, почему они потеряли управление кораблем? Чем эта ситуация отличается от обычной гравитации? И в-третьих, почему они погружаются будто в тоннель? Ведь до этого нам демонстрировали и доказывали, что это сфера, поэтому и в иллюминаторах они должны были видеть концентрические сферы с переменным радиусом. Нейтронная звезда или черная дыра? Путешествие к планете Миллер При подлете к планете Миллер Купер предлагает совершить гравитационный маневр — пролететь вокруг нейтронной звезды. Это позволит им сбросить скорость, потому что они и так разгонятся рядом с черной дырой из-за сильнейшей гравитации, что может привести к тому, что они просто пролетят мимо планеты. Их цель — остаться на стабильной орбите, где притяжение черной дыры компенсируется действием центробежной силы.
Для большей корректности рядом со сверхмассивной черной дырой Гаргантюа должна располагаться черная дыра поменьше, которая и поможет им совершить маневр.
Что такое Гаргантюа?
Гаргантюа черная дыра. Гаргантюа — сверхмассивная вращающаяся чёрная дыра с аккреционным диском. Находится в 10 миллиардах световых лет от Земли. По данным ЕКА, две черные дыры — Gaia BH1 и Gaia BH2 — являются ближайшими к Земле из всех обнаруженных до сих пор. Искувственно смодулированная Кипом Торном СМЧД (сверхмассивная черная дыра («Гаргантюа») специально для киноленты Кристофера Нолана «Интерстеллар». Кстати, общепризнанный в кругах многих астрономов, тот факт, что изображение чёрной дыры "Гаргантюа" из к/a "Интерстеллар" наиболее точно и достоверно передаёт внешний вид свермассивной чд в галактике М87 (точнее её тени).
Познание тьмы: как наука проникает в тайны черных дыр
Gaia BH1 находится всего в 1 560 световых годах от Солнечной системы по направлению к созвездию Змееносца, практически на «заднем дворе» Земли, пишут ученые. Она почти в три раза ближе, чем предыдущий рекордсмен. Gaia BH2 находится примерно в 3 800 световых годах от Земли, в созвездии Центавра. Оба объекта примерно в 9-10 раз массивнее Солнца и находятся в галактике Млечный Путь.
Когда какой-то объект или облако межзвездного газа падает на черную дыру, появляется всплеск электромагнитного излучения. Астрономы фиксируют его и делают вывод о присутствии черной дыры.
Они — результат гравитационного коллапса сверхмассивных звезд, приводящего к созданию настоящей сингулярности — объекта бесконечной плотности, появившегося вследствие сжатия целой звезды до крошечной точки. Эти горячие точки бесконечной плотности обладают настолько мощной гравитацией, что способны в буквальном смысле разрывать пространство-время. Согласно предположениям, этот факт открывает возможность использовать эти объекты для гиперпространственных путешествий. Конечно же, более ранние научные исследования на этот счет говорили о том, что любой объект, например, космический корабль, или живое существо, которые решат использовать черную дыру в качестве портала, очень быстро об этом пожалеют. Бесконечная гравитационная сингулярность и высокие температуры приведут к тому что объект будет растягиваться и сжиматься до тех пор, пока полностью не испарится. Путешествие сквозь черную дыру Научная команда профессора физики Гаурава Ханна из Университета штата Массачусетс в Дортмунде США и их коллеги из Колледжа Гвиннетт в штате Джорджия смогли показать, что не все черные дыры одинаковы.
Объясняется это тем, что у больших и вращающихся черных дыр сингулярность действует несколько иначе, «нежнее» или «слабее» и поэтому имеется вероятность того, что она не будет повреждать те объекты, которые будут с ней взаимодействовать. На первый взгляд этот может показаться бредом, однако ученые приводят в качестве объясняющей аналогии простой эксперимент с быстрым перемещением руки над горящей свечей. Попробуйте сами и увидите, что огонь вас не будет обжигать. Гаурав Ханн и его коллега Лиор Бурко занимаются вопросами физики черных дыр более двадцати лет.
Несмотря на гигантскую массу центрального объекта, нельзя сказать с полной определённостью, что он является чёрной дырой, поскольку гравитационный радиус такой чёрной дыры составляет около 0,001 светового года [ источник не указан 856 дней ]. По другим данным, объект сфотографированный телескопом Event Horizon, является сверхмассивной чёрной дырой [15]. Измерение скорости микроволновых источников править В 1995 году группа под руководством Дж. Морана наблюдала точечные микроволновые источники, вращающиеся в непосредственной близости от центра галактики NGC 4258 [16].
Всего было обнаружено 17 компактных источников, расположенных в дискообразной структуре радиусом около 10 световых лет. Наблюдение траекторий отдельных звёзд править В 1993—1996 годах А. Экарт и Р. Генцель наблюдали движение отдельных звёзд в окрестностях центра нашей Галактики [17]. Наблюдения проводились в инфракрасных лучах, для которых слой космической пыли вблизи ядра галактики не является препятствием. В результате удалось точно измерить параметры движения 39 звёзд, находящихся на расстоянии от 0,13 до 1,3 светового года от центра галактики. Только в 1960 году Дж. Оорт и Г.
В 1966 году Д. Даунс и А. Максвелл, обобщив данные по радионаблюдениям в дециметровом и сантиметровом диапазонах, пришли к выводу, что малое ядро Галактики представляет собой объект диаметром 10 пк, связанный с источником Стрелец-А [19]. К началу 1970-х годов благодаря наблюдениям в радиоволновом диапазоне было известно, что радиоисточник Стрелец-А имеет сложную пространственную структуру. В 1974 году Б.
Как доказали в 70-е годы английский и канадские астрофизики С. Хокинг, В. Израэл и Б. Картер, использовавшие представления общей теории относительности ОТО Эйнштейна, черная дыра — это удивительно простой объект. Все его свойства — сила гравитационного притяжения, отклоняющая световое излучение звезд, а также форма и размер ее поверхности—определяются лишь двумя числами: массой дыры которую вы уже знаете и моментом количества движения. Этот момент — мера того, как быстро дыра вращается вокруг собственной оси. Вращаясь, она создает в пространстве вокруг себя некий вихрь, закручивающий все, что попадает внутрь дыры. Падая, некоторые водородные атомы межзвездной среды кружатся по часовой стрелке, а другие — в противоположном направлении. В результате они могут сталкиваться между собой, но в среднем падают в дыру отвесно «вертикально» , то есть в радиальном направлении, не вращаясь. И вы приходите к выводу, что эта черная дыра с массой 10 Mслн едва ли вращается вообще — ее момент количества движения близок к нулю. Зная массу и момент количества движения, можно теперь, пользуясь формулами ОТО, рассчитать все свойства, которыми должна обладать черная дыра. Наиболее интересны свойства ее поверхности, или горизонта — границы, из-за которой все, что падает в дыру, уже не может вернуться; границы, из-за которой не выбраться звездолету и даже любому виду излучения: радиоволнам, свету, рентгеновским или гамма-лучам. Поскольку эта дыра не вращается, ее горизонт имеет форму сферы, длина большой окружности которой при массе 10 Mслн составляет 185 км, что равно, например, периметру Лос-Анджелеса. Эта величина ничтожна по сравнению с длиной вашей орбиты 1 млн км. И тем не менее в столь крошечный объем втиснута масса вдесятеро больше солнечной! Но насколько позволяют судить ваши наблюдения, она сотворена из вакуума — пустоты. Снаружи от горизонта вещества нет вовсе, если не считать атомов водорода, падающих в дыру из межзвездного пространства, и вашего корабля. И так как они никогда больше не появятся и не передадут никакой информации наружу, вы можете полагать в своих дальнейших расчетах, что они полностью исчезли из нашей Вселенной. Единственное, что после них осталось,— сильное гравитационное притяжение, которое влияет на вашу орбиту так же, как и до коллапса, и которое на сфере с экватором длиной 185 км становится столь огромным, что преодолевает любое сопротивление и, тем самым, создает горизонт. Однако вас уже предупредили, что не следует доверять подобным вычислениям по двум причинам. Во-первых, чудовищное гравитационное поле черной дыры полностью искажает геометрию пространства возле нее: у горизонта диаметр круга может быть гораздо больше, чем отношение длины окружности к числу я. Во-вторых, понятие диаметра имеет смысл лишь тогда, когда вы его можете измерить. Но чтобы измерить диаметр горизонта черной дыры, вам придется проникнуть внутрь него, а очутившись там, вы никогда не сможете вернуться в нашу Вселенную. Вам не удастся даже передать результаты своих измерений на Землю — сигналы не выйдут за горизонт из-за неумолимого тяготения. Но тут же вы вспоминаете, что, хотя снаружи черная дыра чрезвычайно проста, о ее внутренности этого сказать нельзя. Хотя по массе и моменту количества движения черной дыры вы в состоянии вычислить все ее свойства снаружи, вы не можете ничего узнать о ее внутренности. Она может иметь неупорядоченную структуру и быть сильно несимметричной. Все это будет зависеть от деталей коллапса, в результате которого образовалась черная дыра, а также от особенностей последующего втягивания межзвездного водорода. Так что диаметр дыры просто нельзя рассчитать на основе той убогой информации, которая имеется в вашем распоряжении. Получив эти результаты, вы можете исследовать окрестности горизонта черной дыры. Не желая рисковать человеческой жизнью, вы отправляете десятисантиметровый робот по имени R3D3 со встроенным передатчиком, который должен передать результаты своих исследований на корабль. Робот получает довольно простое задание: с помощью ракетного двигателя он должен сойти с круговой орбиты вашего звездолета и начать падать к черной дыре. Падая, R3D3 будет передавать на корабль информацию о состоянии своих электронных систем и о пройденном расстоянии. Для этого может быть использован ярко-зеленый луч лазера. Вы рассчитываете принять лазерный сигнал, расшифровать его для определения состояния аппаратуры и пройденного расстояния, а также измерить цвет длину волны излучения. Вы знаете, что, хотя лазер все время испускает зеленый луч, вы будете видеть его все более красным по мере приближения робота к горизонту черной дыры. Отчасти излучение «покраснеет» за счет того, что ему придется затратить энергию на преодоление сильного гравитационного поля черной дыры, и отчасти — из-за доплеровского смещения, связанного с удалением источника излучения от вас. Измеряя «покраснение» лазерного излучения, вы сможете рассчитать скорость падения робота. Итак, эксперимент начинается. R3D3 сходит с круговой орбиты и падает по радиальной траектории. Как только он начинает падать, вы пускаете часы, по которым фиксируется время прихода лазерных импульсов. По истечении 10 с вы получаете от него сообщение, что все системы функционируют нормально и он уже опустился на 2600 км. Здесь и далее прим. Теперь вы должны быть предельно внимательны. Следующие несколько секунд окажутся решающими, поэтому вы включаете высокоскоростную регистрирующую систему для детальной записи всех приходящих сведений. Через 61 с R3D3 сообщает, что все системы пока функционируют нормально, горизонт — на расстоянии 8000 км и приближается со скоростью 15 тыс. Проходит 61,6 с. Еще все в порядке, до горизонта осталось 2000 км, скорость — 30 тыс. А затем, в течение следующей 0,1 с вы с изумлением замечаете, что излучение из зеленого становится красным, инфракрасным, микроволновым, затем приходят радиоволны и наконец все исчезает. Через 61,7 с все кончено — лазерный луч пропал. R3D3 достиг скорости света и исчез за горизонтом. По мере того как возбуждение спадает и вы подавляете налет сожаления по поводу участи робота, ваше внимание вновь обращается к записанным данным. В них зафиксированы подробности изменения окраски лазерного излучения. Вы знаете, что свет представляет собой колебания электромагнитного поля и что каждый цвет характеризуется своей собственной длиной волны. Там, в записях — история этого удлинения. Из них следует, что пока R3D3 падал, длина волны принимаемого вами излучения сначала менялась очень медленно, а затем все быстрее и быстрее. Следует предположить, однако, что длина волны продолжала все так же удваиваться и после этого, так что после огромного числа удвоений длина волны стала бесконечной и возле горизонта все еще испускались чрезвычайно слабые и длинноволновые сигналы. Означает ли это, что R3D3 так и не пересек горизонт и никогда не сможет сделать этого? Вовсе нет. Эти последние сигналы с многократно удваивавшейся длиной волны будут бесконечно долго «выбираться» из «тисков» гравитационного поля черной дыры. Но слабые сигналы от него будут продолжать приходить, поскольку время их пребывания в пути оказалось бесконечно велико. Они — следы далекого прошлого. Подчеркнем, что реализовать такую систему отсчета на самом горизонте и внутри него невозможно. Поэтому никаких нарушений принципа причинности, конечно, не происходит. После многочасового изучения данных, полученных от робота, и продолжительного сна, необходимого для восстановления сил, вы приступаете к следующему этапу исследований. На этот раз вы решаете самостоятельно обследовать окрестности горизонта событий, правда, рассчитываете сделать это с большей предосторожностью, чем ваш посланник: вместо свободного падения к горизонту, вы собираетесь снижаться постепенно. Попрощавшись с командой, вы влезаете в спускаемый аппарат и покидаете корабль, оставаясь сначала на той же круговой орбите. Затем, включая ракетный двигатель, слегка тормозите, чтобы замедлить свое орбитальное движение. При этом вы начинаете по спирали приближаться к горизонту, переходя с одной круговой орбиты на другую. Ваша цель — выйти на круговую орбиту с периметром, слегка превышающим длину горизонта. Поскольку вы движетесь по спирали, длина вашей орбиты постепенно сокращается: от 1 млн км до 500 тыс. Находясь в состоянии невесомости, вы подвешены в своем аппарате, предположим, ногами — к черной дыре, а головой — к орбите вашего корабля и звездам. Но постепенно вы начинаете ощущать, что кто-то тянет вас за ноги вниз и вверх — за голову. Вы соображаете, что причина — притяжение черной дыры: ноги ближе к дыре, чем голова, поэтому они притягиваются сильнее. То же самое справедливо, конечно, и на Земле, но разница в притяжении ног и головы там ничтожна — меньше 10—6, так что никто этого не замечает. Двигаясь же по орбите длиной 80 тыс. Несколько озадаченный вы продолжаете движение по закручивающейся спирали, но удивление быстро сменяется беспокойством: по мере уменьшения размеров орбиты, силы, растягивающие вас, будут нарастать все стремительнее. При длине орбиты 64 тыс. Скрипя зубами от натуги, вы продолжаете движение по спирали. При длине орбиты 25 тыс. Больше вы не в состоянии выдержать в вертикальном положении. Пытаетесь решить эту проблему, свернувшись калачиком и подтянув ноги к голове, уменьшив тем самым разность сил. Но они уже настолько велики, что не дадут вам согнуться — снова вытянут вертикально вдоль радиального по отношению к черной дыре направления. Что бы вы ни предпринимали, ничто не поможет. И если движение по спирали будет продолжаться, ваше тело не выдержит — его разорвет на части. Итак, достичь окрестности горизонта нет никакой надежды... Разбитый, преодолевая чудовищную боль, вы прекращаете свой спуск и переводите аппарат сначала на круговую орбиту, а затем начинаете осторожно и медленно двигаться по расширяющейся спирали, переходя на круговые орбиты все большего размера, пока не доберетесь до звездолета. В изнеможении добравшись до капитанской рубки, вы изливаете свои беды бортовому компьютеру. Вам рассказывали о растяжении в направлении от головы к ногам в процессе подготовки к полету. Это ведь те же самые силы, что вызывают океанские приливы на Земле». Но почему же робот R3D3 оказался столь стойким к действию приливных сил? Вы догадываетесь, что это произошло по двум причинам: он был изготовлен из сверхпрочного титанового сплава и имел размеры, значительно меньшие, чем ваши.
Видео обои Сверхмассивная чёрная дыра
Эти уравнения описывали траектории лучей света, исходящих из далекой звезды, проникающих через искривленные пространство и время Гаргантюа, достигающих камеры и учитывающих даже само движение камеры вокруг черной дыры. новости Украины, Мир - Черной дыры Гаргантюа обои скачать - обои для рабочего стола. Самым известным в массовой культуре изображением черной дыры стал образ Гаргантюа в том же "Интерстелларе". По расчетам, черная дыра в тысячи раз больше, чем в Млечном пути, и насчитывает не 0,1% от массы балджа галактики, а все 59%. Черная дыра Интерстеллар 4k. «Первичная черная дыра субсолнечной массы, проходящая через нейтронную звезду, может потерять достаточно энергии из-за взаимодействия с плотной звездной средой, чтобы стать гравитационно связанной со звездой.
Новости черных дыр
По расчетам авторов статьи, человек или робот, путешествующий к горизонту событий черной дыры, сможет увидеть до 13 копий отдельных звезд и даже всей галактики в целом. По словам Торна, данный симулятор можно использовать и для изучения других, более сложных процессов, происходящих в окрестностях вращающихся черных дыр.
Самым известным в массовой культуре изображением черной дыры стал Гаргантюа в фильме «Интерстеллар». И пользователи неоднократно заметили, что снимок и кадр из фильма частично сходятся.
Но для кого-то первое изображение черной дыры — величайшее открытие, а для кого-то… Вообще, любители науки с интересом восприняли сообщение о первой фотографии черной дыры, хотя и успели друг с другом поспорить о том, что объект на самом деле нельзя сфотографировать. Потом начались диванные баталии о том, что ученые получили фотографии аккреционного диска, а затемнение в центре и есть горизонт событий, откуда не исходит и не отражается свет. Но некоторых пользователей все равно не удалось убедить, что открытие важно. Зажгите свечку Сотрудник отдела релятивистской астрофизики Астрономического института имени Штернберга Константин Постнов объяснил «360», почему черная дыра, которая не позволяет свету выйти, все равно светится.
Она не светится. Светится вещество вокруг нее. Свечка у вас есть, зажгите. Почему горит?
Потому что там идет химическая реакция и частички, которые там вылетают, они горячие. Чем горячее, тем белее свет. То же самое и там. Когда газ падает вокруг черной дыры, он из-за трения нагревается до высоких температур и светится, как любое раскаленное тело Константин Постнов.
Астрофизик отметил, что светятся плазма и газ, которые нагреты до огромных температур в окрестностях черной дыры. Постнов объяснил, что черная дыра — это очень глубокая «потенциальная яма», компактный объект с большой массой. Туда падает газ, нагревается до высоких температур и светится в разных диапазонах света.
Вы запускаете аргоновый лазер — он испускает такой же яркий пучок зеленого цвета, как и всегда. Вы берете импульсный рубиновый лазер, зеркало, детектор излучения и высокоточные часы; включая и выключая лазер, вы измеряете время прохождения импульса от лазера до зеркала и обратно к детектору, вычисляя из результатов экспериментов скорость света. Все в звездолете выглядит нормально: так, словно вы стоите на поверхности планеты Гиперион, где сила притяжения вдесятеро больше земной.
Если не смотреть через иллюминаторы звездолета наружу и не видеть странного пятна над головой и все поглощающей темноты вокруг, нельзя понять, где вы находитесь: возле горизонта черной дыры или на поверхности Гипериона. Кривизна пространства, обусловленная черной дырой, естественно, сохраняется и внутри корабля, так что, располагая достаточно точными инструментами, вы сможете обнаружить ее здесь. Вы ищете добровольцев для самоубийственного спуска в дыру. Робот R4D5 с его пристрастием к приключениям и опасности вызывается с готовностью. В спускаемом аппарате вместе с ним находится импульсный лазер, зеркало, фотодетектор и часы: робот будет измерять скорость света по мере своего падения и передавать результаты измерений на корабль с помощью лазерных импульсов. R4D5 покидает звездолет и начинает измерения.
Модулируемый лазерный пучок сообщает вам: «299 800; 299 800; 299 800... Лазерное излучение превращается из зеленого в красное, инфракрасное, микроволновое, радиоволны, но сообщение остается неизменным: 299 800. А затем пучок пропадает: R4D5 ныряет под горизонт. Но ни разу в процессе своего падения он не регистрирует никаких изменений скорости света внутри спускаемого аппарата и не отмечает никаких отличий от физических законов, управляющих работой его электронных систем. Результаты этих экспериментов очень радуют вас. Еще в 1907 г.
Эйнштейн выдвинул гипотезу базирующуюся в основном на философских соображениях , согласно которой законы физики должны быть одинаковы во Вселенной всюду и всегда, и это утверждение вскоре стало фундаментальным положением, получившим название «принципа эквивалентности Эйнштейна». В дальнейшем этот принцип не раз подвергался экспериментальной проверке, но никогда она не была столь наглядной и тщательной, как в вашем эксперименте в окрестностях горизонта Гаргантюа. Устав от десятикратных перегрузок, вы приступаете к подготовке следующего, завершающего этапа своего путешествия — к возвращению в свою Галактику — Млечный Путь. Вы передаете детальный отчет о своих исследованиях в окрестностях Гаргантюа, и поскольку вскоре намереваетесь двигаться со скоростью, близкой к скорости света, ваше сообщение поступит в Млечный Путь менее чем на год раньше вас по земным часам. По мере удаления звездолета от Гаргантюа вы с помощью телескопа ведете тщательные наблюдения за квазаром 8C 2975. Его струи — длинные тонкие столбы горячего газа, выбрасываемые из ядра квазара,— имеют огромную длину 3 млн св.
Направляя телескопы на ядро, вы видите источник энергии, обеспечивающей существование струй: толстый горячий «бублик» из газа размером около 1 св. Наблюдая вихревое движение газа вблизи дыры, вы приходите к заключению, что эта дыра, в отличие от тех, которые встречались вам прежде, вращается весьма быстро. Энергия, поддерживающая существование струй чудовищной длины, отчасти обусловлена вращением черной дыры, а отчасти — движением газового «бублика». Различие между Гаргантюа и 8C 2975 поразительно: почему Гаргантюа, масса и размеры которой в 1000 раз больше, чем у квазара, не захватывает вращающийся газовый «бублик» и гигантские струи? Дальнейшие исследования подсказывают ответ: один раз в несколько месяцев какая-либо звезда, обращающаяся вокруг черной дыры, входящей в состав квазара, подходит к дыре слишком близко и разрывается на части приливными силами черной дыры. Вещество из внутренней части звезды — газ массой около 1 Mслн — выбрасывается наружу и распределяется вокруг черной дыры, после чего постепенно опускается, группируясь в окружающий дыру «бублик».
В результате он всегда заполнен газом, несмотря на постоянные потери — падение вещества на черную дыру и выброс в струях. Звезды подходят близко и к Гаргантюа. Но из-за ее больших размеров приливные силы снаружи от горизонта слишком слабы, чтобы разорвать звезду на части. Поэтому Гаргантюа «заглатывает» звезды целиком, без выбросов вещества из внутренней части звезды в окружающий ее газовый «бублик». Не имея такого «бублика», Гаргантюа не может образовать струи или другие атрибуты квазаров. Пока ваш звездолет выбирается из гравитационной ловушки Гаргантюа, вы строите планы возвращения домой.
К тому моменту, когда вы достигнете Млечного Пути, Земля станет на 2,4 млрд лет старше, чем во время вашего старта. Изменения в человеческом обществе будут настолько велики, что вы не испытываете особого желания возвращаться на Землю. Вместо этого вы и команда звездолета решаете освоить пространство вокруг какой-нибудь подходящей вращающейся черной дыры. Ведь именно энергия вращения дыры в квазаре 8C 2975 позволяет квазару «проявить себя» во Вселенной, поэтому энергия вращения дыры меньших размеров может стать источником энергии для человеческой цивилизации. Аккуратные вычисления на бортовом компьютере предсказывают, что каждая из этих звезд должна была взорваться, пока вы путешествовали к Гаргантюа, образовав невращающуюся черную дыру массой около 24 Mслн общая масса выброшенного при взрыве газа составляет примерно 6 Mслн. Обе черные дыры должны теперь вращаться одна относительно другой, испуская в процессе вращения гравитационные волны.
Эти волны будут передавать слабый импульс отдачи черным дырам, вызывая их чрезвычайно медленное, но неумолимое сближение по спирали. Небольшая коррекция ускорения звездолета позволит вам прибыть туда на последней стадии этого взаимного сближения: через несколько дней после прилета вы сможете наблюдать, как сливаются невращающиеся горизонты обеих черных дыр и как в результате образуется одна быстро вращающаяся дыра. Две родительские дыры были непригодны для поселения, поскольку не обладали заметным моментом количества движения, но новорожденная, быстро вращающаяся дыра представляется идеальной для поселения. Итак, спустя 39 лет 11 мес. А вот и они, точно на месте! Измеряя траектории движения межзвездного водорода, падающего на дыры, вы убеждаетесь, что они не вращаются и масса каждой составляет около 24 Mслн в соответствии с предсказаниями компьютера.
Длина горизонта дыры равна 440 км, дыры отстоят на 60 тыс. Подставляя эти значения в формулы Эйнштейна определяющие отдачу при испускании гравитационных волн , вы заключаете, что черные дыры должны слиться через три дня. Этого времени как раз достаточно для подготовки телескопов и съемочных камер к регистрации всех деталей события. Фотографируя искажения, вносимые гравитационной линзой в распределение звезд, расположенных за дырами, вы без труда проконтролируете их движение. Светлое кольцо сфокусированного излучения звезд, окружающее диск каждой черной дыры, обеспечит вам превосходный фотоснимок. Вам бы хотелось быть поблизости, чтобы видеть все отчетливо, но при этом достаточно далеко, чтобы не испытывать беспокойства из-за приливных сил.
Подходящим расстоянием, решаете вы, будет орбита, в 10 раз длиннее той, по которой обращаются черные дыры. В течение трех следующих дней дыры постепенно сближаются и ускоряют свое орбитальное движение. За день до слияния расстояние между ними уменьшается с 60 до 46 тыс. За час до слияния они находятся на расстоянии 21 тыс. За минуту до слияния расстояние между ними 7400 км, а период 0,61 с. За 10 с до слияния расстояние 4700 км, период 0,31 с.
А затем в последние 10 с вы и ваш звездолет начинаете сотрясаться, сначала слабо, а затем все сильнее и сильнее. Все происходит так, словно гигантская пара рук схватила вашу голову и ноги и стала поочередно сжимать и растягивать вас все сильнее и сильнее, быстрее и быстрее. А затем еще более внезапно, чем началась, дрожь прекращается. Все спокойно. Вы привыкли к тому, что гравитационные волны настолько слабы, что зарегистрировать их могут лишь сверхчувствительные приборы. Но при слиянии черных дыр они необычайно сильны — будь ваша орбита в 50 раз меньше, звездолет могло разорвать на части вызванной ими тряской.
Но сейчас вы в безопасности. Слияние завершилось, и волны прошли. На своем пути во Вселенной они расскажут удаленным наблюдателям о происшедшем здесь событии». Направляя телескопы на источник гравитационного поля, вы обнаруживаете, что там, где недавно были две дыры, сейчас всего одна, причем она быстро вращается — вы видите это по вихрям падающих атомов водорода. Эта дыра станет идеальным генератором энергии для вас, вашей команды и тысяч поколений ваших потомков. Аккуратные измерения параметров орбиты звездолета свидетельствуют, что масса образовавшейся дыры составляет 45 Mслн.
Поскольку суммарная масса родительских дыр равнялась 48 Mслн, три солнечных массы должны были превратиться в энергию и унестись гравитационными волнами. Нечего удивляться, что вас трясло так сильно! О вращении дыры свидетельствуют не только возникающие вихри атомов водорода, падающих в дыру, но и форма окруженного светлым кольцом темного пятна на небе под вами: это пятно сплющено из-за вращения дыры, как сплющена из-за вращения Земля. Более того, пятно выпячивается с одной стороны. Зная же момент и массу, вы вычисляете другие свойства черной дыры, включая скорость вращения ее горизонта и длину ее экватора. Вращение дыры заинтересовало вас.
Никогда прежде вы не имели возможности вблизи исследовать вращающуюся дыру. Поэтому вы вновь отыскиваете добровольца, робота R4D4, вызвавшегося исследовать окрестности горизонта. Ему даны четкие инструкции: спуститься, зависнув в нескольких метрах над горизонтом, и там, включив ракетные двигатели, удерживаться неподвижно точно под звездолетом. Таким образом, двигатели должны препятствовать как силе гравитационного притяжения, так и вихревому увлечению пространства. Жаждущий приключений R4D4 спускается вниз, форсируя двигатели сначала едва, а затем все сильнее, чтобы преодолеть вращение пространства и остаться точно под звездолетом. И как ни пытается он тягой двигателей препятствовать вращению, ему это не удается.
R4D4 изо всех сил пытается форсировать двигатели, но скорость его орбитального движения почти не меняется. А затем топливо иссякает, и он начинает падать внутрь. Его лазерное излучение становится инфракрасным, затем превращается в радиоволны, но мерцает все с той же частотой, свидетельствующей о том, что нет никаких изменений в его вращательном движении. Он ушел в глубь черной дыры, нырнув в неистовую сингулярность, которую вы никогда не сможете увидеть... Через три недели, посвященных экспериментам и наблюдениям, вы и ваша команда принимаетесь, наконец, за строительство. Доставив материалы с далеких планет, создаете рабочее кольцо вокруг черной дыры.
Оно имеет длину около 5 млн км, толщину 2 тыс. Размеры кольца тщательно выбраны, так что люди, предпочитающие жить при земной силе тяжести, могут построить свои дома у внешней или внутренней поверхностей кольца, а те, кто выбирает более слабое притяжение, могут поселиться ближе к его осевой линии. Эти различия в силе тяжести целиком обусловлены приливной силой черной дыры, или, в терминах ОТО,— кривизной пространства-времени. Превратившись в энергию, эта величина в 100 тыс. Ваш преобразователь действует по тому же принципу, что и квазары, принципу, впервые открытому в 1977 г. Блэндфордом и Р.
Червоточина - это как складка на ткани пространства и времени , которая соединяет две очень далекие области, что помогает космическим путешественникам преодолеть большое расстояние за короткий период времени. Официальное название кротовой норы — "мост Эйнштейна-Розена", так как впервые она была предложена Альбертом Эйнштейном и его коллегой Натаном Розеном в 1935 году. В двухмерных диаграммах устье кротовой норы показано в виде круга. Однако, если бы мы могли увидеть кротовую нору, она бы выглядела, как сфера. На поверхности сферы был бы виден гравитационно искаженный вид пространства с другой стороны "норы". Размеры кротовой норы в фильме: 2 км в диаметре и расстояние переноса - 10 миллиардов световых лет. Гравитационное замедление времени Гравитационное замедление времени — это реальное явление, наблюдаемое на Земле.
Оно возникает потому, что время относительно. Это означает, что оно течет по-разному для различных систем координат. Когда вы находитесь в сильной гравитационной среде, время течет медленнее для вас по сравнению с людьми, находящимися в слабой гравитационной среде. Если вы находитесь возле черной дыры, как в фильме, ваша система координат, а, следовательно, восприятие времени отличается от восприятия того, кто находится на Земле. Это потому, что гравитационное притяжение черной дыры тем сильнее, чем ближе вы к ней находитесь. Согласно уравнению Эйнштейна время течет медленнее в более высоких гравитационных полях. То же самое происходит на планете, близкой к черной дыре: часы тикают медленнее, чем на космическом корабле, вращающемся дальше.
Присутствие массы искривляет мембрану, как резиновый лист.
Гаргантюа черная дыра
По данным ЕКА, две черные дыры — Gaia BH1 и Gaia BH2 — являются ближайшими к Земле из всех обнаруженных до сих пор. Гаргантюа — сверхмассивная вращающаяся чёрная дыра с аккреционным диском. Изучив орбитальное вращение этого «бублика», вы определяете массу черной дыры – 2·109 Mслн, т. е. примерно в тысячу раз меньше, чем масса Гаргантюа, но гораздо больше массы любой черной дыры в Млечном Пути. Живые обои Черная дыра Гаргантюа / скачать на рабочий стол.
Линзирование быстровращающейся черной дыры – Гаргантюа
На другой стороне они попадают в иную Солнечную систему с вращающейся черной дырой вместо звезды. Они находятся в гонке с пространством и временем, чтобы выполнить свою миссию. Такое космическое путешествие может показаться слегка запутанным, но оно основывается на основных принципах физики. Вот основные 5 понятий физики, которые нужно знать, чтобы понять "Интерстеллар": Искусственная гравитация Самой большой проблемой, с которой сталкиваемся мы, люди, при длительных космических путешествиях, является невесомость. Мы родились на Земле, и наше тело приспособилось к определенным гравитационным условиям, но когда мы находимся в космосе длительное время, наши мышцы начинают ослабевать. Читайте также: 10 изменений, которые происходят с нашим телом в космосе С этой проблемой сталкиваются и герои в фильме "Интерстеллар". Чтобы справиться с этим, ученые создают искусственную гравитацию в космических кораблях. Одним из способов сделать это — раскрутить космический корабль, как в фильме. Вращение создает центробежную силу, которая отталкивает объекты к внешним стенкам корабля.
Это отталкивание похоже на гравитацию, только в обратном направлении. Такую форму искусственной гравитации вы испытываете, когда едете вокруг кривой малого радиуса и вам кажется, что вас отталкивает наружу, от центральной точки кривой. Во вращающемся космическом корабле стены для вас становятся полом. Вращающаяся черная дыра в космосе Астрономы, хотя и косвенно, наблюдали в нашей Вселенной вращающиеся черные дыры. Никто не знает, что находится в центре черной дыры, но у ученых есть для этого название — сингулярность. Вращающиеся черные дыры искажают пространство вокруг себя по-иному в отличие от неподвижных черных дыр.
Наука за кадром» Да, это так. Если человек провалится в черную дыру, он почти перестанет стареть: чем ниже он будет лететь, тем сильнее будет замедляться время.
Как на планете Миллер в фильме «Интерстеллар», которая находилась возле черной дыры Гаргантюа: час по времени Миллера равен семи земным годам. Таким образом, можно улететь в космос молодым и прилететь всего на пару лет старше, а на Земле пройдут сотни лет. Можно ли передать сообщение на Землю, угодив в черную дыру? Сигналы, которые будут посланы после пересечения горизонта событий, не могут выйти наружу, так как в черной дыре все стремится вниз, к сингулярности. Наука за кадром» В соответствии с современными представлениями — нет. Как только вы пересечете горизонт событий поверхность черной дыры , например, с радиопередатчиком в руках, то сигналы перестанут выходить наружу. А все потому, что и вас, и ваши сигналы будет непреодолимо затягивать вниз. Как происходит искривление пространства?
Представьте муравья человечество , живущего на детском батуте Вселенная , в середине которого лежит очень тяжелый камень. Точно так же, как и поверхность батута, искривляется пространство нашей Вселенной. Наука за кадром» Черная дыра искривляет не только время, но и пространство: получается что-то вроде батута пространство Вселенной , которое прогнулось под лежащим на нем тяжелым камнем черная дыра с ее низшей точкой — сингулярностью. Ученые смогли выяснить это благодаря теории относительности Эйнштейна, которая однозначно предсказывает многие космические явления 5. Куда пропадает звезда, из которой образовалась черная дыра?
В общей сложности им удалось найти около 20 ранее неизвестных объектов этого типа, в том числе и нового рекордсмена, измерить их яркость, массу и свойства сверхтяжелых черных дыр в их центрах. Когда ученые измерили массу черной дыры в центре W2246-0526, они не поверили своим глазам — она оказалась тяжелее Солнца как минимум в три миллиарда раз.
Подобный вывод крайне удивил астрофизиков. Дело в том, что мы видим эту галактику в том состоянии, в котором она существовала примерно 12 миллиардов лет назад, через 1,3 миллиарда лет после Большого Взрыва. Этого времени, как сегодня считают астрофизики, просто не должно было хватить для того, чтобы эта дыра достигла современных гаргантюанских размеров, даже если бы она беспрерывно поглощала максимальные количества материи, допустимые с точки зрения теории. Обед Гаргантюа Астрономы НАСА нашли один из возможных ответов на этот вопрос, наблюдая за окрестностями W2246-0526 при помощи микроволнового телескопа ALMA, способного следить за движением даже самых холодных скоплений газа и пыли.
На самом деле, падающий объект может вообще не испытывать никаких заметных воздействий. Это повышает целесообразность использования больших вращающихся черных дыр в качестве порталов для гиперпространственных путешествий. Мэллари также обнаружил особенность, которая не была полностью оценена ранее: эффект сингулярности в контексте вращающейся черной дыры привел бы к быстро увеличивающимся циклам растяжения и сжатия космического корабля. Но для очень больших черных дыр, таких как Гаргантюа, сила этого эффекта была бы очень мала.
Поэтому космический корабль и все находящиеся на его борту люди не смогут его обнаружить. Важным моментом является то, что эти эффекты не увеличиваются беспредельно; фактически, они остаются конечными, хотя напряжения на космическом корабле имеют тенденцию к неограниченному росту по мере приближения к черной дыре. В контексте модели Мэллари есть несколько важных упрощающих предположений и вытекающих из них предостережений. Главное допущение заключается в том, что рассматриваемая черная дыра полностью изолирована и поэтому не подвержена постоянным возмущениям со стороны такого источника, как другая звезда в ее окрестностях или даже падающее излучение. Хотя это предположение допускает важные упрощения, стоит отметить, что большинство черных дыр окружены космическим материалом - пылью, газом, излучением.
Гаргантюа черная дыра
По Торну, Гаргантюа скорее похож на ещё более массивную сверхмассивную чёрную дыру, которая предположительно находится в ядре туманности Андромеды и которая оценивается в 100 миллионов солнечных масс (1.1–2.3 ; 108 M. Вращающиеся черные дыры искажают пространство вокруг себя по-иному в отличие от неподвижных черных дыр. Согласно Научным Данным Она Образовалась Из Тёмной Звезды в Тёмные Века Во Времена Когда Не Было Времени и Если Залетит в Нашу Солнечную Систему Нас Ждут Бо. Гаргантюа — сверхмассивная вращающаяся чёрная дыра с аккреционным диском.
Черные дыры. Kак умирают чёрные дыры?
Для установки двигающихся обоев «Черная дыра Gargantua» на рабочий стол windows 11/10 или более ранних версий воспользовавшись одной из программ. Группа международных астрономов, используя космический телескоп Gaia, обнаружила огромную черную дыру, расположенную относительно недалеко от Земли. Кадр из фильма «Интерстеллар» (2014 г.) – черная дыра Гаргантюа Черные дыры поглощают космические объекты и излучают колоссальное количество энергии. Звездный узор на рис. 8.1 (Гаргантюа) заметно отличается от изображенного на рис. 8.4 (невращающаяся черная дыра), а эффект при движении камеры отличается еще больше. Вращающиеся черные дыры искажают пространство вокруг себя по-иному в отличие от неподвижных черных дыр. Гаргантюа черная дыра.