Важно понимать, что чёрная дыра — это не пустое пространство, а, скорее, место, где огромное количество материи помещается в крошечную область, называемую сингулярностью, которая бесконечно мала и плотна (тут есть разные варианты, но остановимся на этом).
Гаргантюа интерстеллар [82 фото]
Конечно, это не прямолинейная визуализация космического объекта, а образ, близкий по пластике и эстетике, и вдохновивший на графически чистую геометрию. Но ведь можно представить, что Москва образно похожа на черную дыру, куда всех затягивает. А Кремль спрятался во мраке за горизонтом событий.
Кроме того, если бы планета вращалась вокруг своей оси, то силы притяжения Гаргантюа действовали бы в нескольких направлениях в зависимости от положения орбит. По фильму же мы видим, что все гигантские волны движутся примерно в одном направлении. Отсюда следует вывод, что планета Миллер всегда повёрнута к черной дыре одной и той же стороной. Возможно и еще одно объяснение: из-за деформации планеты и притяжения Гаргантюа в определенных районах постоянно проходят землетрясения, вызывающие гигантские цунами. Неужели нужно было лететь на нее в первую очередь и неужели этой части экспедиции нельзя было избежать?
Разумеется, можно было. Планета Миллер никогда бы не стала бы первым кандидатом на место нового дома для человечества, если бы Купер или другие члены экипажа «Эндюранс» догадались использовать по назначению кучу научного оборудования, именно с этой целью доставленного на борт корабля. Информацию о пригодности планеты Миллер для жизни можно было получить прямо с орбиты при помощи телескопов и прочих приборов. Тех самых, которыми Ромили почти четверть века изучал саму чёрную дыру, пока остальные боролись с цунами. Не спускаясь на планету, можно было бы провести ее изучение с безопасного расстояния, где временной лаг минимальный. Простой спектральный анализ здорово сэкономил бы топливо экспедиции и снизил бы накал страстей на экране. Кристоферу Нолану нужно было это замедление времени, чтобы показать, как растёт пропасть между отцом и дочерью.
В крайнем случае, если NASA так уж хотелось отправить на планету делегацию из мыслящих существ, вполне можно было бы послать в экспедицию экипаж, состоящий из одних роботов. Роботы способны выжить почти в любых условиях судя по фильму — даже в черной дыре , они менее требовательны, не так капризны и легче переносят одиночество. Замедления времени он не избежал бы в любом случае — оно возрастает обратно пропорционально расстоянию от черной дыры. Но сэкономить время путем корректировки курса корабля благодаря гравитационному притяжению разных небесных тел еще как можно. В фильме Купер решает избежать притяжения Гаргантюа, разогнавшись до огромной скорости, а затем резко затормозить, попав в зону притяжения нейтронной звезды. На самом деле подобным образом снизить скорость и чтобы корабль и пассажиров при резком торможении не разорвало на кусочки с помощью нейтронной звезды не удалось бы — для этого требуется небольшая черная дыра размером с Землю. Но Нолан был непреклонен насчёт количества черных дыр в фильме: одна, только одна!
Действие разворачивается высоко над поверхностью, в небе которой висят гигантские ледяные облака. И почему они не падают под собственным весом? По-видимому, планета Манна вращается вокруг Гаргантюа по крайне сложной орбите и большую часть времени проводит вдали от черной дыры. Во-первых, до планеты Манна было чуть ли не дольше всего лететь, когда экипаж «Эндюранс» решал, откуда начать. Зато, когда Купер взлетает с планеты, «Рейнджер» оказывается совсем рядом с Гаргантюа. А во-вторых, на это намекают гигантские ледяные облака, которые замерзают на то время, пока планета удалена от аккреционного диска. А не падают они благодаря особому виду магии.
На самом деле они давно должны были рухнуть на поверхность. Куперу удается спасти основной модуль, но сам он, робот ТАРС и «Рейнджер» проходят сквозь горизонт событий и падают в черную дыру. Как они пережили весь процесс? Их должно было или убить радиацией и температурой аккреционного диска, или они должны были спагеттицифицироваться — превратиться в вытянутую нить из-за разницы в притяжении разных частей тела. Если Гаргантюа последний раз захватывала звезды в свой гравитационный капкан миллионы лет назад, то диск стал безопасным для случайных путешественников и бесполезным для окрестных планет, к слову. Что касается спагеттификации, она опять же возможна в маленьких и невращающихся черных дырах. Размеры и скорость вращения Гаргантюа сводят разницу притяжений различных частей тела к нулю, так что превращения в спагетти можно не опасаться.
Нет, конечно. Как он рассчитывал передать сигнал обратно домой? Ведь они испытывали трудности даже с передачей сигнала через кротовую дыру. Что уж говорить о черной дыре, из которой, как известно, не сбегает ничто. Считалось, что притяжения черной дыры не может избежать ничто, даже свет. Но Стивен Хокинг доказал, что и черные дыры могут излучать элементарные частицы, преимущественно фотоны. Некоторые теории подразумевают, что информацию в принципе невозможно остановить, но единого взгляда на этот вопрос у ученых нет.
Тем не менее они едва ли согласятся с тем, что из черной дыры может транслироваться сигнал, так что это, конечно, преувеличение.
У довольно крупного Млечного пути ее масса оценивается в 4 млн солнц. А теперь представьте небольшую галактику NGC 1277 в 230 млн световых лет от нас. Наблюдения за движением звезд в ее центре показали, что они вращаются вокруг центра огромной массы. Масса дыры составляет невероятные 17 млрд солнц, а размеры вдесятеро больше диаметра орбиты Плутона.
Поскольку пространство изгибается вокруг черной дыры, можно осмотреть ее дальнюю сторону и увидеть часть газового диска, которая в противном случае была бы скрыта дырой. Вокруг нее вращаются планеты Миллер и Манн , а также безымянная нейтронная звезда. Звезда главной последовательности Пантагрюэль находилась в пределах годового полета от Гаргантюа вместе с обитаемой планетой Эдмундс.
Гаргантюа находится в пределах нескольких недель космического полета к Червоточине. В книге Кипа Торна «The Science of Interstellar» он упоминает, что Гаргантюа не имеет струи джета или перегретого синего аккреционного диска, что указывает на то, что она, вероятно, не пожирала звезду миллионы лет.
Новости черных дыр
Важно понимать, что чёрная дыра — это не пустое пространство, а, скорее, место, где огромное количество материи помещается в крошечную область, называемую сингулярностью, которая бесконечно мала и плотна (тут есть разные варианты, но остановимся на этом). Черная дыра Гаргантюа — это огромный астрономический объект, который находится в центре галактики M87 в созвездии Девы. Да, вокруг сверхмассивной черной дыры по имени Гаргантюа обращается диск — это останки разорванных приливными силами звезд и планет, захваченных полем тяжести космического монстра. Иногда звезда обращается вокруг чёрной дыры на таком расстоянии, где приливные силы не так сильны, чтобы полностью разорвать звезду, но они всё равно стягивают с неё газ и материал. 3. Черные дыры и сингулярности. В научно-фантастической литературе и фильмах черная дыра обычно представляется этаким космическим Гаргантюа, безжалостно пожирающим пролетающие корабли с отважными блондинками и даже целые планеты.
Гаргантюа интерстеллар [82 фото]
Да толпы приверженцев теории струн выстроились бы очередями в Нобелевский комитет. Это же новость века! Черная дыра в центре галактики M87, очерченная излучением раскаленного газа, который, вращаясь вокруг нее, образует кольцо. Да, вокруг сверхмассивной черной дыры по имени Гаргантюа обращается диск — это останки разорванных приливными силами звезд и планет, захваченных полем тяжести космического монстра. Самым известным в массовой культуре изображением черной дыры стал образ Гаргантюа в том же "Интерстелларе". Изучив орбитальное вращение этого «бублика», вы определяете массу черной дыры – 2·109 Mслн, т. е. примерно в тысячу раз меньше, чем масса Гаргантюа, но гораздо больше массы любой черной дыры в Млечном Пути. Эти снимки неожиданным образом показали, что черная дыра-"гаргантюа" и сама W2246-0526 были соединены толстыми линиями из холодного газа и пыли с тремя спутниками этого "звездного мегаполиса".
Гаргантюа черная дыра - 85 фото
Астрофизики Event Horizon смогли зафиксировать тень черной дыры в галактике М87 — кольцо излучения и материи на краю горизонта событий. Ученые не просто сфотографировали объект, но и обработали изображения, сделанные с помощью радиотелескопов. Чтобы наблюдать за черной дырой, потребовался бы телескоп, который не может выдержать собственный вес, поэтому исследователи использовали обсерватории, расположенные на Гавайях в США, Испании, Мексике, Чили и на Южном полюсе. Каждый телескоп собирал информацию, а потом астрофизики использовали суперкомпьютер, чтобы создать изображение, выглядящее так, будто его сделал один большой телескоп размером с Землю. Как сказал астроном Майкл Бремер, в Event Horizon Telescope входят восемь обсерваторий по всему миру. И все они действуют как один телескоп диаметром 10 тысяч километров. Но фото этого объекта было не первостепенно важным, потому что черная дыра в центре нашей галактики двигается, а поле зрения телескопа не так велико, поэтому ученые решили смотреть сначала на отдаленный объект в чужой галактике. Наблюдения продолжались на протяжении 10 суток в апреле 2017 года.
Тогда ученые смогли расшифровать огромный объем данных. Каждый телескоп собрал по 500 терабайтов информации, на обработку которой ушло два года. Руководитель проекта Шеп Доулман заявил, что полученное изображение черной дыры подтверждает существование горизонта событий — то есть правильность общей теории относительности Эйнштейна. Самым известным в массовой культуре изображением черной дыры стал Гаргантюа в фильме «Интерстеллар». И пользователи неоднократно заметили, что снимок и кадр из фильма частично сходятся. Но для кого-то первое изображение черной дыры — величайшее открытие, а для кого-то… Вообще, любители науки с интересом восприняли сообщение о первой фотографии черной дыры, хотя и успели друг с другом поспорить о том, что объект на самом деле нельзя сфотографировать. Потом начались диванные баталии о том, что ученые получили фотографии аккреционного диска, а затемнение в центре и есть горизонт событий, откуда не исходит и не отражается свет.
Но некоторых пользователей все равно не удалось убедить, что открытие важно. Зажгите свечку Сотрудник отдела релятивистской астрофизики Астрономического института имени Штернберга Константин Постнов объяснил «360», почему черная дыра, которая не позволяет свету выйти, все равно светится.
Не забывайте делиться своими впечатлениями и оценками, и не пропускайте другие качественные изображения, которые мы предлагаем: Милые обои на ватсап , Темние обои на телефон в разделе Обои. Давайте вместе окунемся в праздничную атмосферу и насладимся этой коллекцией!
Согласно предположениям, этот факт открывает возможность использовать эти объекты для гиперпространственных путешествий. Конечно же, более ранние научные исследования на этот счет говорили о том, что любой объект, например, космический корабль, или живое существо, которые решат использовать черную дыру в качестве портала, очень быстро об этом пожалеют. Бесконечная гравитационная сингулярность и высокие температуры приведут к тому что объект будет растягиваться и сжиматься до тех пор, пока полностью не испарится. Путешествие сквозь черную дыру Научная команда профессора физики Гаурава Ханна из Университета штата Массачусетс в Дортмунде США и их коллеги из Колледжа Гвиннетт в штате Джорджия смогли показать, что не все черные дыры одинаковы. Объясняется это тем, что у больших и вращающихся черных дыр сингулярность действует несколько иначе, «нежнее» или «слабее» и поэтому имеется вероятность того, что она не будет повреждать те объекты, которые будут с ней взаимодействовать. На первый взгляд этот может показаться бредом, однако ученые приводят в качестве объясняющей аналогии простой эксперимент с быстрым перемещением руки над горящей свечей. Попробуйте сами и увидите, что огонь вас не будет обжигать. Гаурав Ханн и его коллега Лиор Бурко занимаются вопросами физики черных дыр более двадцати лет. В 2016 году Кэролайн Маллари, одна из аспиранток Ханна, вдохновленная блокбастером режиссера Кристофера Нолана «Интерстеллар» решила научным методом проверить, действительно ли главный герой фильма смог бы выжить при падении в гигантскую вращающуюся черную дыру Гаргантюа, обладающую массой в 100 миллионов раз превосходящую солнечную. Сам фильм, напомним, был поставлен по книге нобелевского лауреата по астрофизике Кипа Торна.
Науке неизвестно, что произойдёт со звездолётом после пересечения этой черты. Вероятнее всего, с точки зрения пассажира звездолёта, преодолев световой барьер, он продолжит своё ускорение. Стоит отметить, что вся масса чёрной дыры должна быть сосредоточена в её центре, бесконечно мелкой сингулярности. Поэтому остальное пространство чёрной дыры является просто областью, ограниченной горизонтом событий. Разный взгляд на пустоту Можно ли увидеть черную дыру? Другими словами, термин «радиус чёрной дыры» не обозначает радиус материального объекта. Это радиус области, внутри которой не действует известная физика. Попав в неё, наш звездолёт не только не сможет вырваться назад, но и неизбежно попадёт в её центр. В данном случае интересная особенность горизонта событий заключается в том, что с точки зрения наблюдателя никакой сингулярности не существует. Всё то, что попало в чёрную дыру для нашего внешнего мира навсегда останется у края горизонта событий. То есть, с нашей точки зрения, вся масса чёрной дыры сосредоточена не в центре, а по периферии. Звездолёт не только не достигнет центра, но и не пересечёт границы чёрной дыры. Для тех же, кто попал в чёрную дыру, пересечение горизонта событий пролетит со скоростью света. Путешествие до сингулярности будет проходить при ещё больших нарастающих скоростях, что также нарушает законы нашей физики. В конечном итоге любое тело, угодившее в чёрную дыру, неизбежно станет частью сингулярности. По её меркам пройдёт сравнительно небольшое время, тогда как за пределами дыры, известная для нас, Вселенная может исчезнуть. Ведь, согласно модели Хоккинга, испарения чёрной дыры происходит за невообразимо короткий срок. Масштабы горизонта событий Горизонт событий, наряду с сингулярностью, является основным «атрибутом» чёрной дыры. Его радиус, называемый также гравитационным радиусом, или радиусом Шварцшильда, линейно зависит от её массы. Можно практически в уме оценить радиус любой чёрной дыры, умножив три километра на отношение её массы к массе солнца. Так чёрная дыра с земной массой будет размером с вишню. В тоже время размер сверхмассивных чёрных дыр будет исчисляться миллионами и даже миллиардами километров. Очевидно, что при таких колоссальных размерах, такие объекты не будут обладать столь губительными приливными силами. Поэтому мысль о том, что любое тело разорвёт ещё до подхода к чёрной дыре, является заблуждением. Получается, теоретически можно допустить путешествие человека вглубь чёрной дыры, о чём было рассказано выше.
Самая яркая галактика Вселенной оказалась "каннибалом", выяснили в НАСА
огромной чёрной дырой. Самым известным в массовой культуре изображением черной дыры стал образ Гаргантюа в том же "Интерстелларе". вымышленной сверхмассивной черной дыре массой в 100 миллион раз больше Солнца. 1) Почему черная дыра Гаргантюа в фильме выглядит именно так? Да толпы приверженцев теории струн выстроились бы очередями в Нобелевский комитет. Это же новость века!
Линзирование быстровращающейся черной дыры – Гаргантюа
Вы почти уверены, что здесь, столь близко от горизонта черной дыры, законы физики тоже изменяются и изменения повлияют на вашу собственную физиологию. Вы смотрите на своих спутников и спутниц — они выглядят обычно. Вы ощупываете друг друга — все нормально. Вы выпиваете стакан воды — за исключением влияния ускорения в 10 g, которое вы можете устранить, если решитесь нырнуть под горизонт, — вода льется нормально. Вы запускаете аргоновый лазер — он испускает такой же яркий пучок зеленого цвета, как и всегда. Вы берете импульсный рубиновый лазер, зеркало, детектор излучения и высокоточные часы; включая и выключая лазер, вы измеряете время прохождения импульса от лазера до зеркала и обратно к детектору, вычисляя из результатов экспериментов скорость света. Все в звездолете выглядит нормально: так, словно вы стоите на поверхности планеты Гиперион, где сила притяжения вдесятеро больше земной.
Если не смотреть через иллюминаторы звездолета наружу и не видеть странного пятна над головой и все поглощающей темноты вокруг, нельзя понять, где вы находитесь: возле горизонта черной дыры или на поверхности Гипериона. Кривизна пространства, обусловленная черной дырой, естественно, сохраняется и внутри корабля, так что, располагая достаточно точными инструментами, вы сможете обнаружить ее здесь. Вы ищете добровольцев для самоубийственного спуска в дыру. Робот R4D5 с его пристрастием к приключениям и опасности вызывается с готовностью. В спускаемом аппарате вместе с ним находится импульсный лазер, зеркало, фотодетектор и часы: робот будет измерять скорость света по мере своего падения и передавать результаты измерений на корабль с помощью лазерных импульсов. R4D5 покидает звездолет и начинает измерения.
Модулируемый лазерный пучок сообщает вам: «299 800; 299 800; 299 800... Лазерное излучение превращается из зеленого в красное, инфракрасное, микроволновое, радиоволны, но сообщение остается неизменным: 299 800. А затем пучок пропадает: R4D5 ныряет под горизонт. Но ни разу в процессе своего падения он не регистрирует никаких изменений скорости света внутри спускаемого аппарата и не отмечает никаких отличий от физических законов, управляющих работой его электронных систем. Результаты этих экспериментов очень радуют вас. Еще в 1907 г.
Эйнштейн выдвинул гипотезу базирующуюся в основном на философских соображениях , согласно которой законы физики должны быть одинаковы во Вселенной всюду и всегда, и это утверждение вскоре стало фундаментальным положением, получившим название «принципа эквивалентности Эйнштейна». В дальнейшем этот принцип не раз подвергался экспериментальной проверке, но никогда она не была столь наглядной и тщательной, как в вашем эксперименте в окрестностях горизонта Гаргантюа. Устав от десятикратных перегрузок, вы приступаете к подготовке следующего, завершающего этапа своего путешествия — к возвращению в свою Галактику — Млечный Путь. Вы передаете детальный отчет о своих исследованиях в окрестностях Гаргантюа, и поскольку вскоре намереваетесь двигаться со скоростью, близкой к скорости света, ваше сообщение поступит в Млечный Путь менее чем на год раньше вас по земным часам. По мере удаления звездолета от Гаргантюа вы с помощью телескопа ведете тщательные наблюдения за квазаром 8C 2975. Его струи — длинные тонкие столбы горячего газа, выбрасываемые из ядра квазара,— имеют огромную длину 3 млн св.
Направляя телескопы на ядро, вы видите источник энергии, обеспечивающей существование струй: толстый горячий «бублик» из газа размером около 1 св. Наблюдая вихревое движение газа вблизи дыры, вы приходите к заключению, что эта дыра, в отличие от тех, которые встречались вам прежде, вращается весьма быстро. Энергия, поддерживающая существование струй чудовищной длины, отчасти обусловлена вращением черной дыры, а отчасти — движением газового «бублика». Различие между Гаргантюа и 8C 2975 поразительно: почему Гаргантюа, масса и размеры которой в 1000 раз больше, чем у квазара, не захватывает вращающийся газовый «бублик» и гигантские струи? Дальнейшие исследования подсказывают ответ: один раз в несколько месяцев какая-либо звезда, обращающаяся вокруг черной дыры, входящей в состав квазара, подходит к дыре слишком близко и разрывается на части приливными силами черной дыры. Вещество из внутренней части звезды — газ массой около 1 Mслн — выбрасывается наружу и распределяется вокруг черной дыры, после чего постепенно опускается, группируясь в окружающий дыру «бублик».
В результате он всегда заполнен газом, несмотря на постоянные потери — падение вещества на черную дыру и выброс в струях. Звезды подходят близко и к Гаргантюа. Но из-за ее больших размеров приливные силы снаружи от горизонта слишком слабы, чтобы разорвать звезду на части. Поэтому Гаргантюа «заглатывает» звезды целиком, без выбросов вещества из внутренней части звезды в окружающий ее газовый «бублик». Не имея такого «бублика», Гаргантюа не может образовать струи или другие атрибуты квазаров. Пока ваш звездолет выбирается из гравитационной ловушки Гаргантюа, вы строите планы возвращения домой.
К тому моменту, когда вы достигнете Млечного Пути, Земля станет на 2,4 млрд лет старше, чем во время вашего старта. Изменения в человеческом обществе будут настолько велики, что вы не испытываете особого желания возвращаться на Землю. Вместо этого вы и команда звездолета решаете освоить пространство вокруг какой-нибудь подходящей вращающейся черной дыры. Ведь именно энергия вращения дыры в квазаре 8C 2975 позволяет квазару «проявить себя» во Вселенной, поэтому энергия вращения дыры меньших размеров может стать источником энергии для человеческой цивилизации. Аккуратные вычисления на бортовом компьютере предсказывают, что каждая из этих звезд должна была взорваться, пока вы путешествовали к Гаргантюа, образовав невращающуюся черную дыру массой около 24 Mслн общая масса выброшенного при взрыве газа составляет примерно 6 Mслн. Обе черные дыры должны теперь вращаться одна относительно другой, испуская в процессе вращения гравитационные волны.
Эти волны будут передавать слабый импульс отдачи черным дырам, вызывая их чрезвычайно медленное, но неумолимое сближение по спирали. Небольшая коррекция ускорения звездолета позволит вам прибыть туда на последней стадии этого взаимного сближения: через несколько дней после прилета вы сможете наблюдать, как сливаются невращающиеся горизонты обеих черных дыр и как в результате образуется одна быстро вращающаяся дыра. Две родительские дыры были непригодны для поселения, поскольку не обладали заметным моментом количества движения, но новорожденная, быстро вращающаяся дыра представляется идеальной для поселения. Итак, спустя 39 лет 11 мес. А вот и они, точно на месте! Измеряя траектории движения межзвездного водорода, падающего на дыры, вы убеждаетесь, что они не вращаются и масса каждой составляет около 24 Mслн в соответствии с предсказаниями компьютера.
Длина горизонта дыры равна 440 км, дыры отстоят на 60 тыс. Подставляя эти значения в формулы Эйнштейна определяющие отдачу при испускании гравитационных волн , вы заключаете, что черные дыры должны слиться через три дня. Этого времени как раз достаточно для подготовки телескопов и съемочных камер к регистрации всех деталей события. Фотографируя искажения, вносимые гравитационной линзой в распределение звезд, расположенных за дырами, вы без труда проконтролируете их движение. Светлое кольцо сфокусированного излучения звезд, окружающее диск каждой черной дыры, обеспечит вам превосходный фотоснимок. Вам бы хотелось быть поблизости, чтобы видеть все отчетливо, но при этом достаточно далеко, чтобы не испытывать беспокойства из-за приливных сил.
Подходящим расстоянием, решаете вы, будет орбита, в 10 раз длиннее той, по которой обращаются черные дыры. В течение трех следующих дней дыры постепенно сближаются и ускоряют свое орбитальное движение. За день до слияния расстояние между ними уменьшается с 60 до 46 тыс. За час до слияния они находятся на расстоянии 21 тыс. За минуту до слияния расстояние между ними 7400 км, а период 0,61 с. За 10 с до слияния расстояние 4700 км, период 0,31 с.
А затем в последние 10 с вы и ваш звездолет начинаете сотрясаться, сначала слабо, а затем все сильнее и сильнее. Все происходит так, словно гигантская пара рук схватила вашу голову и ноги и стала поочередно сжимать и растягивать вас все сильнее и сильнее, быстрее и быстрее. А затем еще более внезапно, чем началась, дрожь прекращается. Все спокойно. Вы привыкли к тому, что гравитационные волны настолько слабы, что зарегистрировать их могут лишь сверхчувствительные приборы. Но при слиянии черных дыр они необычайно сильны — будь ваша орбита в 50 раз меньше, звездолет могло разорвать на части вызванной ими тряской.
Но сейчас вы в безопасности. Слияние завершилось, и волны прошли. На своем пути во Вселенной они расскажут удаленным наблюдателям о происшедшем здесь событии». Направляя телескопы на источник гравитационного поля, вы обнаруживаете, что там, где недавно были две дыры, сейчас всего одна, причем она быстро вращается — вы видите это по вихрям падающих атомов водорода. Эта дыра станет идеальным генератором энергии для вас, вашей команды и тысяч поколений ваших потомков. Аккуратные измерения параметров орбиты звездолета свидетельствуют, что масса образовавшейся дыры составляет 45 Mслн.
Поскольку суммарная масса родительских дыр равнялась 48 Mслн, три солнечных массы должны были превратиться в энергию и унестись гравитационными волнами. Нечего удивляться, что вас трясло так сильно! О вращении дыры свидетельствуют не только возникающие вихри атомов водорода, падающих в дыру, но и форма окруженного светлым кольцом темного пятна на небе под вами: это пятно сплющено из-за вращения дыры, как сплющена из-за вращения Земля. Более того, пятно выпячивается с одной стороны. Зная же момент и массу, вы вычисляете другие свойства черной дыры, включая скорость вращения ее горизонта и длину ее экватора. Вращение дыры заинтересовало вас.
Никогда прежде вы не имели возможности вблизи исследовать вращающуюся дыру. Поэтому вы вновь отыскиваете добровольца, робота R4D4, вызвавшегося исследовать окрестности горизонта. Ему даны четкие инструкции: спуститься, зависнув в нескольких метрах над горизонтом, и там, включив ракетные двигатели, удерживаться неподвижно точно под звездолетом. Таким образом, двигатели должны препятствовать как силе гравитационного притяжения, так и вихревому увлечению пространства. Жаждущий приключений R4D4 спускается вниз, форсируя двигатели сначала едва, а затем все сильнее, чтобы преодолеть вращение пространства и остаться точно под звездолетом. И как ни пытается он тягой двигателей препятствовать вращению, ему это не удается.
R4D4 изо всех сил пытается форсировать двигатели, но скорость его орбитального движения почти не меняется. А затем топливо иссякает, и он начинает падать внутрь. Его лазерное излучение становится инфракрасным, затем превращается в радиоволны, но мерцает все с той же частотой, свидетельствующей о том, что нет никаких изменений в его вращательном движении. Он ушел в глубь черной дыры, нырнув в неистовую сингулярность, которую вы никогда не сможете увидеть... Через три недели, посвященных экспериментам и наблюдениям, вы и ваша команда принимаетесь, наконец, за строительство. Доставив материалы с далеких планет, создаете рабочее кольцо вокруг черной дыры.
Оно имеет длину около 5 млн км, толщину 2 тыс.
Источник: kinomania. И вот при подлете к «червоточине» знания Купера о ней испаряются. Ромилли приходится объяснять ему, что она выглядит как сфера, а не как дыра из-за сгибов в пространстве.
Но действительно ли кто-то согнул наше пространство как лист бумаги? И можно ли так просто дать единственное объяснение представленной кротовой норе? В фильме говорят, что она гиперпространственная, имеет пять измерений в нашем пространстве их четыре. В настоящий момент имеются три самые популярные модели таких «червоточин», только две из них гиперпространственные.
Мост Эйнштейна — Розена требует пройти «червоточину» быстрее скорости света и проскочить две сингулярности, что довольно опасно. Согласно модели Моррисона — Торна необходимы дополнительные шесть измерений, а также предполагается наличие экзотической материи, которую пока не нашли, она лишь предсказана общей теорией относительности, должна обладать отрицательной плотностью энергии. Модель Романа Конопли задействует гиперпространственную математику — целых 26 измерений. Источник: kinorium.
Во-первых, как трехмерные объекты могли выйти в гиперпространство?
Сначала этот факт может показаться интуитивно понятным. Но можно представить его как аналог обычного опыта быстрого проведения пальцем по пламени свечи, температура которого составляет почти 2 000 градусов, и при этом не обжечься. Мы с моим коллегой Лиором Бурко исследуем физику черных дыр уже более двух десятилетий. В 2016 году моя аспирантка Кэролайн Мэллари, вдохновленная блокбастером Кристофера Нолана "Интерстеллар", решила проверить, сможет ли Купер герой Мэтью Макконахи выжить после падения в глубины Гаргантюа - вымышленной сверхмассивной, быстро вращающейся черной дыры, масса которой в 100 миллионов раз больше массы нашего Солнца. Фильм "Интерстеллар" был основан на книге лауреата Нобелевской премии астрофизика Кипа Торна, и физические свойства Гаргантюа занимают центральное место в сюжете этого голливудского фильма.
Даже не трясет? Она обнаружила, что при всех условиях объект, падающий во вращающуюся черную дыру, не будет испытывать бесконечно больших эффектов при прохождении через так называемую сингулярность внутреннего горизонта дыры. Это сингулярность, которую объект, входящий во вращающуюся черную дыру, не может обойти или избежать. Мало того, при правильных обстоятельствах эти эффекты могут быть пренебрежимо малы, что позволяет пройти через сингулярность довольно комфортно.
Сверхмассивные черные дыры в центре масс галактик.
Черная дыра Рейснера-Нордстрема. Ядро Галактики Млечный путь черная дыра. Белая дыра в космосе. Первичные черные дыры. Чёрные дыры во Вселенной.
Маленькая черная дыра. Снимки черных дыр. Чёрная дыра Рейснера нордстрёма. Черная дыра сбоку. Квазар 3с9.
Сверхмассивная черная дыра в галактике. Черные дыры фильм 1995. Черная дыра вместо солнца. Огромная черная дыра. Сверх масивная чёрная дыра.
Черная дыра изнутри. Гравитационные воронки. Дыра внутри. Гаргантюа черная дыра Интерстеллар. Черная дыра обои.
Красивая черная дыра. Черная дыра фото. Зарождение чёрной дыры. Белая дыра. Черная дыра м57.
Притяжение звезд. Сверхмассивная нейтронная звезда. Рождение черной дыры. Электрическая черная дыра. Звук черной дыры.
Микроскопические черные дыры. Квантовые черные дыры. Планковская черная дыра. Черная дыра маслом. Черная дыра диск аккреции.
Аккреционный диск черной дыры. Черная дыра фото с телескопа Хаббл. Излучение Хокинга.
Существует ли чёрная дыра Гаргантюа | Астрономия для начинающих | Федор Бережков
Для установки двигающихся обоев «Черная дыра Gargantua» на рабочий стол windows 11/10 или более ранних версий воспользовавшись одной из программ. Живые обои «Космическая черная дыра, туманный круг». Посмотрите идеальное GIF-изображение по теме "Gargantua Black Black Hole", которое украсит любой чат. Находите лучшую анимацию в Tenor и делитесь ею с друзьями. Чёрная дыра Гаргантюа – это фантазия создателей «Интерстеллара», которая во многом соответствует реальным космическим объектам.
Ученые: Использовать черные дыры для космических путешествий можно, но только осторожно
Черная дыра Черные дыры, вероятнее всего, совсем не ограничены никаким горизонтом событий. Новости черных дыр. Сверхмассивные черные дыры в центре масс галактик. Самое известное изображение черной дыры в поп-культуре — Гаргантюа из «Интерстеллара» Кристофера Нолана. Ее модель помогал делать Кип Торн — астроном, эксперт по черным дырам и лауреат Нобелевской премии за регистрацию гравитационных волн. Изучив орбитальное вращение этого «бублика», вы определяете массу черной дыры – 2·109 Mслн, т. е. примерно в тысячу раз меньше, чем масса Гаргантюа, но гораздо больше массы любой черной дыры в Млечном Пути. Сверхмассивная чёрная дыра — чёрная дыра с массой 105—1011 масс Солнца. Сверхмассивные чёрные дыры обнаружены в центре многих галактик, включая Млечный Путь[2][3].