Новости гаргантюа черная дыра

Широкая двойная система Gaia BH3 была обнаружена недавно и состоит из неактивной самой массивной черной дыры звездной массы (массой почти 33 массы Солнца) и малометалличной звезды из гало Млечного Пути. Forwarded from ДПС контроль Благовещенск (@dpskontrol_28rus) Сканер портамур амурлайф новости ДТП аварии autoroadblg народный. В Белогорске автомобиль засосало в Гаргантюа (черную дыру). Невероятное приключение автомобиля на ул. Гастелло. Владелец сайта предпочёл скрыть описание страницы.

Гаргантюа черная дыра обои - 65 фото

Чёрная дыра зажгла галактику: Swift провёл наблюдения чёрной дыры, пожирающей звезду, аналогичную нашему Солнцу Чёрная дыра находится в галактике, расположенной на расстоянии около 500 миллионов световых лет от Земли Событие, известное как Swift J023017. Когда звезда приближается слишком близко к чёрной дыре, гравитационные силы чёрной дыры создают экстремальные приливы, которые разрывают звезду на длинный и тонкий поток газа и других материала. Одна часть газового потока попадает в чёрную дыру, а другая выбрасывается из системы. При разрушении приливами возникают яркие вспышки света, когда газовый поток взаимодействует с диском материала, вращающимся вокруг чёрной дыры. Учёные исследуют эти вспышки, чтобы получить характеристики системы: не все события разрушения приливными силами приводят к мгновенному уничтожению звезды.

Ученые смогли выяснить это благодаря теории относительности Эйнштейна, которая однозначно предсказывает многие космические явления 5. Куда пропадает звезда, из которой образовалась черная дыра? Так черная дыра разрывает приблизившуюся к ней звезду. Когда звезда здесь — красный гигант приближается к дыре, гравитация дыры начинает растягивать и сжимать звезду. Спустя 12 часов звезда уже сильно деформирована.

А через 24 часа она распадается на части, так как ее собственная гравитация не может противостоять гравитации черной дыры. Наука за кадром» Известно, что черная дыра — результат коллапса другими словами, сжатия к центру массивной звезды. Это своего рода смерть звезды: ядерное топливо, благодаря которому поддерживается высокая температура, заканчивается, и звезда «схлопывается». А еще молодая черная дыра бесконечно искривляет время и пространство вокруг себя и постепенно поглощает звезду-родителя. Похожа ли черная дыра на вихрь? Быстровращающаяся черная дыра, которая движется на фоне звезд, искривляя пространство вокруг себя. Наука за кадром» Сама черная дыра — это ничто, в ней нет материи, атомов, каких-то элементарных частиц. И время, и пространство — составные части черной дыры — искривляются настолько, что в конце концов исчезают. И именно это искривление пространства как раз и выглядит подобно вихрю или смерчу на Земле.

Это справедливо для вращающихся черных дыр кстати, они бывают еще и неподвижными.

В фильме объясняют червоточину с помощью бумаги. Научно доказано, что пространство способно искривляться. Принимая это во внимание и представляя, что космос — это лист бумаги, если поставить одну точку в начале бумаги и вторую — в конце, то расстояние будет большим, но если пространство искривить или сложить бумагу пополам, то эти точки окажутся рядом. На самом деле этот туннель в пространстве имеет несколько названий, так, его можно называть кротовая нора или кротовина, однако червоточина является дословным переводом от слова wormhole. Кротовая нора, упомянутая и показанная в этом фильме — это портал во времени и пространстве, позволяющий попадать в любую часть вселенной. Червоточины пока не были обнаружены, но многие исследователи предполагают, что такие червоточины вполне могут существовать, опираясь на теорию относительности.

Правда, никому до сих пор неизвестно, сможет ли космический корабль с экипажем внутри выйти из кротовой норы невредимым. Черная дыра и время Дальше можно обсуждать то, что происходит, когда героям удалось преодолеть большое расстояние и подобраться к черной дыре. Здесь уже затрагивается искривление времени. Думать о времени как о чем-то простом и равномерном является такой же ошибкой, как думать, что Земля плоская. Развитие науки позволило разрушить наше представление о времени. Когда главные герои попали на планету Миллер, то получили сведения о том, что час, проведенный там, равен семи годам на Земле. Это связано с тем, что планета вращается вокруг черной дыры на близком расстоянии от нее.

В фильме подробно объясняется влияние гравитации на время.

Око Саурона или пончик? В интернете обсуждают фото чёрной дыры И всё, что с ней связано. Вчера астрофизики показали первое в истории изображение видимой границы чёрной дыры — так называемый горизонт событий. Им удалось «сфотографировать» чёрную дыру в галактике M87 в созвездии Девы. Она удалена от Земли на расстояние более 50 миллионов световых лет. Очень далеко!

Познание тьмы: как наука проникает в тайны черных дыр

Эти снимки неожиданным образом показали, что черная дыра-"гаргантюа" и сама W2246-0526 были соединены толстыми линиями из холодного газа и пыли с тремя спутниками этого "звездного мегаполиса". Их наличие, в свою очередь, говорит о том, что ярчайшая галактика Вселенной сейчас разрывает на части своих ближайших соседей и высасывает из них весь газ, пыль и темную материю. Почти вся эта материя, как обнаружили ученые, попадает не на окраины W2246-0526, а в ее центральную часть, где ее захватывает притяжение черной дыры. Небольшая часть этого газа и пыли поглощается сингулярностью, а большая часть выбрасывается назад в виде раскаленных "объедков", вырабатывающих огромное количество света и других форм излучения.

В прошлом, как предполагают ученые, W2246-0526 могла захватить и уничтожить и многие другие соседние галактики. Подобная форма "каннибализма", как считают Эйзенхардт и его коллеги, была характерна и для других "хот-догов".

Чтобы представить это в перспективе, нашему Солнцу требуется всего около 225 миллионов лет, чтобы совершить один оборот вокруг галактики Млечный Путь. Также возможно, что во Вселенной могут быть еще более крупные солнечные системы, которые только и ждут, чтобы их открыли. В заключение отметим, что система Гаргантюа — поистине впечатляющее открытие, и нетрудно понять, почему ученые решили назвать ее в честь вымышленной черной дыры в «Интерстеллар». С массивной звездой, меньшей звездой-компаньоном и двумя планетами-гигантами, вращающимися вокруг них, Гаргантюа является крупнейшей солнечной системой, о которой мы знаем во Вселенной. И кто знает, какие еще удивительные открытия ждут нас там, среди звезд?

Существуют две разновидности горизонта событий — горизонт событий прошлого и будущего. Горизонт прошлого разделяет совокупности изменяемых и неизменяемых событий. Горизонт будущего разделяет несколько иные совокупности. Обо всех событиях первой совокупности наблюдатель может узнать когда-либо. Вторая же совокупность содержит события, о которых наблюдатель не узнает никогда. Чёрная дыра обладает горизонтом событий прошлого. Подобный горизонт также будет наблюдать тот, кто движется с релятивистки равномерным ускорением. Горизонтом событий будущего обладает наблюдаемая часть Вселенной. Подробнее об этих «разновидностях» горизонта событий будет рассказано ниже. Путешествие в бездну Горизонт Событий черной дыры Чёрные дыры являются крайне удобной площадкой для изысканий физиков теоретиков и иллюстрации многих труднообъяснимых явлений.

Так в популярной науке известен классический пример, описывающий падение выдуманного звездолёта на чёрную дыру и наблюдение за ним стороннего наблюдателя. Этот пример наглядно описывает некоторые особенности горизонта событий. Согласно теории относительности, для пассажира звездолёта путь до горизонта событий ничем не будет примечателен. Он будет двигаться с нарастающим ускорением, пока не достигнет скорости света на горизонте событий. Иную картину увидит наблюдатель. Для него растягивающийся силуэт звездолёта будет замедляться по мере приближения к чёрной дыре. У самого горизонта событий он и вовсе застынет навеки. Науке неизвестно, что произойдёт со звездолётом после пересечения этой черты. Вероятнее всего, с точки зрения пассажира звездолёта, преодолев световой барьер, он продолжит своё ускорение. Стоит отметить, что вся масса чёрной дыры должна быть сосредоточена в её центре, бесконечно мелкой сингулярности.

Поэтому остальное пространство чёрной дыры является просто областью, ограниченной горизонтом событий. Разный взгляд на пустоту Можно ли увидеть черную дыру? Другими словами, термин «радиус чёрной дыры» не обозначает радиус материального объекта. Это радиус области, внутри которой не действует известная физика. Попав в неё, наш звездолёт не только не сможет вырваться назад, но и неизбежно попадёт в её центр.

Для этого выберите файл в списке и нажмите кнопку "ОК".

Или добавьте работу на лицензионную версию Валпапер Энджин , подписавшись на оригинальную копию в мастерской Steam Workshop идентификатор указан в файле project. Некоторым эквалайзерам для корректной работы требуется один из дополнительных модулей: Audio Visualizer , Simplistic Audio Visualizer или Customizable Module Visualizer - установите их как обычные обои, методом распаковки в папку программы. Пользователи рекомендуют.

«Гаргантюа́»

ЧЕРНЫЕ ДЫРЫ | Наука и жизнь Живые обои Черная дыра Гаргантюа / скачать на рабочий стол.
Ученые: Использовать черные дыры для космических путешествий можно, но только осторожно Эти уравнения описывали траектории лучей света, исходящих из далекой звезды, проникающих через искривленные пространство и время Гаргантюа, достигающих камеры и учитывающих даже само движение камеры вокруг черной дыры.
Путешествие среди чёрных дыр. Cтатьи. Наука и техника черная дыра. Черные дыры могут быть дружелюбнее, чем принято считать.
Зачем ученым фото черной дыры? 10 фактов, которые помогут разобраться в сложном вопросе Черная дыра Черные дыры, вероятнее всего, совсем не ограничены никаким горизонтом событий.
Быстро вращающаяся чёрная дыра по имени Гаргантюа (Катерина Колычева) / Проза.ру Черная дыра Интерстеллар 4k.

Вращающиеся черные дыры могут служить удобными порталами для гиперпространственных путешествий

Группа международных астрономов, используя космический телескоп Gaia, обнаружила огромную черную дыру, расположенную относительно недалеко от Земли. Во многом это благодаря тому, что Гаргантюа – сверхмассивная черная дыра, массой не менее 100 миллионов масс солнца, с радиусом в одну астрономическую единицу. Вымышленная сверхмассивная Черная дыра Гаргантюа имеет массу в 100 миллионов солнц и находится в 10 миллиардах световых лет от Земли. Она вращается со скоростью, близкой к световой, и своей гравитацией затягивает окружающие объекты.

Сверхмассивная черная дыра в центре Млечного Пути. Сверхмассивная черная дыра в квазаре OJ 287

Используя укоренив 1 g на первой половине пути и такое же замедление на второй половине, вы затратите на путешествие 1,2 млрд лет по земным часам, но всего лишь 39 лет и 11 месяцев — по вашим. Если члены Всемирного географического общества не желают рисковать и на 2,4 млрд лет погрузиться в анабиоз, они будут вынуждены отказаться от приема вашего следующего сообщения. Гаргантюа И вот через 39 лет и 11 месяцев ваш звездолет тормозит в окрестностях Гаргантюа. Над головой вы видите квазар 8C 2975 с двумя ослепительными голубыми струями, выбрасываемыми из его центра, а под вами простирается черная бездна Гаргантюа. Из этих данных вы определяете длину ее горизонта — около 16 св. Вот, наконец, та черная дыра, чью окрестность вы можете исследовать без невыносимых приливных сил или немыслимого ускорения ракетных двигателей! Перед тем, как начать свой спуск к горизонту, вы тщательно фотографируете гигантский квазар над вами и триллионы звезд, вращающихся вокруг Гаргантюа, а также миллиарды галактик, разбросанных по небу. Особенно тщательно вы фотографируете черный диск Гаргантюа под вами, размеры которого близки к размерам Солнца, наблюдаемого с Земли. На первый взгляд кажется, что этот диск полностью закрывает собой свет звезд и галактик, расположенных за ним. Однако, присмотревшись, вы замечаете, что гравитационное поле черной дыры действует подобно линзе, отклоняя световые лучи вдоль края горизонта и фокусируя их в тонкое яркое кольцо на окружности темного диска.

Там, в этом кольце вы видите несколько изображений каждой из загороженных диском звезд: одно, образованное лучами, отклоненными к левому краю диска; другое — лучами, отклоненными к правому краю; третье — лучами, совершившими полный оборот вокруг дыры и затем вышедшими в направлении на вас; четвертое — лучами, совершившими два оборота вокруг дыры... В результате возникает весьма сложная кольцевая структура, которую вы фотографируете во всех деталях для подробного изучения в будущем. Завершив фотосъемку, вы начинаете спускаться к горизонту. Но нужно запастись терпением: дыра настолько огромна, что, ускоряясь и замедляясь с ускорением 1 g, вы будете вынуждены потратить 10 лет по вашим часам, чтобы достичь цели — приблизиться к горизонту настолько, чтобы длина вашей орбиты составляла 1,0001 длины горизонта. Спустившись, вы фотографируете изменения, видимые на небе вокруг вас. Сильнее всего меняется диск под вами: постепенно он вырастает все больше и больше. Вы ожидаете, что он прекратит увеличиваться, когда закроет все небо под вами, оставив верхнюю часть неба чистой, как на Земле. Ничего подобного! Черный диск продолжает расти, поднимаясь по краям вашего звездолета и оставляя лишь непрерывно уменьшающееся отверстие над вами, через которое вы можете наблюдать внешнюю Вселенную.

Это выглядит так, словно вы вошли в пещеру и продвигаетесь все глубже и глубже, так что вход представляется светлым пятнышком все меньших размеров. В панике вы снова обращаетесь к компьютеру за помощью: «Неужели я неверно рассчитал траекторию? Не провалились ли мы сквозь горизонт? Неужто мы обречены?! Темнота охватывает почти все небо лишь из-за сильной фокусировки световых лучей, вызванной гравитационным полем черной дыры. Посмотрите на этот «указатель» почти над головой — это галактика 3C 295. Но здесь, у горизонта Гаргантюа, гравитационное поле черной дыры действует на световые лучи, испущенные 3C 295, столь сильно, что они изгибаются, делая кажущееся положение этой галактики вместо горизонтального почти вертикальным, так что 3C 295 оказывается почти над головой». Успокоенный объяснениями компьютера, вы продолжаете свой спуск. На панели перед вами скачут цифры, указывая, сколько всего вы пролетели и длину каждого витка.

Но вблизи горизонта с каждым пройденным километром сокращение длины орбиты становится все меньше и меньше: 6,2517... Такие отклонения от формулы Евклида возможны лишь в кривом пространстве — вы воочию наблюдаете кривизну, которая, в соответствии с предсказаниями ОТО Эйнштейна, должна появляться в сильном гравитационном поле черной дыры. На заключительном этапе спуска вы вынуждены все больше увеличивать тягу двигателей, чтобы замедлить падение. Наконец, вы останавливаетесь, оставаясь на орбите, длина которой составляет 1,0001 длины горизонта. Последний километр пройденного пути уменьшил длину вашей орбиты всего лишь на 0,0628 км. С трудом двигая руками из-за причиняющего мучительную боль притяжения, превосходящего земное в 10 раз, вы готовите телескопы и камеры для длительных и детальных съемок. За исключением слабых вспышек вокруг от нагретого при столкновениях падающего газа, единственный доступный съемке источник излучения — это светлое пятно над вами. Но в этом пятне сконцентрированы изображения всех звезд, обращающихся вокруг Гаргантюа, и всех галактик во Вселенной. В самом центре пятна расположены галактики, которые находятся над вами точно в зените.

Одинаково необычные, цвета всех звезд и галактик сильно искажены. Галактика, которая, как вам известно, излучает в зеленом диапазоне спектра, кажется испускающей мягкое рентгеновское излучение; длина волны ее электромагнитного излучения уменьшилась с 500 до 5 нм за счет гигантского гравитационного притяжения черной дыры, находящейся под вами. После тщательной регистрации всех деталей светлого пятна над вами вы обращаете внимание на то, что происходит внутри звездолета. Вы почти уверены, что здесь, столь близко от горизонта черной дыры, законы физики тоже изменяются и изменения повлияют на вашу собственную физиологию. Вы смотрите на своих спутников и спутниц — они выглядят обычно. Вы ощупываете друг друга — все нормально. Вы выпиваете стакан воды — за исключением влияния ускорения в 10 g, которое вы можете устранить, если решитесь нырнуть под горизонт, — вода льется нормально. Вы запускаете аргоновый лазер — он испускает такой же яркий пучок зеленого цвета, как и всегда. Вы берете импульсный рубиновый лазер, зеркало, детектор излучения и высокоточные часы; включая и выключая лазер, вы измеряете время прохождения импульса от лазера до зеркала и обратно к детектору, вычисляя из результатов экспериментов скорость света.

Все в звездолете выглядит нормально: так, словно вы стоите на поверхности планеты Гиперион, где сила притяжения вдесятеро больше земной. Если не смотреть через иллюминаторы звездолета наружу и не видеть странного пятна над головой и все поглощающей темноты вокруг, нельзя понять, где вы находитесь: возле горизонта черной дыры или на поверхности Гипериона. Кривизна пространства, обусловленная черной дырой, естественно, сохраняется и внутри корабля, так что, располагая достаточно точными инструментами, вы сможете обнаружить ее здесь. Вы ищете добровольцев для самоубийственного спуска в дыру. Робот R4D5 с его пристрастием к приключениям и опасности вызывается с готовностью. В спускаемом аппарате вместе с ним находится импульсный лазер, зеркало, фотодетектор и часы: робот будет измерять скорость света по мере своего падения и передавать результаты измерений на корабль с помощью лазерных импульсов. R4D5 покидает звездолет и начинает измерения. Модулируемый лазерный пучок сообщает вам: «299 800; 299 800; 299 800... Лазерное излучение превращается из зеленого в красное, инфракрасное, микроволновое, радиоволны, но сообщение остается неизменным: 299 800.

А затем пучок пропадает: R4D5 ныряет под горизонт. Но ни разу в процессе своего падения он не регистрирует никаких изменений скорости света внутри спускаемого аппарата и не отмечает никаких отличий от физических законов, управляющих работой его электронных систем. Результаты этих экспериментов очень радуют вас. Еще в 1907 г. Эйнштейн выдвинул гипотезу базирующуюся в основном на философских соображениях , согласно которой законы физики должны быть одинаковы во Вселенной всюду и всегда, и это утверждение вскоре стало фундаментальным положением, получившим название «принципа эквивалентности Эйнштейна». В дальнейшем этот принцип не раз подвергался экспериментальной проверке, но никогда она не была столь наглядной и тщательной, как в вашем эксперименте в окрестностях горизонта Гаргантюа. Устав от десятикратных перегрузок, вы приступаете к подготовке следующего, завершающего этапа своего путешествия — к возвращению в свою Галактику — Млечный Путь. Вы передаете детальный отчет о своих исследованиях в окрестностях Гаргантюа, и поскольку вскоре намереваетесь двигаться со скоростью, близкой к скорости света, ваше сообщение поступит в Млечный Путь менее чем на год раньше вас по земным часам. По мере удаления звездолета от Гаргантюа вы с помощью телескопа ведете тщательные наблюдения за квазаром 8C 2975.

Его струи — длинные тонкие столбы горячего газа, выбрасываемые из ядра квазара,— имеют огромную длину 3 млн св. Направляя телескопы на ядро, вы видите источник энергии, обеспечивающей существование струй: толстый горячий «бублик» из газа размером около 1 св. Наблюдая вихревое движение газа вблизи дыры, вы приходите к заключению, что эта дыра, в отличие от тех, которые встречались вам прежде, вращается весьма быстро. Энергия, поддерживающая существование струй чудовищной длины, отчасти обусловлена вращением черной дыры, а отчасти — движением газового «бублика». Различие между Гаргантюа и 8C 2975 поразительно: почему Гаргантюа, масса и размеры которой в 1000 раз больше, чем у квазара, не захватывает вращающийся газовый «бублик» и гигантские струи? Дальнейшие исследования подсказывают ответ: один раз в несколько месяцев какая-либо звезда, обращающаяся вокруг черной дыры, входящей в состав квазара, подходит к дыре слишком близко и разрывается на части приливными силами черной дыры. Вещество из внутренней части звезды — газ массой около 1 Mслн — выбрасывается наружу и распределяется вокруг черной дыры, после чего постепенно опускается, группируясь в окружающий дыру «бублик». В результате он всегда заполнен газом, несмотря на постоянные потери — падение вещества на черную дыру и выброс в струях. Звезды подходят близко и к Гаргантюа.

Но из-за ее больших размеров приливные силы снаружи от горизонта слишком слабы, чтобы разорвать звезду на части. Поэтому Гаргантюа «заглатывает» звезды целиком, без выбросов вещества из внутренней части звезды в окружающий ее газовый «бублик». Не имея такого «бублика», Гаргантюа не может образовать струи или другие атрибуты квазаров. Пока ваш звездолет выбирается из гравитационной ловушки Гаргантюа, вы строите планы возвращения домой. К тому моменту, когда вы достигнете Млечного Пути, Земля станет на 2,4 млрд лет старше, чем во время вашего старта. Изменения в человеческом обществе будут настолько велики, что вы не испытываете особого желания возвращаться на Землю. Вместо этого вы и команда звездолета решаете освоить пространство вокруг какой-нибудь подходящей вращающейся черной дыры. Ведь именно энергия вращения дыры в квазаре 8C 2975 позволяет квазару «проявить себя» во Вселенной, поэтому энергия вращения дыры меньших размеров может стать источником энергии для человеческой цивилизации. Аккуратные вычисления на бортовом компьютере предсказывают, что каждая из этих звезд должна была взорваться, пока вы путешествовали к Гаргантюа, образовав невращающуюся черную дыру массой около 24 Mслн общая масса выброшенного при взрыве газа составляет примерно 6 Mслн.

Обе черные дыры должны теперь вращаться одна относительно другой, испуская в процессе вращения гравитационные волны. Эти волны будут передавать слабый импульс отдачи черным дырам, вызывая их чрезвычайно медленное, но неумолимое сближение по спирали. Небольшая коррекция ускорения звездолета позволит вам прибыть туда на последней стадии этого взаимного сближения: через несколько дней после прилета вы сможете наблюдать, как сливаются невращающиеся горизонты обеих черных дыр и как в результате образуется одна быстро вращающаяся дыра. Две родительские дыры были непригодны для поселения, поскольку не обладали заметным моментом количества движения, но новорожденная, быстро вращающаяся дыра представляется идеальной для поселения. Итак, спустя 39 лет 11 мес. А вот и они, точно на месте! Измеряя траектории движения межзвездного водорода, падающего на дыры, вы убеждаетесь, что они не вращаются и масса каждой составляет около 24 Mслн в соответствии с предсказаниями компьютера. Длина горизонта дыры равна 440 км, дыры отстоят на 60 тыс. Подставляя эти значения в формулы Эйнштейна определяющие отдачу при испускании гравитационных волн , вы заключаете, что черные дыры должны слиться через три дня.

Этого времени как раз достаточно для подготовки телескопов и съемочных камер к регистрации всех деталей события. Фотографируя искажения, вносимые гравитационной линзой в распределение звезд, расположенных за дырами, вы без труда проконтролируете их движение.

Тень и Ее Огненное Кольцо Огненная скорлупа Глава 6 играет ключевую роль в создании тени Гаргантюа и тонкого огненного кольца по ее краю. Огненная скорлупа - это розовая область вокруг Гаргантюа на рисунке 8. Белые лучи A и B, а также прочие лучи вроде них несут вам изображение огненного кольца, а черные лучи A и B несут изображение края тени. Например, белый луч A исходит от какой-то звезды вдали от Гаргантюа, он движется внутрь и попадает в ловушку по внутреннему краю огненной скорлупы в экваториальной плоскости Гаргантюа, где он вновь и вновь летает по кругу, гонимый пространственным вихрем, а затем ускользает и доходит до ваших глаз. Черный луч, также подписанный A, исходит с горизонта событий Гаргантюа, он движется наружу и попадает в ловушку на том же внутреннем крае огненной скорлупы, затем ускользает и достигает ваших глаз бок о бок с белым лучом A.

Белый луч несет изображение кусочка тонкого кольца, а черный - изображение кусочка края тени. За сведение их бок к боку и направление вам в глаза отвечает огненная скорлупа. Гаргантюа сфера в центре , ее экваториальная плоскость голубая , огненная скорлупа розовая и фиолетовая и черные и белые лучи, несущие изображение края тени и тонкого кольца вокруг нее. Аналогично для белого и черного лучей B, только они попадают в ловушку на внешней границе огненной скорлупы и движутся по часовой стрелке пробиваясь навстречу пространственному вихрю , в то время как лучи A попадают в ловушку на внутренней границе и движутся против часовой стрелки и пространственный вихрь подхватывает их. Черные лучи C и D на рисунке 8. Орбита-ловушка луча D показана на вставке справа сверху. Белые лучи С и D не показаны , идущие от далеких звезд, попадают в ловушку бок о бок с черными лучами C и D и движутся к вашим глазам бок о бок с C и D, неся изображения кусочков огненного кольца бок о бок с кусочками края тени.

Линза Невращающейся Черной Дыры Чтобы понять преломленный гравитационной линзой рисунок звезд и их струение по мере движения камеры, давайте начнем с невращающейся черной дыры и с лучей света, исходящих от единственной звезды рисунок 8. Два луча света идут от звезды к камере. Каждый из них движется по самой прямой траектории, по какой только может в искривленном пространстве дыры, однако из-за искривления каждый луч изгибается. Один изогнутый луч движется к камере вокруг левого края тени, другой - вокруг ее правого края. Каждый луч несет камере собственное изображение звезды. Эти два изображения, как их видит камера, показаны на вставке на рисунке 8. Я обвел их красными кружками, чтобы отличить их от всех остальных звезд, видимых камерой.

Заметьте, что правое изображение намного ближе к тени дыры, чем левое. Это потому, что его изогнутый луч прошел ближе к горизонту событий дыры. Сверху: Искривленное пространство невращающейся черной дыры на виде из балка и два луча света, движущиеся в искривленном пространстве от звезды к камере. Снизу: Преломленный гравитационной линзой звездный рисунок, видимый камерой. Можете распознать какие-нибудь пары? Тень черной дыры на картинке состоит из направлений, из которых ни один луч не может прийти в камеру; посмотрите на треугольную зону, подписанную "тень" англ. Все лучи, которые "хотят быть" в тени, ловит и глотает черная дыра.

По мере движения камеры вправо по орбите рисунок 8. На этом рисунке выделены две отдельные звезды. Одна обведена красным та же звезда обведена на рисунке 8. Другая - внутри желтого маркера. Мы видим два изображения каждой звезды: одно снаружи розовой окружности, другое внутри. Розовая окружность называется "кольцо Эйнштейна". По мере движения камеры вправо изображения движутся вдоль красной и желтой кривых.

Изображения звезд снаружи кольца Эйнштейна давайте назовем их первичными изображениями движутся так, как и можно было бы ожидать: плавно слева направо, но отклоняясь от черной дыры по мере движения. Можете объяснить, почему отклонение происходит от дыры, а не к ней? Изменение звездного узора, видимого камерой по мере ее движения вправо по орбите на рисунке 8. Это можно понять, вернувшись к верхней картинке на рисунке 8.

Потому что это один из немногих ответов на вопрос «Какая нам польза от этих дыр?! До ближайшей к нам дыры не меньше тысячи световых лет, и в ближайшее время человечество вряд ли сможет ставить над ними подобные опыты. Однако при этом черные дыры завораживают воображение, как, наверное, ни один объект на Земле или в космосе. Область пространства, откуда нет возврата. Место, где пространственные координаты превращаются во временные причем после этого времени остается не так уж много: внутри дыры солнечной массы от пересечения горизонта событий до встречи с сингулярностью у вас будет в запасе одна миллионная секунды, и любые ваши телодвижения лишь ускорят эту встречу. Сгустки энтропии. Дыры в реальности. Впрочем, из современной физики следует немало подобных завораживающих воображение конструкций. Кротовые норы в пространстве-времени, белые дыры, машины времени на основе космических струн, телепортация макрообъектов — все это, судя по всему, не противоречит уравнениям, выведенным теоретиками. Однако тут есть тонкость: одно дело не противоречить уравнениям, совсем другое — быть реальной частью истории Вселенной. На рубеже ХХ-XXI веков черные дыры прошли этот главный экзамен: дыры в мироздании не просто «могут быть» — они реальны. Читайте также Быстрее не бывает: как скорость света связана с течением времени и почему ее невозможно превысить Нет возврата Термин «черная дыра» появился только в 1969 году с легкой руки физика Джона Уилера. К тому времени физики уже измерили скорость света, массу Земли и Солнца. Знакомо им было и понятие второй космической скорости — с такой скоростью надо стартовать, чтобы улететь от небесного тела и не стать его спутником. Чем небесное тело массивнее и компактнее, тем сложнее от него улететь и тем больше вторая космическая. Мичелл и Лаплас решили занимательную задачу: каким должен быть радиус Земли или Солнца при их настоящей массе , чтобы скорость освобождения для них превысила скорость света. Тогда, резонно считали классики, частицы света смогут лишь летать по замкнутым орбитам, не покидая их. Для удаленного наблюдателя такая звезда будет невидимой, почему Мичелл и назвал ее темной звездой. Карл Шварцшильд получил решение уравнений Эйнштейна, когда служил артиллерийским офицером на Восточном фронте в годы Первой мировой войны Источник: Wikimedia Commons Вряд ли теоретикам XVIII века могло присниться в страшном сне, что скорость света нельзя складывать со скоростью его источника или что тяготение влияет на геометрию пространства и на течение времени. Но даже не зная всего этого, они получили верную формулу. Чтобы Солнце стало гравитационной могилой, не отпускающей от себя свет, его требуется сжать до радиуса в три километра, а Землю — до сантиметра. Это казалось шуткой. Какая сила может сжать планету до размеров коробка спичек? Ученые мужи с достоинством поправили парики и забыли о своих темных звездах более чем на столетие. Вторым рождением черные дыры обязаны общей теории относительности ОТО Альберта Эйнштейна, которая, в сущности, упразднила те предпосылки, на которых строили свои рассуждения Лаплас и Мичелл. Однако в 1915 году Карл Шварцшильд, решая уравнения ОТО, выяснил любопытную вещь: массивное и компактное тело сворачивает вокруг себя пространство-время в компактный кокон. Шварцшильд вычислил радиус этого кокона сейчас его называют гравитационным радиусом : по удивительному совпадению он оказался равным предельному радиусу темной звезды. Поясняет Алексей Старобинский: «По существу, Шварцшильд нашел центрально-симметричное решение уравнений ОТО, и оказалось, что оно протягивается от бесконечности не до нуля, а до гравитационного радиуса. Из-за случайного совпадения коэффициентов этот радиус оказался таким, на котором вторая космическая скорость равна скорости света. Ничего фундаментального в этом совпадении нет, но оно соответствует наивной точке зрения, что свет не может уйти из-под горизонта событий черной дыры просто потому, что его скорости для этого недостаточно. Настоящий смысл решения Шварцшильда оставался неясным еще лет 50, и никто над ним серьезно не думал». На самом деле, отличие черной дыры от темной звезды, да и любого другого классического объекта, огромно. Чтобы забросить с Земли камень в открытый космос, ему действительно надо придать вторую космическую скорость, но вам лично никто не запретит удаляться в космос — от Земли или от темной звезды Мичелла — с любой скоростью, хоть бы и 5 километров в час. Был бы двигатель да запас топлива. Не таково решение Шварцшильда: пересечь горизонт можно только снаружи внутрь. И не потому, что выбраться силенок не хватит, а просто потому, что после этого момента никакой «наружи» для вас больше нет — она так же недостижима, как прошлое. Мы не знаем, как Шварцшильд представлял себе место во Вселенной, откуда нет возврата. Зато мы знаем, что свою статью он писал зимой 1915—1916 годов во фронтовом госпитале в России, смертельно больной неизлечимой болезнью. По нашему мнению, не многим дано испытать в жизни опыт, более близкий к погружению в черную дыру. Даже на Эйнштейна статья Шварцшильда поначалу не произвела впечатления. Позже он отдавал должное автору за его математический дар, но ставил под сомнение приложимость выводов к практике: «Побудительной причиной его неиссякаемого творчества, по-видимому, в гораздо большей степени можно считать радость художника, открывающего тонкую связь математических понятий, чем стремление к познанию скрытых зависимостей в природе». Черные дыры всем казались лишь игрой ума.

Для планеты черная дыра в этом случае может выступать в роли холодного светила. Сам гравитационный объект при этом, по мнению ученых, должен быть достаточно старым и не иметь в своих окрестностях обломков звезд и других небесных тел, которые бы угрожали существованию экзотической жизни на планете. По сравнению со старой и холодной черной дырой окружающее ее пространство имеет температуру 2,7 кельвина, отвечающую космическому микроволновому фоновому излучению. Чешские ученые подсчитали, что землеподобная планета, вращающаяся вокруг черной дыры, из-за разницы температур между гравитационным объектом и реликтовым излучением может извлекать около 900 ватт полезной мощности. Этого достаточно для поддержания жизни, но мало для ее зарождения. Как отмечает Ави Леб из Гарвардского университета, ранее температура реликтового излучения была выше, чем сейчас. Например, спустя 15 миллионов лет после Большого взрыва она равнялась 300 кельвинам 27 градусам Цельсия. Этого достаточно для наличия на гипотетической планете жидкой воды и обеспечения ее 130 гигаваттами полезной мощности. Материалы по теме: 12 января 2016 Последняя величина в миллион раз меньше мощности, которой Солнце обеспечивает Землю. Этого достаточно для поддержания существования сложной жизни на планете, хотя маловероятно, что она успела бы развиться за такой короткий промежуток времени.

Самая важная вещь во вселенной. Снимок черной дыры стал научным прорывом?

Это целая лацертида, расположенная в созвездии Рака, которая, к слову, очень плохо видна с Земли. В ее основе лежит двойная система черных дыр, следовательно, имеется два горизонта событий и две точки сингулярности. Больший объект имеет массу 18 миллиардов масс Солнца, практически как у небольшой полноценной галактики. Этот компаньон статичен, вращаются лишь объекты, которые попадают в его гравитационный радиус. Меньшая система весит 100 миллионов масс Солнца, а также имеет период обращения, который составляет 12 лет. Опасное соседство Галактики OJ 287 и Млечный Путь, как было установлено, являются соседями - расстояние между ними составляет примерно 3,5 миллиарда световых лет. Астрономы не исключают и той версии, что в ближайшем будущем эти два космических тела столкнутся, образовав сложную звездную структуру. По одной из версий, именно из-за сближения с подобным гравитационным гигантом движение планетарных систем в нашей галактике постоянно ускоряется, а звезды становятся горячее и активнее. Сверхмассивные черные дыры на самом деле белые В самом начале статьи был затронут весьма щекотливый вопрос: цвет, в котором перед нами постают самый мощные квазары, сложно назвать черным.

Невооруженным глазом даже на самой простенькой фотографии любой галактики видно, что ее центр - это огромная белая точка. Почему же тогда мы считаем, что это сверхмассивная черная дыра? Фото, сделанные через телескопы, демонстрируют нам огромное скопление звезд, которые притягивает к себе ядро. Планеты и астероиды, которые вращаются рядом, из-за непосредственной близости отражают, тем самым преумножая весь присутствующий рядом свет. Так как квазары не затягивают с молниеносной скоростью все соседние объекты, а лишь удерживают их в своем гравитационном радиусе, они не пропадают, а начинают еще больше пылать, ведь их температура стремительно растет. Что же касается обычных черных дыр, которые существуют в открытом космосе, то их название полностью оправдано. Размеры относительно невелики, но при этом сила гравитации колоссальна. Они попросту «съедают» свет, не выпуская из своих берегов ни единого кванта.

Кинематограф и сверхмассивная черная дыра Гаргантюа - этот термин человечество стало широко употреблять по отношению к черным дырам после того, как на экраны вышел фильм «Интерстеллар». Просматривая эту картину, сложно понять, почему выбрано именно это название и где связь. Но в первоначальном сценарии планировали создать три черных дыры, две из которых носили бы названия Гаргантюа и Пантагрюэль, взятые из сатирического романа После внесенных изменений осталась лишь одна «кроличья нора», для обозначения которой было выбрано первое наименование. Стоит заметить, что в фильме черная дыра изображена максимально реалистично. Так сказать, дизайном ее внешнего вида занимался ученый Кип Торн, который базировался на изученных свойствах данных космических тел. Как мы узнали о черных дырах? Если бы не теория относительности, которая была предложена Альбертом Эйнштейном в начале ХХ века, никто бы, наверное, даже не обратил внимания на эти загадочные объекты. Сверхмассивная черная дыра расценивалась бы как обычное скопление звезд в центре галактики, а рядовые, маленькие, вовсе бы осталась незамеченными.

Но сегодня, благодаря теоретическим расчетам и наблюдениям, которые подтверждают их правильность, мы можем наблюдать такой феномен, как искривление пространства-времени. Современные ученые говорят, что найти «кроличью нору» не так уж и сложно. Вокруг такого объекта материя ведет себя неестественно, она не только сжимается, но порой и светится. Вокруг черной точки образуется яркий ореол, который виден в телескоп. Во многом природа черных дыр помогает нам постичь историю становления Вселенной. В их центре находится точка сингулярности, подобная той, из которой ранее развился весь окружающий нас мир. Доподлинно неизвестно, что может случиться с человеком, который пересечет горизонт событий. Раздавит ли его гравитация, или же он окажется в совершенно ином месте?

Единственное, что можно утверждать с полной уверенностью, - гаргантюа замедляет время, и в какой-то момент стрелка часов окончательно и бесповоротно останавливается. В фильме радиус кротовой норы - 1 километр, длина желоба - 10 метров, радиус линзирования на 50 метров больше норы. Кротовая нора нестабильна и очень хочет закрыться и превратиться в две чёрные дыры. Чем длиннее кротовая нора, тем больше в ней будет видно размазанных копий объектов за норой, потому что у света больше путей попадания в глаз под разным углом можно зайти в нору и выйти в одну точку. Чтобы держать кротовую нору открытой, нужно очень много экзотического вещества с отрицательной массой, чтобы оно выталкивало из норы всё на противоположной стороне. Такое вещество, теоретически, может существовать, но найти его в достаточном количестве, чтобы держать нору - нереально. Но есть второй вариант удержания кротовых нор: нужно использовать гравитационные силы из пятого измерения. Если четырёхмерный объект пронзает наше трёхмерное пространство, он создаёт в нём очень странные силы, которые ни на что не похожи.

Вот их и использовать для удержания кротовой норы. Гаргантюа снаружи Такой массы достаточно, чтобы приливные силы на планете Миллер не разорвали её пополам. Изображение дыры: Гаргантюа приплюснута слева, потому что она вращается слева направо относительно камеры и у света, двигающегося в направлении вращения, больше шансов не быть засосанным за горизонт событий. У каждой звезды за чёрной дырой есть два изображения на картинке: обычное, которое далеко от дыры, дано светом, немного согнутым гравитацией. И второе, внутри сферы Эйнштейна , такой сферы, которая всё очень сильно преломляет, потому что близко к дыре. Там ещё несколько особенностей, связанных с вращением дыры, но я это с трудом объясню, потому что оптика не лучшая моя сторона. Чтобы аккреционный диск не зажарил всех заживо всеми возможными лучами, его сделал температурой всего пару тысяч градусов, как Солнце, он излучает свет и совсем чуть-чуть гамма и рентгеновских лучей. Именно из-за слабости диска из Гаргантюа не вырываются плазменные пучки из южного и северного полюсов, как из квазара.

Такое возможно, если дыра не «кушала» другие планеты в течение долгого времени. То, что на картинках светится - это и есть аккреционный газовый диск. А выглядит он как хрен пойми что, потому что, благодаря гравитационному линзированию , над и под чёрной дырой виден кусок диска за этой самой дырой. Очень близко к горизонту событий Гаргантюа есть две критические орбиты, образованные равновесием силы гравитации и центробежной силы. По одной из них движется планета Манна, по другой - Эндюранс в конце фильма. Пространство в Интерстелларе состоит из трёх трёхмерных бран в четырёхмерном пространстве анти-де Ситтера. Над и под нашей браной находятся ограничивающие браны, они нужны для того, чтобы гиперпространство искривлялось между слоями и не нарушались человеческие законы распространения сил, в частности гравитации. Так, в общем, можно сделать пятой измерение развёрнутым, а не скрученным в трубочку.

Гиперпространство искривляется между этими бранами и расстояние, измеренное в верхней или нижней бране будет очень сильно короче, чем в нашей бране Расстояние между этими бранами должно быть 1,5 сантиметров - этого достаточно для того, чтобы расстояние по верхней бране между Землёй и Гаргантюа было равно 1АЕ, и в нашей бране соблюдались законы Ньютона о гравитации.

Астрономов удивила необычайно высокая яркость галактики, характерная для активной фазы поглощения материи черной дырой. Дело в том, что когда звезды и другие объекты приближаются к черной дыре, она сначала разрывает их на части, а затем медленно поглощает. Яркость гибнущей звезды резко вырастает, и данный процесс можно наблюдать на протяжении продолжительного времени. И с тех пор активность черной дыры не ослабевает.

Данная галактика сейчас находится в стадии активного звездообразования, в ней каждый год рождаются десятки новых светил. А в ее центре находится относительно небольшая сверхмассивная черная дыра.

Астрономов удивила необычайно высокая яркость галактики, характерная для активной фазы поглощения материи черной дырой. Дело в том, что когда звезды и другие объекты приближаются к черной дыре, она сначала разрывает их на части, а затем медленно поглощает.

Все его свойства — сила гравитационного притяжения, отклоняющая световое излучение звезд, а также форма и размер ее поверхности — определяются лишь двумя числами: массой дыры которую вы уже знаете и моментом количества движения. Этот момент — мера того, как быстро дыра вращается вокруг собственной оси. Вращаясь, она создает в пространстве вокруг себя некий вихрь, закручивающий все, что попадает внутрь дыры. Падая, некоторые водородные атомы межзвездной среды кружатся по часовой стрелке, а другие — в противоположном направлении. В результате они могут сталкиваться между собой, но в среднем падают в дыру отвесно «вертикально» , т.

И вы приходите к выводу, что эта черная дыра с массой 10 Mслн едва ли вращается вообще — ее момент количества движения близок к нулю. Зная массу и момент количества движения, можно теперь, пользуясь формулами ОТО, рассчитать все свойства, которыми должна обладать черная дыра. Наиболее интересны свойства ее поверхности, или горизонта — границы, из-за которой все, что падает в дыру, уже не может вернуться; границы, из-за которой не выбраться звездолету и даже любому виду излучения: радиоволнам, свету, рентгеновским или гамма-лучам. Поскольку эта дыра не вращается, ее горизонт имеет форму сферы, длина большой окружности которой при массе 10 Mслн составляет 185 км, что равно, например, периметру Лос-Анджелеса. Эта величина ничтожна по сравнению с длиной вашей орбиты 1 млн км. И тем не менее в столь крошечный объем втиснута масса вдесятеро больше солнечной! Но насколько позволяют судить ваши наблюдения, она сотворена из вакуума — пустоты.

Снаружи от горизонта вещества нет вовсе, если не считать атомов водорода, падающих в дыру из межзвездного пространства, и вашего корабля. И так как они никогда больше не появятся и не передадут никакой информации наружу, вы можете полагать в своих дальнейших расчетах, что они полностью исчезли из нашей Вселенной. Единственное, что после них осталось,— сильное гравитационное притяжение, которое влияет на вашу орбиту так же, как и до коллапса, и которое на сфере с экватором длиной 185 км становится столь огромным, что преодолевает любое сопротивление и, тем самым, создает горизонт. Однако вас уже предупредили, что не следует доверять подобным вычислениям по двум причинам. Во-вторых, понятие диаметра имеет смысл лишь тогда, когда вы его можете измерить. Но чтобы измерить диаметр горизонта черной дыры, вам придется проникнуть внутрь него, а очутившись там, вы никогда не сможете вернуться в нашу Вселенную. Вам не удастся даже передать результаты своих измерений на Землю — сигналы не выйдут за горизонт из-за неумолимого тяготения.

Но тут же вы вспоминаете, что, хотя снаружи черная дыра чрезвычайно проста, о ее внутренности этого сказать нельзя. Хотя по массе и моменту количества движения черной дыры вы в состоянии вычислить все ее свойства снаружи, вы не можете ничего узнать о ее внутренности. Она может иметь неупорядоченную структуру и быть сильно несимметричной. Все это будет зависеть от деталей коллапса, в результате которого образовалась черная дыра, а также от особенностей последующего втягивания межзвездного водорода. Так что диаметр дыры просто нельзя рассчитать на основе той убогой информации, которая имеется в вашем распоряжении. Получив эти результаты, вы можете исследовать окрестности горизонта черной дыры. Не желая рисковать человеческой жизнью, вы отправляете десятисантиметровый робот по имени R3D3 со встроенным передатчиком, который должен передать результаты своих исследований на корабль.

Робот получает довольно простое задание: с помощью ракетного двигателя он должен сойти с круговой орбиты вашего звездолета и начать падать к черной дыре. Падая, R3D3 будет передавать на корабль информацию о состоянии своих электронных систем и о пройденном расстоянии. Для этого может быть использован ярко-зеленый луч лазера. Вы рассчитываете принять лазерный сигнал, расшифровать его для определения состояния аппаратуры и пройденного расстояния, а также измерить цвет длину волны излучения. Вы знаете, что, хотя лазер все время испускает зеленый луч, вы будете видеть его все более красным по мере приближения робота к горизонту черной дыры. Отчасти излучение «покраснеет» за счет того, что ему придется затратить энергию на преодоление сильного гравитационного поля черной дыры, и отчасти — из-за доплеровского смещения, связанного с удалением источника излучения от вас. Измеряя «покраснение» лазерного излучения, вы сможете рассчитать скорость падения робота.

Итак, эксперимент начинается. R3D3 сходит с круговой орбиты и падает по радиальной траектории. Как только он начинает падать, вы пускаете часы, по которым фиксируется время прихода лазерных импульсов. По истечении 10 с вы получаете от него сообщение, что все системы функционируют нормально и он уже опустился на 2600 км. Здесь и далее прим. Теперь вы должны быть предельно внимательны. Следующие несколько секунд окажутся решающими, поэтому вы включаете высокоскоростную регистрирующую систему для детальной записи всех приходящих сведений.

Через 61 с R3D3 сообщает, что все системы пока функционируют нормально, горизонт — на расстоянии 8000 км и приближается со скоростью 15 тыс. Проходит 61,6 с. Еще все в порядке, до горизонта осталось 2000 км, скорость — 30 тыс. А затем, в течение следующей 0,1 с вы с изумлением замечаете, что излучение из зеленого становится красным, инфракрасным, микроволновым, затем приходят радиоволны и наконец все исчезает. Через 61,7 с все кончено — лазерный луч пропал. R3D3 достиг скорости света и исчез за горизонтом. По мере того как возбуждение спадает и вы подавляете налет сожаления по поводу участи робота, ваше внимание вновь обращается к записанным данным.

В них зафиксированы подробности изменения окраски лазерного излучения. Вы знаете, что свет представляет собой колебания электромагнитного поля и что каждый цвет характеризуется своей собственной длиной волны. Там, в записях — история этого удлинения. Из них следует, что пока R3D3 падал, длина волны принимаемого вами излучения сначала менялась очень медленно, а затем все быстрее и быстрее. Следует предположить, однако, что длина волны продолжала все так же удваиваться и после этого, так что после огромного числа удвоений длина волны стала бесконечной и возле горизонта все еще испускались чрезвычайно слабые и длинноволновые сигналы. Означает ли это, что R3D3 так и не пересек горизонт и никогда не сможет сделать этого? Вовсе нет.

Эти последние сигналы с многократно удваивавшейся длиной волны будут бесконечно долго «выбираться» из «тисков» гравитационного поля черной дыры. Но слабые сигналы от него будут продолжать приходить, поскольку время их пребывания в пути оказалось бесконечно велико. Они — следы далекого прошлого. Подчеркнем, что реализовать такую систему отсчета на самом горизонте и внутри него невозможно. Поэтому никаких нарушений принципа причинности, конечно, не происходит. После многочасового изучения данных, полученных от робота, и продолжительного сна, необходимого для восстановления сил, вы приступаете к следующему этапу исследований. На этот раз вы решаете самостоятельно обследовать окрестности горизонта событий, правда, рассчитываете сделать это с большей предосторожностью, чем ваш посланник: вместо свободного падения к горизонту, вы собираетесь снижаться постепенно.

Попрощавшись с командой, вы влезаете в спускаемый аппарат и покидаете корабль, оставаясь сначала на той же круговой орбите. Затем, включая ракетный двигатель, слегка тормозите, чтобы замедлить свое орбитальное движение. При этом вы начинаете по спирали приближаться к горизонту, переходя с одной круговой орбиты на другую. Ваша цель — выйти на круговую орбиту с периметром, слегка превышающим длину горизонта. Поскольку вы движетесь по спирали, длина вашей орбиты постепенно сокращается: от 1 млн км до 500 тыс. Находясь в состоянии невесомости, вы подвешены в своем аппарате, предположим, ногами — к черной дыре, а головой — к орбите вашего корабля и звездам. Но постепенно вы начинаете ощущать, что кто-то тянет вас за ноги вниз и вверх — за голову.

Вы соображаете, что причина — притяжение черной дыры: ноги ближе к дыре, чем голова, поэтому они притягиваются сильнее. То же самое справедливо, конечно, и на Земле, но разница в притяжении ног и головы там ничтожна — меньше 10—6, так что никто этого не замечает. Двигаясь же по орбите длиной 80 тыс. Несколько озадаченный вы продолжаете движение по закручивающейся спирали, но удивление быстро сменяется беспокойством: по мере уменьшения размеров орбиты, силы, растягивающие вас, будут нарастать все стремительнее. При длине орбиты 64 тыс. Скрипя зубами от натуги, вы продолжаете движение по спирали. При длине орбиты 25 тыс.

Больше вы не в состоянии выдержать в вертикальном положении. Пытаетесь решить эту проблему, свернувшись калачиком и подтянув ноги к голове, уменьшив тем самым разность сил. Но они уже настолько велики, что не дадут вам согнуться — снова вытянут вертикально вдоль радиального по отношению к черной дыре направления. Что бы вы ни предпринимали, ничто не поможет. И если движение по спирали будет продолжаться, ваше тело не выдержит — его разорвет на части. Итак, достичь окрестности горизонта нет никакой надежды... Разбитый, преодолевая чудовищную боль, вы прекращаете свой спуск и переводите аппарат сначала на круговую орбиту, а затем начинаете осторожно и медленно двигаться по расширяющейся спирали, переходя на круговые орбиты все большего размера, пока не доберетесь до звездолета.

В изнеможении добравшись до капитанской рубки, вы изливаете свои беды бортовому компьютеру. Вам рассказывали о растяжении в направлении от головы к ногам в процессе подготовки к полету. Это ведь те же самые силы, что вызывают океанские приливы на Земле». Но почему же робот R3D3 оказался столь стойким к действию приливных сил? Вы догадываетесь, что это произошло по двум причинам: он был изготовлен из сверхпрочного титанового сплава и имел размеры, значительно меньшие, чем ваши. Его высота, помнится, равнялась 10 см и, стало быть, приливная сила, действующая на него, была, соответственно, гораздо слабее. Но затем вы приходите к неутешительному выводу: даже проткнув горизонт, R3D3 должен был продолжать падать в область со все возрастающими приливными силами.

Вы вспоминаете, что еще в 1965 г. Пенроуз использовал законы ОТО Эйнштейна для доказательства того, что такая сингулярность «проживает» внутри любой черной дыры, а в 1969 г. Лившицем, И. Халатниковым и В.

Путешествие среди чёрных дыр

При этом ученые выяснили, что аппетит дыры стабильно выше так называемого предела Эддингтона – количества материи, которую может поглотить черная дыра. Вымышленная сверхмассивная Черная дыра Гаргантюа имеет массу в 100 миллионов солнц и находится в 10 миллиардах световых лет от Земли. Она вращается со скоростью, близкой к световой, и своей гравитацией затягивает окружающие объекты. Изучив орбитальное вращение этого «бублика», вы определяете массу черной дыры – 2·109 Mслн, т.е. примерно в тысячу раз меньше, чем масса Гаргантюа, но гораздо больше массы любой черной дыры в Млечном Пути. Черная дыра, которая была названа Гаргантюа, является одной из самых массивных известных нам черных дыр во Вселенной. Её название происходит от персонажа французской литературы — Гаргантюа, которого описывали как огромного человека с необычайно большими размерами. Изучаем свойства чёрных дыр: откуда они берутся, каких размеров бывают и что в реальности сделали бы с планетой Миллер из «Интерстеллара».

Астрофизики впервые показали изображение черной дыры

Фильм “Интерстеллар” помог ученым раскрыть новые свойства черных дыр – Новости науки К примеру, отмечают Торн и Оливер, наблюдения за виртуальной черной дырой раскрыли необычный эффект, который будет заметен только при приближении к Гаргантюа из Interstellar или его реальным “кузенам”.
Астрофизики впервые показали изображение черной дыры Гаргантюа — это сверхмассивная черная дыра, ставшая популярной в массовой культуре после фильма Интерстеллар, именно в неё затянуло Купера к концу фильма. Я постарался графически обыграть маршруты, будто это лучи света вокруг горизонта событий черной дыры.
Фильм «Интерстеллар» секрет концовки раскрыли спустя 9 лет Чёрная дыра Гаргантюа – это фантазия создателей «Интерстеллара», которая во многом соответствует реальным космическим объектам.
Горизонт событий Черная дыра Интерстеллар 4k.
Путешествие среди чёрных дыр “Черные дыры, называемые IMBH (Intermediate-Mass Black Holes) – в десять тысяч раз меньше, чем Гаргантюа, но в тысячу раз тяжелее, чем обычные черные дыры.

Тайны черных дыр: 6 занимательных вопросов астрофизикам

Гаргантюа — сверхмассивная вращающаяся черная дыра, что несколько меняет ее воздействие на окружающее пространство. При определенных условиях, скажем, если она будет вращаться очень быстро, а планета Миллер — располагаться достаточно близко к циркулярной орбите Гаргантюа, такое замедление времени возможно. Правда, у вращающихся черных дыр есть предел скорости вращения, причем максимума они, как правило, не достигают. Чтобы на планете Миллер было такое замедление времени, Гаргантюа должна вращаться лишь чуточку меньше максимума. Это реально, хотя и маловероятно. На планету Миллер должны регулярно падать огромные метеориты. Гаргантюа не всегда сможет поглощать космический мусор, чаще он будет попадать на орбиту и вращаться там. Они возможны, только если разница в гравитационном притяжении черной дыры на разных сторонах планеты очень велика. Но в таком случае планету просто разорвало бы на части! На самом деле нет. Благодаря гигантским размерам Гаргантюа разница в притяжении черной дыры на разных сторонах планеты Миллер недостаточно велика.

Тем не менее силы притяжения должно было хватить для деформирования планеты. Планета Миллер должна была выглядеть как эллипсоид, сжатый по бокам и вытянутый в длину. Кроме того, если бы планета вращалась вокруг своей оси, то силы притяжения Гаргантюа действовали бы в нескольких направлениях в зависимости от положения орбит. По фильму же мы видим, что все гигантские волны движутся примерно в одном направлении. Отсюда следует вывод, что планета Миллер всегда повёрнута к черной дыре одной и той же стороной. Возможно и еще одно объяснение: из-за деформации планеты и притяжения Гаргантюа в определенных районах постоянно проходят землетрясения, вызывающие гигантские цунами. Неужели нужно было лететь на нее в первую очередь и неужели этой части экспедиции нельзя было избежать? Разумеется, можно было. Планета Миллер никогда бы не стала бы первым кандидатом на место нового дома для человечества, если бы Купер или другие члены экипажа «Эндюранс» догадались использовать по назначению кучу научного оборудования, именно с этой целью доставленного на борт корабля. Информацию о пригодности планеты Миллер для жизни можно было получить прямо с орбиты при помощи телескопов и прочих приборов.

Тех самых, которыми Ромили почти четверть века изучал саму чёрную дыру, пока остальные боролись с цунами. Не спускаясь на планету, можно было бы провести ее изучение с безопасного расстояния, где временной лаг минимальный. Простой спектральный анализ здорово сэкономил бы топливо экспедиции и снизил бы накал страстей на экране. Кристоферу Нолану нужно было это замедление времени, чтобы показать, как растёт пропасть между отцом и дочерью. В крайнем случае, если NASA так уж хотелось отправить на планету делегацию из мыслящих существ, вполне можно было бы послать в экспедицию экипаж, состоящий из одних роботов. Роботы способны выжить почти в любых условиях судя по фильму — даже в черной дыре , они менее требовательны, не так капризны и легче переносят одиночество. Замедления времени он не избежал бы в любом случае — оно возрастает обратно пропорционально расстоянию от черной дыры. Но сэкономить время путем корректировки курса корабля благодаря гравитационному притяжению разных небесных тел еще как можно. В фильме Купер решает избежать притяжения Гаргантюа, разогнавшись до огромной скорости, а затем резко затормозить, попав в зону притяжения нейтронной звезды. На самом деле подобным образом снизить скорость и чтобы корабль и пассажиров при резком торможении не разорвало на кусочки с помощью нейтронной звезды не удалось бы — для этого требуется небольшая черная дыра размером с Землю.

Но Нолан был непреклонен насчёт количества черных дыр в фильме: одна, только одна! Действие разворачивается высоко над поверхностью, в небе которой висят гигантские ледяные облака. И почему они не падают под собственным весом? По-видимому, планета Манна вращается вокруг Гаргантюа по крайне сложной орбите и большую часть времени проводит вдали от черной дыры. Во-первых, до планеты Манна было чуть ли не дольше всего лететь, когда экипаж «Эндюранс» решал, откуда начать. Зато, когда Купер взлетает с планеты, «Рейнджер» оказывается совсем рядом с Гаргантюа. А во-вторых, на это намекают гигантские ледяные облака, которые замерзают на то время, пока планета удалена от аккреционного диска. А не падают они благодаря особому виду магии. На самом деле они давно должны были рухнуть на поверхность. Куперу удается спасти основной модуль, но сам он, робот ТАРС и «Рейнджер» проходят сквозь горизонт событий и падают в черную дыру.

Gaia BH1 находится всего в 1 560 световых годах от Солнечной системы по направлению к созвездию Змееносца, практически на «заднем дворе» Земли, пишут ученые. Она почти в три раза ближе, чем предыдущий рекордсмен. Gaia BH2 находится примерно в 3 800 световых годах от Земли, в созвездии Центавра. Оба объекта примерно в 9-10 раз массивнее Солнца и находятся в галактике Млечный Путь. Когда какой-то объект или облако межзвездного газа падает на черную дыру, появляется всплеск электромагнитного излучения. Астрономы фиксируют его и делают вывод о присутствии черной дыры.

Обычно соблюдается корреляция между размерами центрального балджа галактики и размерами ее черной дыры: она примерно в тысячу раз легче массы этого балджа. У довольно крупного Млечного пути ее масса оценивается в 4 млн солнц. А теперь представьте небольшую галактику NGC 1277 в 230 млн световых лет от нас. Наблюдения за движением звезд в ее центре показали, что они вращаются вокруг центра огромной массы.

Но постепенно вы начинаете ощущать, что кто-то тянет вас за ноги вниз и вверх — за голову. Вы соображаете, что причина — притяжение черной дыры: ноги ближе к дыре, чем голова, поэтому они притягиваются сильнее. То же самое справедливо, конечно, и на Земле, но разница в притяжении ног и головы там ничтожна — меньше 10—6, так что никто этого не замечает. Двигаясь же по орбите длиной 80 тыс. Несколько озадаченный вы продолжаете движение по закручивающейся спирали, но удивление быстро сменяется беспокойством: по мере уменьшения размеров орбиты, силы, растягивающие вас, будут нарастать все стремительнее. При длине орбиты 64 тыс. Скрипя зубами от натуги, вы продолжаете движение по спирали. При длине орбиты 25 тыс. Больше вы не в состоянии выдержать в вертикальном положении. Пытаетесь решить эту проблему, свернувшись калачиком и подтянув ноги к голове, уменьшив тем самым разность сил. Но они уже настолько велики, что не дадут вам согнуться — снова вытянут вертикально вдоль радиального по отношению к черной дыре направления. Что бы вы ни предпринимали, ничто не поможет. И если движение по спирали будет продолжаться, ваше тело не выдержит — его разорвет на части. Итак, достичь окрестности горизонта нет никакой надежды... Разбитый, преодолевая чудовищную боль, вы прекращаете свой спуск и переводите аппарат сначала на круговую орбиту, а затем начинаете осторожно и медленно двигаться по расширяющейся спирали, переходя на круговые орбиты все большего размера, пока не доберетесь до звездолета. В изнеможении добравшись до капитанской рубки, вы изливаете свои беды бортовому компьютеру. Вам рассказывали о растяжении в направлении от головы к ногам в процессе подготовки к полету. Это ведь те же самые силы, что вызывают океанские приливы на Земле». Но почему же робот R3D3 оказался столь стойким к действию приливных сил? Вы догадываетесь, что это произошло по двум причинам: он был изготовлен из сверхпрочного титанового сплава и имел размеры, значительно меньшие, чем ваши. Его высота, помнится, равнялась 10 см и, стало быть, приливная сила, действующая на него, была, соответственно, гораздо слабее. Но затем вы приходите к неутешительному выводу: даже проткнув горизонт, R3D3 должен был продолжать падать в область со все возрастающими приливными силами. Вы вспоминаете, что еще в 1965 г. Пенроуз использовал законы ОТО Эйнштейна для доказательства того, что такая сингулярность «проживает» внутри любой черной дыры, а в 1969 г. Лившицем, И. Халатниковым и В. Это были «золотые годы» теоретических исследований черных дыр. Но одна ключевая особенность их поведения ускользнула тогда от физиков, они лишь догадывались о ней. И только гораздо позже, в 2013 г. Чтобы изучить сингулярность, наблюдатель не только вынужден погибнуть — ему даже не удастся накопленный столь дорогой ценой опыт передать обратно, во внешнюю часть Вселенной. Не желая платить столь высокую цену за личное знакомство с сингулярностью, вы решаете ограничиться исследованием окрестностей черных дыр. К счастью, вы припоминаете что большое разнообразие явлений может наблюдаться и снаружи от черной дыры, в непосредственной близости от ее горизонта. Вы решаете изучить эти явления в первую очередь и сообщить о результатах своих исследований на Землю, во Всемирное географическое общество. Черная дыра Гадес обладает слишком большими приливными силами, которые не позволяют приблизиться к ее горизонту, но, согласно законам Эйнштейна, величина приливных сил вблизи горизонта обратно пропорциональна квадрату массы черной дыры. Для черной дыры с массой в 100 тыс. Иными словами, такая дыра должна быть весьма «комфортабельной» — никаких болевых ощущений. Достижим ли горизонт? Итак, вы начинаете строить планы следующего этапа путешествия: визит к ближайшей черной дыре с массой 100 тыс. Mслн из атласа черных дыр Уиткомба,— к черной дыре, расположенной в центре нашей Галактики — Млечного Пути. Ваш план полета предполагает создание такой тяги ракетных двигателей, которая обеспечивала бы ускорение всего в 1 g, так что вы и ваша команда будете ощущать внутри звездолета силу притяжения, равную земной. Вы разгонитесь по направлению к центру Галактики в течение половины пути, а вторую половину будете замедлять движение с отрицательным ускорением —1 g. Все путешествие длиной 30100 св. Вы предупреждаете Всемирное географическое общество, что следующее сообщение от вас прийдет из окрестностей галактического центра, после того как вы исследуете находящуюся там черную дыру с массой в 100 тыс. Члены общества должны пребывать в анабиозе около 60211 лет, если они хотят дождаться повторного сообщения 30103 года, пока вы доберетесь до центра Галактики, и 30108 лет, пока сообщение достигнет Земли. К сожалению, это так. Гораздо приятнее Вселенная в фантастических фильмах, где звездолеты переносят путешественников через галактики за времена, непродолжительные с любой точки зрения. Действительно, в 60-е годы XX в. Но более пристальное изучение физических законов привело к заключению, что ни одно из таких путешествий не реализуемо. Самое большее, на что вы можете рассчитывать,— это путешествовать сравнительно недолго по своим часам, но чрезвычайно долго с точки зрения землян. Через 20 лет 7 месяцев ваш звездолет тормозит в центральной части Млечного Пути. Именно здесь, как подтверждают ваши датчики, находится чудовищная черная дыра, всасывающая под свой горизонт смесь газа и звездной пыли. Вы переводите звездолет на тщательно выбранную круговую орбиту над горизонтом черной дыры. Измеряя длину и период своей орбиты и подставляя результаты в формулы Ньютона — Кеплера, вы определяете массу черной дыры. Mслн в точном соответствии с характеристиками, приведенными в атласе черных дыр Уиткомба. Основываясь на безвихревом характере падения газа и пыли, вы заключаете, что у дыры отсутствует заметный момент количества движения. Это подсказывает вам, что ее горизонт имеет форму сферы с длиной большой окружности 1 млн 850 тыс. Детально изучив с помощью приборов падение газа в дыру, вы готовитесь к спуску в окрестности ее горизонта: организуете лазерную связь между спускаемыми аппаратами и компьютером звездолета, после чего выводите спускаемый аппарат из отсека звездолета и постепенно замедляете его, переводя на спиральную орбиту, приближающуюся к горизонту. Все происходит в соответствии с вашими ожиданиями, до тех пор пока вы не достигли орбиты длиной 5 млн 500 тыс. Здесь возникают пугающие перемены! Плавное управление двигателями вместо плавного изменения вашей орбиты приводит к губительному падению по направлению к горизонту. В панике вы разворачиваете аппарат и, резко форсируя двигатели, вновь поднимаетесь на орбиту длиной больше 5 млн 500 тыс. Но этот закон нарушается вблизи горизонта черной дыры и должен быть заменен законами ОТО Эйнштейна. А законы Эйнштейна предсказывают внезапное изменение круговых орбит там, где вы это испытали,— на орбите, длина которой втрое больше длины горизонта. Ниже все орбиты неустойчивы, как карандаш, поставленный на острие. Ничтожный импульс, переданный падающим газом или вызванный неправильным направлением тяги ракетных двигателей, приведет к падению спускаемого аппарата к горизонту; аналогично, такой же импульс, направленный не к дыре, а от нее, приведет к временному нырку назад, к орбите длиной, втрое превышающей длину горизонта, а затем — снова к стремительному падению к горизонту. Любой другой путь невозможен, пока вы не добьетесь тщательнейшей коррекции на случай таких нырков, детально проработав программу управления ракетными двигателями спускаемого аппарата. Вам, человеку, вручную немыслимо столь аккуратно управлять двигателями, но это могу проделать я. Если хотите, я сохраню устойчивость орбиты спускаемого аппарата с помощью коррекции тяги, в то время как вы будете управлять спуском, меняя режим двигателей более грубо». Тем не менее вы принимаете предложение бортового компьютера, который затем объясняет, что неустойчивость — вовсе не единственная особенность вашей орбиты, появляющаяся при длине, втрое превышающей длину горизонта. Возникает также необходимость изменить направление тяги ваших ракетных двигателей. До сих пор, желая приблизиться по спирали к горизонту, вы были вынуждены, включая двигатели, разворачивать аппарат носом назад. Теперь, внутри сферы с длиной большой окружности, втрое превышающей длину горизонта, вы сможете приближаться к горизонту, лишь если при включении двигателей развернете аппарат носом вперед. Последовательно уменьшающиеся орбиты будут требовать все больших моментов количества движения и больших значений орбитальной скорости. Итак, с помощью компьютера вы по спирали приближаетесь к горизонту, переходя от орбиты с длиной, превышающей длину горизонта в 3 раза, к орбите, длиннее горизонта в 2,5 раза, затем вv2; 1,6; 1,55; 1,51; 1,505; 1,501 раза... О, разочарование! По мере того как ваша скорость приближается к скорости света, длина вашей орбиты приближается к величине, в 1,5 раза превышающей длину горизонта. Добраться до самого горизонта этим методом нет никаких надежд. Снова вы обращаетесь за помощью к компьютеру и снова он утешает вас, объясняя, что внутри сферы с длиной большой окружности, превышающей длину горизонта в 1,5 раза, вообще не может быть круговой орбиты. Силы притяжения там настолько сильны, что не могут компенсироваться центростремительными силами, даже если скорость движения по орбите равна скорости света. Если вы хотите еще приблизиться к горизонту, вы вынуждены компенсировать силу притяжения силой тяги ваших ракетных двигателей. Получив это предостережении вы советуетесь с компьютером, как реализовать подобную компенсацию. Объясняете, что хотели бы приблизиться к горизонту настолько, чтобы длина вашей орбиты составляла 1,0001 длины горизонта, где рассчитываете исследовать большинство эффектов, связанных с его влиянием, и откуда вы еще в состоянии выбраться. Но если вы удержите свой аппарат с помощью ракетных двигателей на такой орбите, какие ускоряющие силы вы будете ощущать? Глубоко обескураженный, вы включаете тягу и по спирали возвращаетесь обратно в чрево звездолета. После продолжительного отдыха, пятичасовых расчетов с использованием формул ОТО для черных дыр и трехчасового изучения атласа черных дыр Уиткомба вы, наконец, составляете план следующего этапа путешествия. Затем передаете во Всемирное географическое общество оптимистически полагая, что оно все еще существует отчет о своем исследовании черной дыры с массой 100 тыс. Mслн, а в конце излагаете ваш план. Расчеты показывают, что чем больше черная дыра, тем меньшая сила тяги ракетных двигателей необходима, чтобы удержать вас на орбите длиной 1,0001 длины горизонта. Ближайшая такая дыра под названием Гаргантюа находится далеко за пределами области размерами в 100 тыс. Черная дыра находится возле квазара 8C 2975, отстоящего на 1,2 млрд св. Вы решаете отправиться к ней. Используя укоренив 1 g на первой половине пути и такое же замедление на второй половине, вы затратите на путешествие 1,2 млрд лет по земным часам, но всего лишь 39 лет и 11 месяцев — по вашим. Если члены Всемирного географического общества не желают рисковать и на 2,4 млрд лет погрузиться в анабиоз, они будут вынуждены отказаться от приема вашего следующего сообщения.

Звезды могут поглощать черные дыры — нестандартная гипотеза

Гаргантюа черная дыра (Множество фото) - Посмотрите идеальное GIF-изображение по теме "Gargantua Black Black Hole", которое украсит любой чат. Находите лучшую анимацию в Tenor и делитесь ею с друзьями.
Гаргантюа: самая большая Солнечная система во Вселенной Важно понимать, что чёрная дыра — это не пустое пространство, а, скорее, место, где огромное количество материи помещается в крошечную область, называемую сингулярностью, которая бесконечно мала и плотна (тут есть разные варианты, но остановимся на этом).
Астрофизики впервые показали изображение черной дыры Вымышленная черная дыра «Гаргантюа» (сцена из фильма «Интерстеллар»).© Paramount/Warner Brothers/The Kobal Collection.
«Гаргантюа́» Помните, как черная дыра Гаргантюа искривляет лучи света, искажая вид звездного неба?

Фильм «Интерстеллар» секрет концовки раскрыли спустя 9 лет

это, пожалуй, самые загадочные объекты во Вселенной. Звездный узор на рис. 8.1 (Гаргантюа) заметно отличается от изображенного на рис. 8.4 (невращающаяся черная дыра), а эффект при движении камеры отличается еще больше. Почему в случае невращающейся черной дыры (рис. 8.4) кажется, что вторичные изображения звезд возникают из-за тени черной дыры, огибают ее и возвращаются обратно к тени, а не циркулируют вдоль замкнутых кривых, как в случае Гаргантюа (рис. 8.5)? Описанные в голливудском блокбастере внешний вид, размеры и физические свойства черной дыры Гаргантюа, являющейся одним из центральных «персонажей» это фильма — его работа. черная дыра. Черные дыры могут быть дружелюбнее, чем принято считать. Согласно Научным Данным Она Образовалась Из Тёмной Звезды в Тёмные Века Во Времена Когда Не Было Времени и Если Залетит в Нашу Солнечную Систему Нас Ждут Бо.

Почему черная дыра называется Гаргантюа

Черная дыра Гаргантюа – Самые лучшие и интересные посты на развлекательном портале Фото: Ton 618 черная дыра. Группа международных астрономов, используя космический телескоп Gaia, обнаружила огромную черную дыру, расположенную относительно недалеко от Земли.

Фильм «Интерстеллар» секрет концовки раскрыли спустя 9 лет

Самым известным в массовой культуре изображением черной дыры стал образ Гаргантюа в том же "Интерстелларе". Черная дыра Черные дыры, вероятнее всего, совсем не ограничены никаким горизонтом событий. Вымышленная черная дыра «Гаргантюа» (сцена из фильма «Интерстеллар»).© Paramount/Warner Brothers/The Kobal Collection. Для планеты черная дыра в этом случае может выступать в роли холодного светила. Черная дыра в центре галактики M87, очерченная излучением раскаленного газа, который, вращаясь вокруг нее, образует кольцо.

Похожие новости:

Оцените статью
Добавить комментарий