Термин «черная дыра» появился только в 1969 году с легкой руки физика Джона Уилера.
Энергия из черных дыр – выдумка или реальность?
FAQ по Гаргантюа: реальна ли черная дыра в Интерстеллар? | Скачайте видеоклип Черная Дыра Гаргантуа прямо сейчас. И найдите в библиотеке роялти-фри стоковых видеоматериалов iStock еще больше видео Чёрная дыра, доступных для простого и быстрого скачивания. |
Видео обои Сверхмассивная чёрная дыра (Космос) | 1920x1080 FullHD | Кстати, общепризнанный в кругах многих астрономов, тот факт, что изображение чёрной дыры "Гаргантюа" из к/a "Интерстеллар" наиболее точно и достоверно передаёт внешний вид свермассивной чд в галактике М87 (точнее её тени). |
Ученые: Использовать черные дыры для космических путешествий можно, но только осторожно | Эти снимки неожиданным образом показали, что черная дыра-"гаргантюа" и сама W2246-0526 были соединены толстыми линиями из холодного газа и пыли с тремя спутниками этого "звездного мегаполиса". |
Гаргантюа интерстеллар [82 фото]
Туда падает газ, нагревается до высоких температур и светится в разных диапазонах света. Другими словами, если в земле выкопать яму и что-то туда бросить, то чем глубже будет отверстие, тем больше скорость падающего объекта, то есть он будет выделять больше энергии. Результат на Нобелевскую премию Ведущий научный сотрудник Института ядерных исследований РАН Вячеслав Докучаев в беседе с «360» объяснил, что современная астрофизика считает черные дыры самыми важными объектами во вселенной. До сих пор ученые имели только косвенные доказательства, что эти черные дыры существуют. Сегодня произошло выдающееся событие. Впервые человечеству была предъявлена фотография реального изображения черной дыры. Физики ждали этого 100 лет. Эти объекты были предсказаны в теории Эйнштейна более 100 лет назад Вячеслав Докучаев.
Докучаев уверен, что результат, полученный учеными, тянет на Нобелевскую премию, но ему обидно, что в таком значимом мероприятии не участвовала Россия. В том числе потому, что в стране нет ни одного мощного радиотелескопа. А это важно для осмысления нашего места во вселенной и смысла жизни не только отдельного человека, а всей цивилизации», — добавил Докучаев. Важны не фото, а свойства Вице-президент РАН Юрий Балега в разговоре с «360» не был так обрадован новостью о полученной фотографии. По его мнению, мы увидели то, что интересно широкому обывателю, но для физики важны физические свойства объектов, чтобы «мы могли написать картину мира». Информация сегодня в астрофизике получается не по фотографиям, а на основе спектров, которые позволяют получить физические характеристики объектов в космосе: температуру, размеры, скорость, химический состав. Фотография — это тень черной дыры.
Сама черная дыра не видна, она очень мала, мы видим только окрестности Юрий Балега. Балега отметил, что важно изучить способ образования черных дыр, чтобы на основе этих данных узнать, когда они появились.
По всему миру прошло одновременно шесть больших пресс-конференций, где астрофизики сообщили о результатах работы международного проекта, в котором участвовали 200 ученых. Ученые объединили мощности восьми длинноволновых радиотелескопов в разных точках планеты в один большой радиотелескоп-интерферометр, поскольку сеть радиотелескопов лучше всего подходит для подобных наблюдений. Телескоп горизонта событий получил свое название в честь границы черной дыры - "горизонта событий", границы пространства-времени, которое окружает черную дыру и является так называемой точкой невозврата. Член научного комитета EHT Лучано Реццола из университета Гёте в Германии отметил, что полученное изображение подтверждает существование горизонта событий, то есть доказывает правильность общей теории относительности Альберта Эйнштейна. Считается, что черная дыра представляет собой объект с такой сильной гравитацией, что даже свет не может отдалиться от него на бесконечное расстояние и из черной дыры не может выбраться никакое тело.
Концепция таких объектов связана с современным взглядом на гравитацию, общей теорией относительности Эйнштейна, и представлением тяготения в ней через искривление пространства-времени. Это явление, предсказываемое общей теорией относительности Эйнштейна, никогда раньше не наблюдалось", - объясняет глава Научного совета EHT Хайно Фальке из университета Рэдбуд в Нидерландах. Именно она и позволила нам измерить гигантскую массу черной дыры в M87. Куда смотрел телескоп Чтобы исследовать окрестности сверхмассивных черных дыр они являются сравнительно маленькими астрономическими объектами в центрах каждой галактики, ученые направили сеть радиотелескопов на черную дыру в центре эллиптической галактики Messier 87 M87 в созвездии Девы, она находится на расстоянии 55 млн световых лет от Земли.
У Оливера ученая степень по оптике и атомной физике, и он понимает законы теории относительности Эйнштейна, так что мы говорили на одном и том же техническом языке. Некоторые из моих коллег-физиков уже делали компьютерные модели того, что увидит наблюдатель, находясь на орбите черной дыры или даже падая в нее. Эндрю создал видео о черных дырах, которое показывают в планетариях по всему миру, а Ален смоделировал черные дыры, которые вращаются очень-очень быстро, как Гаргантюа.
Так что первоначально я собирался свести Оливера с Аленом и Эндрю и попросить их предоставить ему необходимые входные данные. Несколько дней мне было неуютно от этого решения, а потом я передумал. В течение своей полувековой карьеры физика я прикладывал огромные усилия, совершая новые открытия сам и воспитывая студентов, совершавших новые открытия. Почему бы, для разнообразия, не сделать что-нибудь просто потому, что это весело, спросил я себя, даже если другие уже делали это до меня? И это было весело. И к моему удивлению, побочным продуктом это привело скромно к новым открытиям. Эти уравнения рассчитывают траектории световых лучей, начинающихся от некоторого источника света, к примеру, от далекой звезды, и движущихся сквозь искривленное пространство Гаргантюа к камере.
Из этих лучей света мои уравнения затем рассчитывают видимые камерой изображения, учитывая не только источники света и искажение пространства и времени Гаргантюа, но и движение камеры вокруг Гаргантюа. Получив эти уравнения, я сам опробовал их с помощью дружелюбного программного обеспечения под названием Mathematica. Я сравнивал изображения, создаваемые моим компьютерным кодом Mathematica, с изображениями Алена Riazuelo, и когда они согласовались, я возликовал. Затем я написал подробные описания своих уравнений и отправил их Оливеру в Лондон, вместе с моим кодом Mathematica. Мой код был очень медленным и имел низкое разрешение. Задачей Оливера было перевести мои уравнения в компьютерный код, который мог бы создать необходимые для фильма изображения IMAX сверхвысокого качества. Мы с Оливером делали это пошагово.
Мы начали с невращающейся черной дыры и неподвижной камеры. Затем мы добавили вращение черной дыры. Затем добавили движение камеры: сперва движение по круговой орбите, а затем падение в черную дыру. А затем мы переключились на камеру, вращающуюся вокруг кротовой норы. В этом месте Оливер поразил меня как громом среди ясного неба: чтобы смоделировать самые утонченные эффекты, ему понадобятся не только уравнения, описывающие траектории световых лучей, но еще и уравнения, описывающие, как поперечное сечение пучка света меняет размер и форму, проходя через кротовую нору. Я более или менее знал, как это сделать, но уравнения были ужасно запутанны, и я боялся наделать ошибок. Так что я поискал техническую литературу, и обранужил, что в 1977 году Serge Pineault и Rob Rouber из Университета Торонто получили необходимые уравнения в почти нужной мне форме.
После трехнедельной борьбы с собственной глупостью я привел их уравнения точно в нужную форму, выразил их в Mathematica и расписал Оливеру, который включил их в собственный компьютерный код. В конце концов, его код смог создать качественные изображения, необходимые для фильма. В Double Negative компьютерный код Оливера был только началом. Он вручил его художественной команде под руководством Евгении фон Танзельманн, которая добавила аккреционный диск Глава 9 и создала фоновую галактику со звездами и туманностями, которые будут искажаться линзой Гаргантюа. Затем ее команда добавила Эндуранс, Рэйнжеры и посадочные модули и анимацию камеры изменяющиеся движение, направление, поле зрения и т. Продолжение см. Между тем, я ломал голову над высококачественными видео, присланными мне Оливером и Евгенией, напряженно пытаясь понять, почему изображения выглядят так, как выглядят, а звездные поля струятся так, как струятся.
Для меня эти видео подобны экспериментальным данным: они вскрывают такие вещи, которые я бы никогда не выяснил сам, без этих моделей - например, то, что я описал в предыдущем разделе рисунки 8. Мы собираемся опубликовать техническую статью-другую с описанием того нового, что мы узнали. Внешний Вид Гравитационных Пращей Хотя Крис решил не показывать ни одной гравитационной пращи в Интерстелларе, я задался вопросом, как бы они выглядели для Купера, когда он вел Рэйнжер к планете Миллера. Так что я воспользовался своими уравнениями и Mathematica для моделирования изображений. У моих изображений разрешение намного ниже, чем у изображений Оливера и Евгении из-за медленности моего кода. Это праща, описанная на рисунке 7.
Образно говоря, это позволило бы читать газету в Нью-Йорке, сидя в кафе в Париже». На то, чтобы его сделать, ушло почти 100 лет Впервые о существовании черных дыр заговорили почти сто лет назад, когда немецкий физик Карл Шварцшильд вывел из общей теории относительности Эйнштейна существование областей, где вещество и энергия сосредоточены так плотно, что гравитация не выпустит свет и искривит пространство. Несмотря на то что астрономы не могли наблюдать черную дыру непосредственно, в их существовании никто не сомневался. Но саму черную дыру все равно не увидеть Поскольку черная дыра ничего не излучает, ее нельзя увидеть просто так. Но зато можно увидеть вещество, которое с большой скоростью падает на черную дыру. Если поставить рядом с ней звезду или поместить черную дыру в облако газа и пыли, то за счет гравитации она начнет притягивать вещество. Оно будет падать на черную дыру, вокруг дыры сформируется аккреционный диск, который разогреется до сотен миллионов градусов и начнет светиться.
«Интерстеллар» с точки зрения науки
8 апреля 2022 в 13:54. $ASTR-US. это настоящая черная дыра, сверхмассивная чёрная дыра Гаргантюа. «Первичная черная дыра субсолнечной массы, проходящая через нейтронную звезду, может потерять достаточно энергии из-за взаимодействия с плотной звездной средой, чтобы стать гравитационно связанной со звездой. Гаргантюа — сверхмассивная вращающаяся чёрная дыра с аккреционным диском.
Победит ли кордицепс человечество? Правда и вымысел в фантастических фильмах и сериалах
Так в популярной науке известен классический пример, описывающий падение выдуманного звездолёта на чёрную дыру и наблюдение за ним стороннего наблюдателя. Этот пример наглядно описывает некоторые особенности горизонта событий. Согласно теории относительности, для пассажира звездолёта путь до горизонта событий ничем не будет примечателен. Он будет двигаться с нарастающим ускорением, пока не достигнет скорости света на горизонте событий.
Иную картину увидит наблюдатель. Для него растягивающийся силуэт звездолёта будет замедляться по мере приближения к чёрной дыре. У самого горизонта событий он и вовсе застынет навеки.
Науке неизвестно, что произойдёт со звездолётом после пересечения этой черты. Вероятнее всего, с точки зрения пассажира звездолёта, преодолев световой барьер, он продолжит своё ускорение. Стоит отметить, что вся масса чёрной дыры должна быть сосредоточена в её центре, бесконечно мелкой сингулярности.
Поэтому остальное пространство чёрной дыры является просто областью, ограниченной горизонтом событий. Разный взгляд на пустоту Можно ли увидеть черную дыру? Другими словами, термин «радиус чёрной дыры» не обозначает радиус материального объекта.
Это радиус области, внутри которой не действует известная физика. Попав в неё, наш звездолёт не только не сможет вырваться назад, но и неизбежно попадёт в её центр. В данном случае интересная особенность горизонта событий заключается в том, что с точки зрения наблюдателя никакой сингулярности не существует.
Всё то, что попало в чёрную дыру для нашего внешнего мира навсегда останется у края горизонта событий. То есть, с нашей точки зрения, вся масса чёрной дыры сосредоточена не в центре, а по периферии. Звездолёт не только не достигнет центра, но и не пересечёт границы чёрной дыры.
Для тех же, кто попал в чёрную дыру, пересечение горизонта событий пролетит со скоростью света. Путешествие до сингулярности будет проходить при ещё больших нарастающих скоростях, что также нарушает законы нашей физики. В конечном итоге любое тело, угодившее в чёрную дыру, неизбежно станет частью сингулярности.
По её меркам пройдёт сравнительно небольшое время, тогда как за пределами дыры, известная для нас, Вселенная может исчезнуть. Ведь, согласно модели Хоккинга, испарения чёрной дыры происходит за невообразимо короткий срок. Масштабы горизонта событий Горизонт событий, наряду с сингулярностью, является основным «атрибутом» чёрной дыры.
Пространство-время искривляется и все события протекают уже совсем по другому. Словно пылесос, черная дыра поглощает все что находится около нее: планеты, астероиды, свет и прочее. Ранее считалось, что черная дыра ничего не излучает, но как доказал Стивен Хоукинг, черная дыра излучает антивещество. То есть, поедает вещество, выделяет антивещество.
Коллайдер полагаю затем и построили, чтобы попробовать такое получить, так как при столкновении протонов внутри данной машины, также возникают миниатюрные черные дыры, которые быстро испаряются, что хорошо для нас, иначе могло бы быть, как в фильмах про конец света. Ранее думали, что если кинуть в черную дыру человека, то ему труба — порвет на субатомы, но как оказалось, по некоторым уравнениям, есть определенные траектории путешествия сквозь черную дыру, чтоб чувствовать себя нормально, правда не ясно, что будет за ней, другой мир или ничего. Область вокруг черной дыры, которая интересна, называется горизонтом событий. Если туда полететь, не зная волшебное уравнение, то будет конечно не очень.
Наблюдатель будет видеть, как космический корабль влетает в горизонт событий и крайне медленно потом отдаляется, пока не застынет в центре. У самого же космонавта дела будут идти крайне по другому, искривленной пространство будет лепить из него, как из пластелина различные формы, пока наконец не разорвет все на субатомы. Но для внешнего наблюдателя, космонавт навсегда останется улыбающимся и махающим в иллюминатор, застывшим изображением. Теории о существовании белых дыр Предположим, что белые дыры действительно существуют.
Тогда откудаже они берутся, икак ихобразование влияет начеловечество? Давайте представим себе черную дыру коллапсар только собратным течением времени. Назовем еебелая дыра. Возможно, она являет собой полную противоположность черной.
Попробуем привести немного фактов: черные дыры своей мощной гравитацией собирают вокруг себя вкосмосе всю материю, втовремя как белые теоретически должны отталкивать ее от себя. Вовселенной существование коллапсар— уже давно неоткрытие. Авот образование вселенной белых дыр так иосталось гипотетическими рассуждениями. Однако группа израильских ученых утверждает, что они смогли зафиксировать нафото белую дыру ввиде вспышки.
Характеристики вспышки гипотетической белой дыры отличаются отпрежде известных различных вспышек звезд. Ученые считают, что мгновенный распад белой дыры похож наБольшой взрыв, новомного раз меньше. Такому взрыву было присвоено название Малый взрыв. Онхарактерен тем, что когда происходит, изнеоткуда появляется множество энергии иматерии.
Онкакбы выбрасывает все, что было накоплено внутри. Изучая эти особенности, можно констатировать, что загадки существования белых дыр, могут быть только дотех пор, пока какие-то конкретные объекты необнаружат космонавты. Также стоит отметить, что белая дыра сможет быть реальностью только втом случае, пока веерамках небудет ниодной изчастиц материи. Поскольку, если хотябы одна альфа-частица попадет внее, тобелая дыра мгновенноже разрушится.
Вуниверситете Aix-MarseilleUniversity воФранции есть группа ученых, которые упорно пытаются объяснить человечеству, что втеории черных ибелых областей пространства-времени уже давно лежит физика, вкоторой есть теория петель квантовой гравитации. Физики предполагают, что наша Вселенная существует внутри чёрной дыры Эта странная теория , над которой физики работают уже ни одно десятилетие, может пролить свет на многие вопросы, на которые не в состоянии ответить знаменитая теория Большого взрыва. Согласно теории Большого взрыва, до того, как Вселенная начала расширяться, она пребывала в сингулярном состоянии-то есть в бесконечно малой точке пространства содержалась бесконечно высокая концентрация материи. Эта теория позволяет объяснить, например, почему невероятно плотная материя ранней Вселенной начала расширяться в пространстве с огромной скоростью и образовала небесные тела, галактики и скопления галактик.
Но в то же время, она оставляет без ответа и большое количество важных вопросов. Что спровоцировало сам Большой взрыв? Каков источник таинственной тёмной материи? Теория о том, что наша Вселенная находится внутри чёрной дыры, может дать ответы на эти и многие другие вопросы.
И к тому же в ней объединены принципы двух центральных теорий современной физики: общей теории относительности и квантовой механики. Общая теория относительности описывает Вселенную в самых крупных масштабах и объясняет, как гравитационные поля таких массивных объектов, как Солнце, искривляют время-пространство. А квантовая механика описывает Вселенную в самых мелких масштабах — на уровне атома. Она, например, учитывает такую важную характеристику частиц, как спин вращение.
Идея состоит в том, что спин частицы взаимодействует с космическим временем и передаёт ему свойство, называемое «торсион». Чтобы понять, что такое торсион, представьте космическое время в виде гибкого прута. Сгибание прута будет символизировать искривление космического времени, а скручивание — торсион пространства-времени. Если прут очень тонкий, вы можете его согнуть, но разглядеть, скручен он или нет, будет очень сложно.
Получившийся результат ошарашил самого Кипа. Он догадывался, как должны в реальности выглядеть черные дыры, но компьютерная анимация превзошла все его ожидания. Откуда планеты Миллер, Эдмундса и Манна черпают тепло и свет? Из аккреционного диска. Притяжение Гаргантюа так велико, что способно захватить целую звезду. Когда звезда движется прямо на черную дыру, ее судьба плачевна и предсказуема.
Если же её орбита пролегает рядом с Гаргантюа, то притяжение черной дыры попросту разрывает небесное тело на части, а большая часть материи, ранее составлявшей тело звезды, попадает на орбиту Гаргантюа и формирует аккреционный диск. Он излучает свет, тепло и радиацию, так что вполне может заменить солнце. Как же экипаж «Эндюранс» не поджарился, просто пролетая мимо? Возможно, с момента, когда последняя звезда попала в гравитационные тиски Гаргантюа, прошло несколько миллионов лет. Тогда газ, составляющий диск, остыл до температуры в несколько тысяч градусов и уже не излучает такой сильной радиации, хотя продолжает давать достаточно света и тепла. Низкой температурой объясняется и блеклость диска.
Гаргантюа — самая достоверная чёрная дыра в истории кино. Но даже она отличается от реальной. Разве их не должно было засосать внутрь дыры? На самом деле наука допускает существование возле гигантских черных дыр зон обычного времени и пространства, даже целых планетных систем, которые вращаются вокруг центральной сингулярности по сложным, но замкнутым орбитам. Он должен быть несколько сплющенным и несимметричным. Кроме того, модель не учитывает эффект Допплера: один край диска должен отливать красным, другой — синим.
Да, тут Кристофер Нолан специально пошел против истины, чтобы не смущать зрителей. А еще он специально занизил скорость вращения черной дыры. Кроме того, учитывая расстояние от черной дыры до планеты Миллер, Гаргантюа должна занимать половину небосвода, а планета при таком раскладе находилась бы внутри аккреционного диска, так что он в основном был бы виден только с противоположной дыре стороны планеты. Планеты Миллер и Манна Первым делом астронавты отправляются на планету Миллер. Время там идёт замедленно — один час на ее поверхности равен семи земным годам. Но нужно находиться совсем рядом с дырой, практически над ее поверхностью.
А стабильная орбита вокруг черной дыры должна превышать диаметр Гаргантюа как минимум трижды. Иначе планету Миллер давно бы засосало внутрь. С учетом показанных в фильме кадров время на поверхности планеты должно течь медленнее, чем на Земле, всего процентов на двадцать. Это верно в отношении невращающихся черных дыр, но с Гаргантюа все обстоит по-другому. Гаргантюа — сверхмассивная вращающаяся черная дыра, что несколько меняет ее воздействие на окружающее пространство. При определенных условиях, скажем, если она будет вращаться очень быстро, а планета Миллер — располагаться достаточно близко к циркулярной орбите Гаргантюа, такое замедление времени возможно.
Правда, у вращающихся черных дыр есть предел скорости вращения, причем максимума они, как правило, не достигают. Чтобы на планете Миллер было такое замедление времени, Гаргантюа должна вращаться лишь чуточку меньше максимума. Это реально, хотя и маловероятно. На планету Миллер должны регулярно падать огромные метеориты. Гаргантюа не всегда сможет поглощать космический мусор, чаще он будет попадать на орбиту и вращаться там. Они возможны, только если разница в гравитационном притяжении черной дыры на разных сторонах планеты очень велика.
Но в таком случае планету просто разорвало бы на части! На самом деле нет. Благодаря гигантским размерам Гаргантюа разница в притяжении черной дыры на разных сторонах планеты Миллер недостаточно велика. Тем не менее силы притяжения должно было хватить для деформирования планеты. Планета Миллер должна была выглядеть как эллипсоид, сжатый по бокам и вытянутый в длину.
Черная дыра. Потолок черная дыра. Настоящая черная дыра. Черная дыра Хаббл. Черная дыра с телескопа Хаббл. Черная дыра Интерстеллар. Holmberg 15a чёрная дыра. Holmberg 15a Галактика. Блэк Хоул черные дыры. Первый снимок чёрной дыры. Реальные снимки черной дыры. Реальный снимок черной дыры. Галактика Млечный путь телескоп Хаббл. Сверхмассивная чёрная дыра в центре Галактики. НАСА телескоп Хаббл. Чёрная дыра фото из космоса. Чёрная дыра снимки из космоса. Сверхмассивные черные дыры в центре масс галактик. Черная дыра Рейснера-Нордстрема. Ядро Галактики Млечный путь черная дыра. Белая дыра в космосе. Первичные черные дыры. Чёрные дыры во Вселенной. Маленькая черная дыра. Снимки черных дыр. Чёрная дыра Рейснера нордстрёма. Черная дыра сбоку. Квазар 3с9. Сверхмассивная черная дыра в галактике. Черные дыры фильм 1995. Черная дыра вместо солнца. Огромная черная дыра. Сверх масивная чёрная дыра. Черная дыра изнутри. Гравитационные воронки. Дыра внутри. Гаргантюа черная дыра Интерстеллар. Черная дыра обои. Красивая черная дыра.
ЧЕРНЫЕ ДЫРЫ
Самое известное изображение черной дыры в поп-культуре — Гаргантюа из «Интерстеллара» Кристофера Нолана. Ее модель помогал делать Кип Торн — астроном, эксперт по черным дырам и лауреат Нобелевской премии за регистрацию гравитационных волн. Черная дыра Гаргантюа, частично скрытая планетой Миллер; на переднем плане — модуль «Рейнджер», идущий на снижение. К примеру, отмечают Торн и Оливер, наблюдения за виртуальной черной дырой раскрыли необычный эффект, который будет заметен только при приближении к Гаргантюа из Interstellar или его реальным “кузенам”. Самым известным в массовой культуре изображением черной дыры стал образ Гаргантюа в том же "Интерстелларе".
Новости по теме
- Линзирование быстровращающейся черной дыры – Гаргантюа
- Последние новости
- ЧЕРНЫЕ ДЫРЫ | Наука и жизнь
- «Интерстеллар» с точки зрения науки
- Гаргантюа и червоточина
- Что не так с «Интерстелларом» — взгляд физика
Зачем ученым фото черной дыры? 10 фактов, которые помогут разобраться в сложном вопросе
Новости развлекательной игровой тематики и индустрии кино. К примеру, отмечают Торн и Оливер, наблюдения за виртуальной черной дырой раскрыли необычный эффект, который будет заметен только при приближении к Гаргантюа из Interstellar или его реальным “кузенам”. По расчетам, черная дыра в тысячи раз больше, чем в Млечном пути, и насчитывает не 0,1% от массы балджа галактики, а все 59%. Новости черных дыр. Сверхмассивные черные дыры в центре масс галактик. Черная дыра Гаргантюа — это огромный астрономический объект, который находится в центре галактики M87 в созвездии Девы. Живые обои Черная дыра Гаргантюа / скачать на рабочий стол.
Гаргантюа: Гигант в малютке
Но можно найти варианты решения этой проблемы, которые нельзя ни опровергнуть, ни подтвердить. Какие темы затрагивает астрофизика интертеллара? Здесь мы рассмотрим такие понятия как червоточина и черная дыра. Червоточина и пространство По сюжету герои должны отправиться через червоточину к черной дыре. Это два разных понятия. В фильме объясняют червоточину с помощью бумаги. Научно доказано, что пространство способно искривляться. Принимая это во внимание и представляя, что космос — это лист бумаги, если поставить одну точку в начале бумаги и вторую — в конце, то расстояние будет большим, но если пространство искривить или сложить бумагу пополам, то эти точки окажутся рядом. На самом деле этот туннель в пространстве имеет несколько названий, так, его можно называть кротовая нора или кротовина, однако червоточина является дословным переводом от слова wormhole. Кротовая нора, упомянутая и показанная в этом фильме — это портал во времени и пространстве, позволяющий попадать в любую часть вселенной. Червоточины пока не были обнаружены, но многие исследователи предполагают, что такие червоточины вполне могут существовать, опираясь на теорию относительности.
Правда, никому до сих пор неизвестно, сможет ли космический корабль с экипажем внутри выйти из кротовой норы невредимым. Черная дыра и время Дальше можно обсуждать то, что происходит, когда героям удалось преодолеть большое расстояние и подобраться к черной дыре. Здесь уже затрагивается искривление времени.
Черные лучи C и D на рисунке 8. Орбита-ловушка луча D показана на вставке справа сверху. Белые лучи С и D не показаны , идущие от далеких звезд, попадают в ловушку бок о бок с черными лучами C и D и движутся к вашим глазам бок о бок с C и D, неся изображения кусочков огненного кольца бок о бок с кусочками края тени. Линза Невращающейся Черной Дыры Чтобы понять преломленный гравитационной линзой рисунок звезд и их струение по мере движения камеры, давайте начнем с невращающейся черной дыры и с лучей света, исходящих от единственной звезды рисунок 8. Два луча света идут от звезды к камере. Каждый из них движется по самой прямой траектории, по какой только может в искривленном пространстве дыры, однако из-за искривления каждый луч изгибается. Один изогнутый луч движется к камере вокруг левого края тени, другой - вокруг ее правого края. Каждый луч несет камере собственное изображение звезды. Эти два изображения, как их видит камера, показаны на вставке на рисунке 8. Я обвел их красными кружками, чтобы отличить их от всех остальных звезд, видимых камерой. Заметьте, что правое изображение намного ближе к тени дыры, чем левое. Это потому, что его изогнутый луч прошел ближе к горизонту событий дыры. Сверху: Искривленное пространство невращающейся черной дыры на виде из балка и два луча света, движущиеся в искривленном пространстве от звезды к камере. Снизу: Преломленный гравитационной линзой звездный рисунок, видимый камерой. Можете распознать какие-нибудь пары? Тень черной дыры на картинке состоит из направлений, из которых ни один луч не может прийти в камеру; посмотрите на треугольную зону, подписанную "тень" англ. Все лучи, которые "хотят быть" в тени, ловит и глотает черная дыра. По мере движения камеры вправо по орбите рисунок 8. На этом рисунке выделены две отдельные звезды. Одна обведена красным та же звезда обведена на рисунке 8. Другая - внутри желтого маркера. Мы видим два изображения каждой звезды: одно снаружи розовой окружности, другое внутри. Розовая окружность называется "кольцо Эйнштейна". По мере движения камеры вправо изображения движутся вдоль красной и желтой кривых. Изображения звезд снаружи кольца Эйнштейна давайте назовем их первичными изображениями движутся так, как и можно было бы ожидать: плавно слева направо, но отклоняясь от черной дыры по мере движения. Можете объяснить, почему отклонение происходит от дыры, а не к ней? Изменение звездного узора, видимого камерой по мере ее движения вправо по орбите на рисунке 8. Это можно понять, вернувшись к верхней картинке на рисунке 8. Правый луч проходит рядом с черной дырой, так что правое изображение звезды находится рядом с ее тенью. В более ранний момент времени, когда камера находилась левее, правому лучу приходилось проходить еще ближе к черной дыре, чтобы изогнуться сильнее и добраться до камеры, так что правое изображение было совсем близко к краю тени. В противоположность этому, в более ранний момент времени левый луч проходил довольно далеко от дыры, так что был почти прямым и создавал изображение довольно далеко от тени. Теперь, если вы готовы, вдумайтесь в последующее движение изображений, запечатленное на рисунке 8. Линза Быстро Вращающейся Черной Дыры: Гаргантюа Пространственный вихрь, создаваемый быстрым вращением Гаргантюа, меняет гравитационную линзу. Звездные узоры на рисунке 8. В случае Гаргантюа струение рисунок 8. Снаружи от внешнего кольца звезды струятся вправо например, вдоль двух красных кривых , как и в случае невращающейся черной дыры на рисунке 8. Однако пространственный вихрь сосредоточил струящийся поток в узкие высокоскоростные полосы вдоль заднего края тени дыры, резковато изгибающиеся у экватора.
Она вращается со скоростью, близкой к световой, и своей гравитацией затягивает окружающие объекты. Вокруг Гаргантюа образуется аккреционный диск из раскаленного газа и пыли, который из-за трения испускает излучение и свет, обогревающий планеты в ее системе. Одним из главных достижений в фильме было наглядное представление, как выглядит аккреционный диск Черной дыры при линзировании — искривлении гравитационным полем направлений распространения излучения, подобно тому, как искривляется свет, проходя через обычную линзу. Из-за того, что Гаргантюа имеет огромную массу, то действие приливных сил на значительном расстоянии от горизонта событий довольно мало. Поэтому планеты, при достаточно большой скорости вращения на орбитах могут существовать довольно длительное время, чтобы на них можно было жить. А тепло, достаточное для жизни, они получают от аккреционного диска Черной дыры. Экологическая катастрофа Земли В начале фильма Интерстеллар показана глобальная экологическая катастрофа ближайшего будущего, которая угрожает всей жизни на Земле. Из-за вредного грибка погибают посевы, все, кроме кукурузы, увеличивается концентрация азота в атмосфере и ухудшается климат. Вопрос экологии на Земле в последнее время стоит очень остро, и при текущем нерациональном использовании природных ресурсов такая катастрофа может наступить очень скоро. Причины ухудшения экологии различны — это выброс газов в атмосферу, использование пестицидов и химикатов для растений, генномодифицированные продукты, и прочее. Все это негативно влияет на нашу планету, и она начинает отторгать человечество. Именно это и происходит в фильме. Исследование планет С той стороны червоточины исследователи нашли звездную систему. Оттуда можно было подать лишь примитивный сигнал и лишь одни раз в год. Поэтому 12 исследователей должны были после высадки собрать информацию о пригодности планет для жизни и передать их в простейшей форме, пригодны они или нет. Положительные сигналы пришли с нескольких планет, в том числе, с трех планет в системе Гаргантюа — планеты Миллер, Манн и Эдмундс. Экипаж Купера решил отправиться к этим трем планетам, и, не имея практически никаких данных о самих планетах, исследовать их, экономя топливо и время.
Исследование таких явлений помогает проектировать космические зонды и корабли с учетом агрессивных факторов космической среды. Современные теории по добыче энергии из черных дыр В 1969 году физик и математик из Оксфордского университета Роджер Пенроуз представил публике «процесс Пенроуза» , где описал, что энергия теоретически может быть извлечена из области за пределами эргосферы черной дыры, внутри которой пространство-время искажается под действием вращения этой самой дыры. Расчеты Пенроуза показали, что если частица разделится внутри эргосферы на две части, одна из которых упадет в горизонт событий, а другая ускользнет от гравитационного притяжения черной дыры, то энергия, выделяемая удаляющейся частицей, может быть извлечена. Но для реализации процесса необходимо, чтобы две новорожденные частицы обладали скоростью, превышающей половину скорости света, вот только такие события настолько редки, что это не позволит получить значительные объемы энергии. Предложенный механизм был экспериментально подтвержден советским ученым Яковом Зельдовичем, переработавшим теорию «процесса Пенроуза» еще в 1971 году. Он предложил заменить черную дыру вращающимся металлическим цилиндром и направить на нее искривленные лучи света. Если бы цилиндр вращался с нужной скоростью, свет отражался бы обратно с дополнительной энергией, извлекаемой из вращения цилиндра, из-за эффекта Доплера. В 2020 году ученые из университета Глазго смогли найти способ продемонстрировать эффект, описанный Пенроузом и Зельдовичем. Они заменили лучи света звуковыми волнами, ведь такой эксперимент намного проще провести в лабораторных условиях. Ученые создали систему с кольцом динамиков, которая скручивает звуковые волны, которые затем направляются к вращающемуся звукопоглотителю, сделанному из пены. Микрофоны спрятанные за этим диском, фиксируют сигналы, прошедшие через диск, который медленно увеличивает скорость вращения. Микрофоны экспериментальной установки Ученые смогли расслышать изменение частоты и амплитуды звуковых волн, прошедших через диск, что подтверждает теорию Пенроуза и Зельдовича верна. Ученые активно ищут и другие механизмы по добыче энергии.