Уклон реки – это отношение падения реки к ее длине.
Физическое понятие уклона реки
- Уклон реки: определение и зависимость от длины
- Определение уклона реки
- Формула уклона реки
- Как определить и рассчитать уклон реки?
Уклон и падение реки. География в действии!
Практическое применение Данный калькулятор может быть полезен при производстве геодезических работ, при вертикальной планировке территории, при производстве работ, связанных с водоотведением, при расчёте уклона кровли, при монтаже трубопроводов с заданным уклоном и т. Основание для расчёта Уклон i — отношение разности высот двух точек h к проекции расстояния на горизонтальную плоскость между ними L.
Перевод в одни единицы измерения позволит рассчитать уклон реки в процентах или промилле. Как отличить исток от устья? Исток-это начало реки это может быть родник, ледник, болото, озеро. Устье-это конец реки, или место, где река впадает в другую реку море, озеро, океан. Как найти исток и устье реки? Начало реки называется истоком. Река может начинаться с родника, озера, болота, ледника. Одни реки впадают в море, другие — в озеро, некоторые реки впадают в другие реки, и в таком случае они называются притоками. Место, где река впадает в другую реку, озеро или море, называется устьем.
Что такое исток и устье реки? У любого водотока имеется исток точка его начала и устье место, где он впадает в водоем или какой-либо другой водоток.
Если рельеф дна меняется быстро, промеров должно быть больше, при однообразии дна — меньше. Понятно, что чем больше промеров, тем точнее получается профиль реки. Для вычерчивания профиля реки проводится горизонтальная линия, на которой по масштабу откладываются точки промеров. От каждой течки вниз проводится перпендикулярная линия, на которой также по масштабу откладываются полученные от промеров глубины. Соединяя нижние концы вертикалей, мы получаем профиль. Ввиду того что глубина рек по сравнению с шириной очень небольшая, при вычерчивании профиля вертикальный масштаб берут больше горизонтального.
Поэтому профиль является искаженным преувеличенным , но более наглядным. Имея профиль русла реки, мы можем вычислить площадь живого сечения или площадь водного сечения реки Fm2 , ширину реки В , длину смоченного периметра реки Рм , наибольшую глубину hmax м , среднюю глубину реки hcp м и гидравлический радиус реки. Живым сечением реки называют поперечное сечение реки, заполненное водой. Профиль русла, полученный в результате промеров, как раз и дает представление о живом сечении реки. Площадь живого сечения реки по большей части вычисляется аналитически реже определяется по чертежу при помощи планиметра. Для вычисления площади живого сечения F м2 берут чертеж поперечного профиля реки, на котором вертикали разбивают площадь живого сечения на ряд трапеций, а береговые участки имеют вид треугольников. Площадь каждой отдельной фигуры определяется по формулам, известным нам из геометрии, а потом берется сумма всех этих площадей. Ширина реки просто определяется по длине верхней горизонтальной линии, изображающей поверхности реки.
Смоченный периметр — это длина линии дна реки на профиле от одного уреза берега реки до другого. Вычисляется он путем сложения длины всех отрезков линии дна на чертеже живого сечения реки. Наибольшая глубина восстанавливается по данным промеров. Уровень реки. Ширина и глубина реки, площадь живого сечения и другие приводимые нами величины могут оставаться неизменными лишь в том случае, если уровень реки остается неизменным. На самом же деле этого никогда не бывает, потому что уровень реки все время изменяется. Отсюда совершенно ясно, что при изучении реки измерение колебания уровня реки является важнейшей задачей. Для водомерного поста выбирается соответствующий участок реки с прямолинейным руслом, поперечное сечение которого не осложнено мелями или островами.
Наблюдение над колебаниями уровня реки обычно ведется при помощи футштока. Футшток — это шест или рейка, разделенная на метры и сантиметры, установленная у берега. За нуль футштока принимается по возможности наиболее низкий горизонт реки в данном месте. Выбранный один раз нуль остается постоянным для всех последующих наблюдений. Нуль футштока связывается постоянным репером. Наблюдение колебаний уровня обычно производится два раза в день в 8 и 20 час. На некоторых постах устанавливаются самопишущие лимниграфы, которые дают непрерывную запись в виде кривой. На основании данных, полученных из наблюдений над футштоком, вычерчивается график колебания уровней за тот или другой период: за сезон, за год, за целый ряд лет.
Скорость течения рек. Мы уже говорили, что скорость течения реки находится в прямой зависимости от уклона русла. Однако эта зависимость не так уж проста, как она может показаться с первого взгляда. Всякий, кто хоть немного знаком с рекой, знает, что скорость течения у берегов значительно меньше, нежели на середине. Особенно хорошо это известно лодочникам. Всякий раз, когда лодочнику приходится подниматься по реке вверх, он держится берега; когда же ему необходимо быстро спуститься вниз, он держится середины реки. Более точные наблюдения, производимые в реках и искусственных потоках имеющих правильное корытообразное русло , показали, что слой воды, непосредственно примыкающий к руслу, в результате трения о дно и стенки русла движется с наименьшей скоростью. Следующий слой имеет уже большую скорость, потому что он соприкасается не с руслом которое неподвижно , а с медленно движущимся первым слоем.
Третий слой имеет еще большую скорость и т. Наконец, самую большую скорость обнаруживают в части потока, далее всего отстоящей от дна и стенок русла. Если взять поперечное сечение потока и соединить места с одинаковой скоростью течения линиями изотахами , то у нас получится схема, наглядно изображающая расположение слоев различной скорости рис. Это своеобразное слоистое движение потока, при котором скорость последовательно увеличивается от дна и стенок русла к средней части, называют ламинарным. Типичные особенности ламинарного движения можно коротко характеризовать так: 1 скорость всех частиц потока имеет одно постоянное направление; 2 скорость вблизи стенки у дна всегда равна нулю, а с удалением от стенок плавно возрастает к середине потока. Однако мы должны сказать, что в реках, где форма, направление и характер русла сильно отличаются от правильного корытообразного русла искусственного потока, правильного ламинарного движения почти никогда не наблюдается. Уже при одном только изгибе русла в результате действия центробежных сил вся система слоев резко перемещается в сторону вогнутого берега, что в свою очередь вызывает ряд других движений. При наличии же выступов на дне и по краям русла возникают вихревые движения, противотечения и прочие, весьма сильные отклонения, еще более усложняющие картину.
Особенно сильные изменения в движении воды происходят в мелких местах реки, где течение разбивается на струи, расположенные веерообразно. Кроме формы и направления русла, большое влияние оказывает увеличение скорости течения. Ламинарное движение даже в искусственных потоках с правильным руслом резко изменяется при увеличении скорости течения. В быстро движущихся потоках возникают продольные винтообразные струи, сопровождающиеся мелкими вихревыми движениями и своеобразной пульсацией. Все это в значительной степени усложняет характер движения. Таким образом, в реках вместо ламинарного движения чаще всего наблюдается более сложное движение, называемое турбулентным. Подробнее на характере турбулентных движений мы остановимся позже при рассмотрении условий формирования русла потока. Из всего сказанного ясно, что изучение скорости течения реки является делом сложным.
Поэтому вместо теоретических вычислений здесь чаще приходится прибегать к непосредственным измерениям. Измерение скорости течения. Наиболее простым и самым доступным способом измерения скорости течения является измерение при помощи поплавков. Наблюдая с часами время прохождения поплавка мимо двух пунктов, расположенных по течению реки на определенном расстоянии друг против друга, мы всегда можем вычислить искомую скорость. Эту скорость обычно выражают количеством метров в секунду. Указанный нами способ дает возможность определить скорость только самого верхнего слоя воды. Для определения скорости более глубоких слоев воды употребляют две бутылки рис. При этом верхняя бутылка дает среднюю скорость между обеими бутылками.
Зная среднюю скорость течения воды на поверхности первый способ , мы легко можем вычислить скорость на искомой глубине. Несравненно более точные результаты получаются при измерении особым прибором, носящим название вертушки. Существует много типов вертушек, но принцип их устройства одинаков и заключается в следующем. Горизонтальная ось с лопастным винтом на конце подвижно укреплена в раме, имеющей на заднем конце рулевое перо рис. Прибор, опущенный в воду, повинуясь рулю, встает как раз против течения, и лопастной винт начинает вращаться вместе с горизонтальной осью. На оси имеется бесконечный винт, который можно соединить со счетчиком. Глядя на часы, наблюдатель включает счетчик, который начинает отсчитывать количество оборотов. Через определенный промежуток времени счетчик выключается, и наблюдатель по количеству оборотов определяет скорость течения.
Кроме указанных способов, применяют еще измерение особыми батометрами, динамометрами и, наконец, химическими способами, известными нам по изучению скорости течения грунтовых вод. Примером батометра может служить батометр проф. Глушкова, представляющий собой резиновый баллон, отверстие которого обращено навстречу течению. Количество воды, которое успевает попасть в баллон за единицу времени, дает возможность определить скорость течения. Динамометры определяют силу давления. Сила давления позволяет вычислить скорость. Когда требуется получить детальное представление о распределении скоростей в поперечном сечении живом сечении реки, поступают следующим образом: 1. Вычерчивается поперечный профиль реки, причем для удобства вертикальный масштаб берется в 10 раз больше горизонтального.
Проводятся вертикальные линии по тем пунктам, в которых производились измерения скоростей течения на разных глубинах. На каждой вертикали отмечается соответствующая глубина по масштабу и обозначается соответствующая скорость. Соединив точки с одинаковыми скоростями, мы получим систему кривых изотах , дающую наглядное представление о распределении скоростей в данном живом сечении реки. Средняя скорость. Дли многих гидрологических расчетов необходимо иметь данные о средней скорости течения воды живого сечения реки. Но определение средней скорости воды представляет собой довольно сложную задачу. Мы уже говорили о том, что движение воды в потоке отличается не только сложностью, но и неравномерностью, во времени пульсация. Однако, исходя из ряда наблюдений, мы всегда имеем возможность вычислить среднюю скорость течения для любой точки живого сечения реки.
Имея же величину средней скорости в точке, мы можем на графике изобразить распределение скоростей по взятой нами вертикали. Для этого глубина каждой точки откладывается по вертикали сверху вниз , а скорость течения по горизонтали слева направо. То же проделываем и с другими точками взятой нами вертикали. Соединив концы горизонтальных линий изображающих скорости , мы получим чертеж, дающий ясное представление о скоростях течений на различных глубинах взятой нами вертикали. Этот чертеж носит название графика скоростей или годографа скоростей. По данным многочисленных наблюдений выявилось, что для получения полного представления о распределении скоростей течения по вертикали достаточно определить скорости на следующих пяти точках: 1 на поверхности, 2 на 0,2h, 3 на 0,6h, 4 на 0,8h и 5 на дне, считая h — глубиной вертикали от поверхности до дна. Годограф скоростей дает ясное представление об изменении скоростей от поверхности до дна потока на взятой вертикали. Наименьшая скорость у дна потока обусловлена главным образом трением.
Чем больше шероховатость дна, тем резче уменьшаются скорости течений. В зимнее время, когда поверхность реки покрыта льдом, возникает трение еще и о поверхность льда, что также отражается на скорости течения. Годограф скоростей позволяет нам вычислить среднюю скорость течения реки по данной вертикали. Иначе говоря, для определения средней скорости течения по вертикали живого сечения потока нужно площадь годографа скоростей разделить на ее высоту. Площадь годографа скоростей определяется или при помощи планиметра или аналитически т. Средняя скорость потока определяется различными способами. Наиболее простым способом является умножение максимальной скорости Vmax на коэффициент шероховатости п. Коэффициент шероховатости для горных рек приблизительно можно считать 0,55, для рек с руслом, выстланным гравием, 0,65, для рек с неровным песчаным или глинистым ложем 0,85.
Для точного определения средней скорости течения живого сечения потока пользуются различными форхмулами. Наиболее употребительной является формула Шези. Но здесь значительные трудности представляет определение коэффициента скорости. Коэффициент скорости определяется по различным эмпирическим формулам т. Наиболее простой является формула: где п — коэффициент шероховатости, a R — уже знакомый нам гидравлический радиус. Количество воды в м, протекающее через данное живое сечение реки в секунду, называют расходом реки для данного пункта. Теоретически расход а вычислить просто: он равен площади живого сечения реки F , умноженной на среднюю скорость течения v , т. При вычислении расхода за единицу количества воды берется кубический метр, а за единицу времени — секунда.
Мы уже говорили о том, что теоретически расход реки для того или другого пункта вычислить нетрудно. Выполнить же эту задачу практически дело значительно более сложное.
Запишите полученное значение. Измерение высоты можно выполнить с помощью специального инструмента — нивелира или теодолита.
Эти приборы могут измерять высоту точек относительно точек базирования, что позволяет определить разность высот. Измерьте высоту начальной и конечной точек реки относительно точки базирования. Запишите полученные значения. Теперь, имея значения расстояния и высоты, можно приступить к расчету уклона реки.
Расчет производится в тех же единицах измерения, в которых были получены значения расстояния и высоты. Уклон реки представляет собой величину, выраженную в процентах или в градусах. Таким образом, имея данные о расстоянии и высоте реки, можно точно определить ее уклон и использовать эту информацию для различных инженерных и гидрологических расчетов. Как использовать измеренные данные для расчета уклона реки?
Для расчета уклона реки необходимо провести измерение длины и высоты участка русла реки. После получения этих данных можно воспользоваться определенной формулой, чтобы вычислить уклон. Этапы расчета уклона реки: Измерьте длину участка русла реки, используя длиномер. Измерьте разницу в высоте между начальной и конечной точкой участка с помощью клинометра или другого подходящего инструмента.
Поделите разницу в высоте на длину участка русла реки, чтобы получить значение уклона в процентах.
Формула падения и уклона
Иными словами, это разница высот между точкой истока и точкой устья реки. Падение может быть полным или же частичным когда нужно вычислить этот показатель для определенного отрезка русла. Рассчитать падение реки элементарно. Для этого нужно знать высоту ее истока и устья. Например, нам дана река А общей длиной 2000 км, которая начинает свой путь на отметке в 250 м, а впадает в озеро на высоте 50 м. Разница между этими двумя отметками будет составлять 200 метров. Это и будет падение реки А. Зная падение, можно вычислить и уклон реки. Как правильно это сделать — читайте в следующем разделе. Как рассчитать уклон водотока?
Для всей реки общий уклон находят путём осреднения уклонов отдельных её участков. Поперечный уклон реки перекос водного зеркала возникает под влиянием формы русла, ветра и других причин.
Важно учитывать, что уклон реки может быть переменным на разных участках, поэтому измерения следует проводить на различных участках для получения полной картины уклона реки. Где вам больше нравится рыбачить? На реке! На озере! Падение реки: определение Падение реки — это вертикальное изменение высоты воды на определенном расстоянии горизонтального участка русла. Это понятие обычно используется для измерения скорости течения воды и определения энергии, которую может генерировать река.
Падение реки может быть измерено с помощью специальных инструментов, таких как гидрологические измерительные приборы, или рассчитано на основе данных о высоте воды на различных участках русла. Падение реки является важным параметром при планировании строительства гидроэлектростанций или при оценке возможности использования реки для водного транспорта. Красивые пейзажи. Методы расчета падения реки Методы расчета падения реки могут включать использование гидрологических измерительных инструментов, таких как гидрометры и нивелиры, для измерения изменения высоты воды на различных участках русла. Также можно использовать геодезические приборы и GPS для точного измерения высоты воды на определенном расстоянии. Другой метод — использование топографических карт и данных о высотах, чтобы рассчитать падение реки на основе изменения высоты между двумя точками вдоль русла. Также существуют математические модели, которые позволяют предсказать падение реки на основе гидрологических данных, таких как расход воды и гидравлический радиус. Комбинация этих методов может дать более полное представление о падении реки на определенном участке.
Влияние уклона и падения реки на гидросистему Уклон и падение реки имеют глубокое влияние на гидросистему, включая водные ресурсы, экосистемы и климат в регионе. Эти параметры определяют способность реки переносить воду от истока к устью, влияют на скорость и энергию течения воды, а также на формирование и изменение русла реки.
Массы воды, переносимые этими отраженными струями, обладающими меньшими скоростями, накладываясь на массы воды, переносимые набегающими на них следующими струями, повышают уровень водной поверхности у вогнутого берега. Вследствие этого возникает перекос водной поверхности, и струи воды, находящиеся у вогнутого берега, опускаются по откосу его и направляются в придонных слоях к противоположному выпуклому берегу. Возникает циркуляционное течение на изогнутых участках рек рис.
Циркуляционные течения на прямолинейном а и на изогнутом б участке русла по Н. Особенности внутренних течений потока были изучены А. Лосиевским в лабораторных условиях. Им была установлена зависимость формы циркуляционных течений от соотношения глубины и ширины потока и выделены четыре типа внутренних течений рис. Типы I и II представлены двумя симметричными циркуляциями.
Для типа I характерно схождение струй у поверхности и расхождение у дна. Этот случай свойствен водотокам с широким и неглубоким руслом, когда влияние берегов на поток незначительно. Во втором случае донные струи направлены от берегов к середине. Этот тип циркуляции характерен для глубоких потоков с большими скоростями. Тип III с односторонней циркуляцией наблюдается в руслах треугольной формы.
В этом случае струи в середине потока могут быть сходящимися или расходящимися, соответственно у берегов - расходящимися или сходящимися. Дальнейшее развитие представления о циркуляционных течениях получили в работах М. Великанова, В. Маккавеева, А. Караушева и др.
Теоретические исследования возникновения этих течений излагаются в специальных курсах гидравлики и динамики русловых потоков. Появление поперечных течений на закруглениях русла объясняется развивающейся здесь центробежной силой инерции и связанным с ней поперечным уклоном водной поверхности. Центробежная сила инерции, возникающая на закруглениях, неодинакова на различных глубинах. Схема внутренних течений по А. Схема сложения сил, вызывающих циркуляцию.
У поверхности она больше, у дна меньше вследствие уменьшения с глубиной продольной скорости рис. В зависимости от направления излучины отклоняющая сила Кориолиса или усиливает, или ослабляет поперечные течения на закруглении. Эта же сила возбуждает поперечные течения на прямолинейных участках. При низких уровнях на закруглении циркуляционные течения почти не выражены. С повышением уровней, увеличением скорости и центробежной силы циркуляционные течения становятся отчетливыми.
Скорость поперечных течений обычно мала - в десятки раз меньше продольной составляющей скорости. Описанный характер циркуляционных течений наблюдается до выхода воды на пойму. С момента выхода воды на пойму в реке создаются как бы два потока - верхний, долинного направления, и нижний, в коренном русле. Взаимодействие этих потоков сложно и еще мало изучено. В современной литературе по динамике русловых потоков К.
Гришанин, 1969 г. Происхождение таких циркуляции связывается с механизмом передачи на элементарные объемы воды в потоке действия кориолисова ускорения посредством градиента давления, обусловленного4 поперечным уклоном и постоянного на вертикали , и разности касательных напряжений, вызванных на гранях элементарных объемов воды различиями в скоростях потока по вертикали.
Важность расчета падения реки
- Методы определения уклона реки — формула и практические аспекты
- Понятие и значение уклона реки
- Как найти падение и уклон реки: формула и советы
- Падение и уклон реки - что это такое? Уклоны крупнейших рек планеты
- Как рассчитать уклон реки и определить его важность для экологии и строительства
- Методы определения уклона реки — формула и практические аспекты
Механизм течения рек
Уклон реки вычисляется по формуле. Формула для определения уклона реки основывается на измерении вертикального и горизонтального расстояний. Уклон реки можно рассчитать, используя формулу: уклон = падение / расстояние между точками.
Уклон реки и падение — очень интересные понятия: учимся вычислять эти значения
Математический метод заключается в нахождении вклада уклона каждого конкретного участка в общий уклон реки. Введение Продольный уклон водной поверхности является одной из важнейших гидрологических характеристик реки. Совет 1: Как рассчитать уклон реки Задачи на расчет уклона рек входят в программу обучения школьников восьмых классов по предмету география. Уклон реки выражается в промилле или процентах, а также как величина падения на длину участка.
Уклон и падение реки. География в действии!
Изучение падения и уклона реки особенно важно для обеспечения безопасности водных объектов и планирования берегоукрепительных работ. В итоге, анализ и понимание падения и уклона реки имеет ключевое значение для различных областей инженерии и географии, и может быть полезным инструментом для планирования и развития водных ресурсов.
If you do not have this information, then you will need to contact them before you can continue. If you are ready….
Нуль футштока связывается постоянным репером. Наблюдение колебаний уровня обычно производится два раза в день в 8 и 20 час. На некоторых постах устанавливаются самопишущие лимниграфы, которые дают непрерывную запись в виде кривой. На основании данных, полученных из наблюдений над футштоком, вычерчивается график колебания уровней за тот или другой период: за сезон, за год, за целый ряд лет. Скорость течения рек. Мы уже говорили, что скорость течения реки находится в прямой зависимости от уклона русла. Однако эта зависимость не так уж проста, как она может показаться с первого взгляда. Всякий, кто хоть немного знаком с рекой, знает, что скорость течения у берегов значительно меньше, нежели на середине. Особенно хорошо это известно лодочникам. Всякий раз, когда лодочнику приходится подниматься по реке вверх, он держится берега; когда же ему необходимо быстро спуститься вниз, он держится середины реки. Более точные наблюдения, производимые в реках и искусственных потоках имеющих правильное корытообразное русло , показали, что слой воды, непосредственно примыкающий к руслу, в результате трения о дно и стенки русла движется с наименьшей скоростью. Следующий слой имеет уже большую скорость, потому что он соприкасается не с руслом которое неподвижно , а с медленно движущимся первым слоем. Третий слой имеет еще большую скорость и т. Наконец, самую большую скорость обнаруживают в части потока, далее всего отстоящей от дна и стенок русла. Если взять поперечное сечение потока и соединить места с одинаковой скоростью течения линиями изотахами , то у нас получится схема, наглядно изображающая расположение слоев различной скорости рис. Это своеобразное слоистое движение потока, при котором скорость последовательно увеличивается от дна и стенок русла к средней части, называют ламинарным. Типичные особенности ламинарного движения можно коротко характеризовать так: 1 скорость всех частиц потока имеет одно постоянное направление; 2 скорость вблизи стенки у дна всегда равна нулю, а с удалением от стенок плавно возрастает к середине потока. Однако мы должны сказать, что в реках, где форма, направление и характер русла сильно отличаются от правильного корытообразного русла искусственного потока, правильного ламинарного движения почти никогда не наблюдается. Уже при одном только изгибе русла в результате действия центробежных сил вся система слоев резко перемещается в сторону вогнутого берега, что в свою очередь вызывает ряд других движений. При наличии же выступов на дне и по краям русла возникают вихревые движения, противотечения и прочие, весьма сильные отклонения, еще более усложняющие картину. Особенно сильные изменения в движении воды происходят в мелких местах реки, где течение разбивается на струи, расположенные веерообразно. Кроме формы и направления русла, большое влияние оказывает увеличение скорости течения. Ламинарное движение даже в искусственных потоках с правильным руслом резко изменяется при увеличении скорости течения. В быстро движущихся потоках возникают продольные винтообразные струи, сопровождающиеся мелкими вихревыми движениями и своеобразной пульсацией. Все это в значительной степени усложняет характер движения. Таким образом, в реках вместо ламинарного движения чаще всего наблюдается более сложное движение, называемое турбулентным. Подробнее на характере турбулентных движений мы остановимся позже при рассмотрении условий формирования русла потока. Из всего сказанного ясно, что изучение скорости течения реки является делом сложным. Поэтому вместо теоретических вычислений здесь чаще приходится прибегать к непосредственным измерениям. Измерение скорости течения. Наиболее простым и самым доступным способом измерения скорости течения является измерение при помощи поплавков. Наблюдая с часами время прохождения поплавка мимо двух пунктов, расположенных по течению реки на определенном расстоянии друг против друга, мы всегда можем вычислить искомую скорость. Эту скорость обычно выражают количеством метров в секунду. Указанный нами способ дает возможность определить скорость только самого верхнего слоя воды. Для определения скорости более глубоких слоев воды употребляют две бутылки рис. При этом верхняя бутылка дает среднюю скорость между обеими бутылками. Зная среднюю скорость течения воды на поверхности первый способ , мы легко можем вычислить скорость на искомой глубине. Несравненно более точные результаты получаются при измерении особым прибором, носящим название вертушки. Существует много типов вертушек, но принцип их устройства одинаков и заключается в следующем. Горизонтальная ось с лопастным винтом на конце подвижно укреплена в раме, имеющей на заднем конце рулевое перо рис. Прибор, опущенный в воду, повинуясь рулю, встает как раз против течения, и лопастной винт начинает вращаться вместе с горизонтальной осью. На оси имеется бесконечный винт, который можно соединить со счетчиком. Глядя на часы, наблюдатель включает счетчик, который начинает отсчитывать количество оборотов. Через определенный промежуток времени счетчик выключается, и наблюдатель по количеству оборотов определяет скорость течения. Кроме указанных способов, применяют еще измерение особыми батометрами, динамометрами и, наконец, химическими способами, известными нам по изучению скорости течения грунтовых вод. Примером батометра может служить батометр проф. Глушкова, представляющий собой резиновый баллон, отверстие которого обращено навстречу течению. Количество воды, которое успевает попасть в баллон за единицу времени, дает возможность определить скорость течения. Динамометры определяют силу давления. Сила давления позволяет вычислить скорость. Когда требуется получить детальное представление о распределении скоростей в поперечном сечении живом сечении реки, поступают следующим образом: 1. Вычерчивается поперечный профиль реки, причем для удобства вертикальный масштаб берется в 10 раз больше горизонтального. Проводятся вертикальные линии по тем пунктам, в которых производились измерения скоростей течения на разных глубинах. На каждой вертикали отмечается соответствующая глубина по масштабу и обозначается соответствующая скорость. Соединив точки с одинаковыми скоростями, мы получим систему кривых изотах , дающую наглядное представление о распределении скоростей в данном живом сечении реки. Средняя скорость. Дли многих гидрологических расчетов необходимо иметь данные о средней скорости течения воды живого сечения реки. Но определение средней скорости воды представляет собой довольно сложную задачу. Мы уже говорили о том, что движение воды в потоке отличается не только сложностью, но и неравномерностью, во времени пульсация. Однако, исходя из ряда наблюдений, мы всегда имеем возможность вычислить среднюю скорость течения для любой точки живого сечения реки. Имея же величину средней скорости в точке, мы можем на графике изобразить распределение скоростей по взятой нами вертикали. Для этого глубина каждой точки откладывается по вертикали сверху вниз , а скорость течения по горизонтали слева направо. То же проделываем и с другими точками взятой нами вертикали. Соединив концы горизонтальных линий изображающих скорости , мы получим чертеж, дающий ясное представление о скоростях течений на различных глубинах взятой нами вертикали. Этот чертеж носит название графика скоростей или годографа скоростей. По данным многочисленных наблюдений выявилось, что для получения полного представления о распределении скоростей течения по вертикали достаточно определить скорости на следующих пяти точках: 1 на поверхности, 2 на 0,2h, 3 на 0,6h, 4 на 0,8h и 5 на дне, считая h — глубиной вертикали от поверхности до дна. Годограф скоростей дает ясное представление об изменении скоростей от поверхности до дна потока на взятой вертикали. Наименьшая скорость у дна потока обусловлена главным образом трением. Чем больше шероховатость дна, тем резче уменьшаются скорости течений. В зимнее время, когда поверхность реки покрыта льдом, возникает трение еще и о поверхность льда, что также отражается на скорости течения. Годограф скоростей позволяет нам вычислить среднюю скорость течения реки по данной вертикали. Иначе говоря, для определения средней скорости течения по вертикали живого сечения потока нужно площадь годографа скоростей разделить на ее высоту. Площадь годографа скоростей определяется или при помощи планиметра или аналитически т. Средняя скорость потока определяется различными способами. Наиболее простым способом является умножение максимальной скорости Vmax на коэффициент шероховатости п. Коэффициент шероховатости для горных рек приблизительно можно считать 0,55, для рек с руслом, выстланным гравием, 0,65, для рек с неровным песчаным или глинистым ложем 0,85. Для точного определения средней скорости течения живого сечения потока пользуются различными форхмулами. Наиболее употребительной является формула Шези. Но здесь значительные трудности представляет определение коэффициента скорости. Коэффициент скорости определяется по различным эмпирическим формулам т. Наиболее простой является формула: где п — коэффициент шероховатости, a R — уже знакомый нам гидравлический радиус. Количество воды в м, протекающее через данное живое сечение реки в секунду, называют расходом реки для данного пункта. Теоретически расход а вычислить просто: он равен площади живого сечения реки F , умноженной на среднюю скорость течения v , т. При вычислении расхода за единицу количества воды берется кубический метр, а за единицу времени — секунда. Мы уже говорили о том, что теоретически расход реки для того или другого пункта вычислить нетрудно. Выполнить же эту задачу практически дело значительно более сложное. Остановимся на простейших теоретических и практических способах, чаще всего применяемых при изучении рек. Существует много различных способов определения расхода воды в реках. Но все их можно разбить на четыре группы: объемный способ, способ смешения, гидравлический и гидрометрический. Объемный способ с успехом применяется для определения расхода самых небольших речек ключей и ручьев с расходом от 5 до 10 л 0,005— 0,01 м3 в секунду. Суть его заключается в том, что ручей запруживается и вода спускается по желобу. Под желоб ставится ведро или бак в зависимости от величины ручья. Объем сосуда должен быть точно измерен. Время наполнения сосуда измеряется в секундах. Частное от деления объема сосуда в метрах на время наполнения сосуда в секундах как. Объемный способ дает наиболее точные результаты. Способ смешения основан на том, что в определенном пункте реки впускается в поток раствор какой-либо соли или краски. Определяя содержание соли или краски в другом, ниже расположенном, пункте потока, вычисляют расход воды простейшая формула где q — расход соляного раствора, к1—концентрация раствора соли при выпуске, к2 — концентрация раствора соли в нижележащем пункте. Этот способ является одним из наилучших для бурных горных рек. Гидравлический способ основан на применении различного рода гидравлических формул при протекании воды как через естественные русла, так и искусственные водосливы. Приведем простейший пример способа водослива. Строится запруда, верх которой имеет тонкую стенку из дерева, бетона. В стенке прорезан водослив в виде прямоугольника, с точно определенными размерами. Особенно широко он применяется в гидравлических лабораториях. Гидрометрический способ основан на измерении площади живого сечения и скорости течения. Он является наиболее распространенным. Вычисление ведется по формуле, о чем мы уже говорили. Количество воды, протекающее через данное живое сечение реки в секунду, мы называем расходом. Количество же воды, протекающее через данное живое сечение реки на протяжении более долгого периода, называют стоком. Величина стока может быть исчислена за сутки, за месяц, за сезон, за год и даже за ряд лет. Чаще всего сток исчисляется за сезоны, потому что сезонные изменения для большинства рек особенно сильны и характерны. Большое значение в географии имеют величины годовых стоков и в особенности величина среднего годового стока сток, вычисленный из многолетних данных.
Уклон реки: важность рассчета для анализа географических характеристик Пятый шаг заключается в понимании того, что средний уклон реки, рассчитанный для всей протяженности ее русла, не является информативным показателем. Лучше рассчитывать этот показатель для более коротких участков реки, чтобы получить более точные данные о характеристиках местности и водотока. Расчет уклона рек является важным элементом географического образования школьников. Он позволяет ученикам лучше понимать и анализировать географические особенности русел рек, а также их влияние на местность. Освоение методики расчета уклона рек способствует развитию навыков самостоятельной работы, логического мышления и применения математических знаний в географическом контексте. Смотрите также:.
Реки и их изучение
- Онлайн калькулятор
- Смотрите также
- Определение уклона и падения реки - YouTube
- Уклоны поверхности реки
- Расчет уклона реки
- Течение и расход воды в реках
Падение и уклон реки - что это такое? Определяем уклоны рек: Волги, Амура, Печоры
Уклон реки как рассчитать | Формулы расчета падения реки и уклона реки. |
Уклон и падение реки Волга (5 фото): как найти, определение и расчеты | Изменение уклона, шероховатости дна, сужения и расширения русла вызывают изменение соотношения движущей силы и силы сопротивления, что приводит к изменению скоростей течения по длине реки и в живом сечении. |
Формула падения и уклона реки | Определите уклон реки Терек, если его длина составляет 623 км. |
Длина устья реки как найти | Средневзвешенный уклон реки По аналогии со средним уклоном водосбора, средневзвешенный уклон водотока определятся с помощью крупномасштабных карт. |
Уклоны поверхности реки | Уклон можно вычислить по формулам. |
Как рассчитать величину падения реки?
Формула уклона реки | Формула для расчета уклона реки выглядит следующим образом: уклон = изменение высоты / изменение времени. |
Как рассчитать уклон реки | Сделай сам | Так как эта формула справедлива только для равномерного движения, то для определения по ней расхода нужно разбить морфоствор на таком уча-стке реки, где вдоль по течению ширина потока и продольный уклон водной поверхности приблизительно постоянны. |
Калькулятор уклонов | более 1 м/км. Уклон Терека 5 м на 1 км. |
Before getting started
Этот инструмент способен обеспечить Уклон водной поверхности Расчет с формулой, связанной с ней. Как определить уклон реки формула. Рассчитать уклон реки можно с помощью простой математической формулы, используя данные о разнице высот и расстоянии между точками на реке. Средний уклон реки J,, вычисляется по формуле.