образовательный сайт для тех, кто любит физику, учится сам и учит других. «Российская электронная школа» – это интерактивные уроки по всему школьному курсу с 1 по 11 класс от лучших учителей страны, созданные для того, чтобы у каждого ребёнка была.
Рэш физика
Конечно, я готов выступить в роли вашего школьного учителя по физике и ответить на вопрос про уроки 12, 13 и 14. РЭШ Российская электронная школа тренировочные задания. Владелец сайта предпочёл скрыть описание страницы. Минпросвещения России подготовило методические рекомендации по использованию портала «Российская электронная школа».
НАЧАТЬ ОБУЧЕНИЕ
- Московская электронная школа
- Физика - Российская электронная школа
- ССЫЛКИ НА УРОКИ РЭШ ПО ФИЗИКЕ 7 КЛАССА НА АПРЕЛЬ
- Физики предложили радикальную идею построения Вселенной: оказалось, она «рабочая»
РЭШ - Российская электронная школа (Уроки Физики)
Я не понимаю, кто может упираться, кто может отказываться от возможности Академии наук? Если надо в законе прописать, давайте пропишем: «Без одобрения они же РАН не требуют себе права выдавать лицензии научной экспертизой учебники не могут выходить в свет! Мы на них воспитываем целое поколение школьников! Лилия Гумерова сообщила, что в постановление Совета Федерации по итогам выступления Геннадия Красникова будет внесена рекомендация Правительству о закреплении за РАН функции главного экспертного органа по учебной и учебно-методической литературе.
Несмотря на то что президент РАН рассказал о целом ряде направлений деятельности Академии: об изменениях в научно-методическом руководстве НИИ и вузами, об увеличении роли научных советов, о подвижках с «шестой подпрограммой», касающейся научных разработок в интересах обороны «более 25 лет не было исследований в этом направлении» , Валентине Матвиенко это показалось недостаточным. Она отметила, что технологический суверенитет сегодня — «это задача задач», но «прорывных решений пока не получается». Они должны понимать свою ответственность за достижение технологического суверенитета.
Нам теперь никуда от этого не уйти. С вашим приходом обращение к Г. А где результат, и когда он будет, и какой?
Где эти пять прорывных государственных решений, которые ждет страна и ждет общество? Общество и люди должны знать — вот он результат.
Линейный закон дисперсии электронов, а также то, что они являются фермионами имеют полуцелый спин , вынуждает использовать для описания графена не уравнение Шредингера , как в физике твердого тела, а уравнение Дирака. Поэтому электроны в графене называют дираковскими фермионами, а определенные участки кристаллической структуры графена, для которых закон дисперсии линеен, — дираковскими точками. Поскольку эти особенности поведения электронов в двумерном углероде присущи релятивистским частицам со скоростью движения близкой к скорости света , появляется возможность экспериментальным образом смоделировать в графене некоторые эффекты из физики высоких энергий например, парадокс Клейна , которые в обычных условиях исследуются в ускорителях заряженных частиц. В макроскопическом масштабе линейный закон дисперсии приводит к тому, что графен является полуметаллом, то есть полупроводником с нулевой шириной запрещенной зоны, а его проводимость в нормальных условиях не уступает проводимости меди. Более того, его электроны чрезвычайно чувствительны к воздействию внешнего электрического поля, поэтому подвижность носителей заряда в графене при комнатной температуре теоретически может достигать рекордных значений — в 100 раз больше, чем у кремния, и в 20 раз больше, чем у арсенида галлия. Эти два полупроводника, наряду с германием, наиболее часто используются при создании различных высокотехнологичных устройств интегральных схем, диодов, детекторов и т.
Графен установил рекорд и по теплопроводности. Измеренный коэффициент теплопроводности двумерного углерода в 10 раз больше коэффициента теплопроводности меди, которая считается отличным проводником теплоты. Интересно, что до открытия графена звание лучшего проводника тепла принадлежало другой аллотропной форме углерода — углеродной нанотрубке. Графен улучшил этот показатель почти в 1,5 раза. Для наглядности рассмотрим гипотетический гамак из графена площадью 1 м2. Несмотря на кажущуюся хрупкость, этот гамак спокойно выдержит взрослого кота массой приблизительно 4 кг. И хотя из-за двумерности графена сравнивать его прочностные характеристики с другими 3D-материалами некорректно, для стального гамака такой же толщины «критическая» масса, приводящая к разрыву, была бы в 100 раз меньше. То есть графен на два порядка прочнее стали.
Гипотетический пример, демонстрирующий механическую прочность графена. Графеновый гамак площадью 1 м2 его масса меньше миллиграмма способен выдержать взрослого кота массой 4 кг. Для сравнения: стальной гамак той же площади если бы нам удалось его сделать той же толщины удерживал бы в 100 раз меньше — всего 40 г. Изображение с сайта nobelprize. Это означает, что графен практически бесцветен то есть стороннему наблюдателю будет казаться, что никакого графенового гамака нет, а кот на рис. Перспективы графена В настоящее время наиболее обсуждаемым и популярным проектом является использование графена как нового «фундамента» микроэлектроники, призванного заменить существующие технологии на базе кремния, германия и арсенида галлия рис. Высокая подвижность зарядов вместе с атомарной толщиной делают графен идеальным материалом для создания маленьких и быстрых полевых транзисторов — «кирпичиков» микроэлектронной промышленности. В связи с этим стоит отметить публикацию 100 GHz Transistors from Wafer Scale Epitaxial Graphene , появившуюся в одном из февральских выпусков журнала Science за этот год.
Авторы этой работы, сотрудники лаборатории IBM, сумели создать графеновый транзистор, работающий на частоте 100 ГГц это в 2,5 раза превышает быстродействие транзистора того же размера, изготовленного на кремниевой основе. Графен рассматривается как основа микроэлектроники будущего. Рисунок с сайта thebigblogtheory. В ходе экспериментов было доказано , что почти по всем показателям устройства подобного рода на основе графена лучше, чем используемые сейчас устройства на основе оксида индия-олова сокращенно ITO. Чтобы показать, насколько перспективен графен, приведем далеко не полный список областей, где его использование уже началось: это материал для изготовления электродов в ионисторах — конденсаторах с огромной емкостью, порядка 1 Ф фарад и больше; на основе графена создаются микрометровые газовые сенсоры, способные «почувствовать» даже одну молекулу газа; в комбинации с лазером графен может оказаться лекарством от рака см. Предложен способ лечения рака с помощью графена и лазера , «Элементы», 07.
Вроде бы все просто и логично, и человечество наблюдает этот процесс уже сотни лет. Но почему высыхает асфальт после дождя? Роса на траве? Или вода, разлитая на стол и вовремя не вытертая?
Все время альтернативный процесс был на виду, но только сейчас ученые смогли научно доказать: вода испаряется не только при кипении. Об открытии сообщает Массачусетский технологический институт США. Свет, падающий на поверхность воды там, где встречаются воздух и вода, может "отрывать" молекулы воды и поднимать их в воздух, вызывая испарение в отсутствие какого-либо источника тепла», — описывают суть открытия в институте. Не согласуется с законами физики В прошлом году профессор энергетики Ган Чен и его коллеги обнаружили это «световое» испарение, когда работали со специально подготовленными гидрогелями, пропитанными водой. Такой эффект был очень неожиданным. И они решили проверить: вызван он особым материалом, с которого испарялась вода, или же происходит в любых условиях? В итоге новое исследование основано на тестах и измерениях 14 разных видов — чтобы доказательства были максимально весомыми.
Московская электронная школа лаборатория. Электронная доска для школы. Шабанов директор Сколково-РЭШ. Глеб Пащенко РЭШ. РЭШ Брэд образования. Лев финансовой биржи. Value серия. РЭШ хороший результат. Дмитрий Архангельский МГУ. Дмитрий Архангельский РЭШ. Артамонов МГУ эф. Курикша Артем Федорович. Владислав Курикша. Стив РЭШ. Петр Курикша фото. Ученые квантовой физики. Школа теоретической физики. Летняя школа «физика. Квантовый школа. Физтех и РЭШ. РЭШ аудитории. Маркетплейс РЭШ. Юрий Уробушкин Реутов. Уробушкин Юрий Михайлович Реутов. Учитель физики. Преподаватель физики. РЭШ рекламная презентация. Константин Егоров РЭШ. Стажер в лаборатории. Константин Крайнев РЭШ. Константин Егоров, профессор экономики. Создатель РЭШ. Мазуров Сергей выпускник РЭШ. Головань РЭШ. РЭШ 1 урок 9 класс ответы. РЭШ ответы. РЭШ ответы 8 класс. РЭШ ответы 10 класс. Физика в школе.
Рэш уроки физики
Новости о результатах работы грантополучателей Российского научного фонда. Проект «Российская электронная школа» реализуется с 2016 года. Расскажите, пожалуйста, какие возможности предоставляет РЭШ участникам образовательного процесса? ФИЗИКА. Требования к проведению школьного этапа ВсОШ по физике: При выполнении заданий олимпиады разрешено использовать непрограммируемый калькулятор. РЭШ Российская электронная школа тренировочные задания.
Физики предложили радикальную идею построения Вселенной: оказалось, она «рабочая»
Ответ: Преломление света - это явление, при котором свет, переходя из одной среды в другую, изменяет свое направление и скорость распространения. Для описания преломления применяются законы преломления света - закон Снеллиуса и закон угла преломления. Закон Снеллиуса гласит, что отношение синуса угла падения к синусу угла преломления равно отношению скорости света в первой среде к скорости света во второй среде. Пояснение: Когда свет проходит из одной среды в другую например, из воздуха в воду , он меняет свое направление и скорость. Закон Снеллиуса позволяет нам определить соотношение между углом падения углом между лучом падения и нормалью и углом преломления углом между лучом преломления и нормалью. Закон угла преломления подтверждает, что все три точки - точка падения, точка преломления и нормаль к поверхности - лежат в одной плоскости. Надеюсь, что мой ответ ясно объяснил темы, рассмотренные на уроках 12, 13 и 14 по физике. Если у тебя возникнут еще вопросы - обращайся, я всегда готов помочь!
Шесть главных вопросов о теракте в «Крокус Сити Холле» На деньги стран-партнеров Этот цифровой портал должен стать основой для развития сотрудничества в сфере школьного образования между странами, а в будущем — основой для создания единого образовательного пространства, уверена Яна Лантратова.
Кроме Российской электронной школы, за основу можно взять и Московскую электронную школу, которая появилась еще раньше, полагает депутат. Доступ к новой платформе должны иметь и учителя, и ученики, и родители, в первую очередь — из русскоязычных школ. По ее замыслу, новая международная платформа должна быть абсолютно бесплатной для пользователей. Для углубления сотрудничества Помимо желания поделиться с педагогами из других стран собственными наработками в сфере образования, у инициативы есть и своя, чисто российская, выгода, отметила Лантратова: «Сейчас перед Россией стоит задача восстановления и углубления политического, экономического и культурного сотрудничества на всем евразийском пространстве, в первую очередь — с государствами постсоветского пространства, с которыми нас связывают общее наследие, общие интересы, общая историческая судьба».
Он способен образовывать самые разнообразные химические структуры в виде одномерных цепочек, циклических образований и пространственных соединений. Благодаря этому многообразию обеспечивается, среди прочего, функционирование генетических кодов всего живого на Земле. Долгое время были известны три основные аллотропные модификации углерода — графит, алмаз и сажа аморфный углерод. Однако с середины прошлого века углеродное семейство стало быстро пополняться. Сначала были найдены одномерный вариант углерода карбин и гексагональная разновидность алмаза лонсдейлит. Менее чем через 10 лет мир узнал о существовании цилиндрической модификации углерода — одномерных однослойных и многослойных углеродных нанотрубках. И наконец, в 2004 году группой ученых из Англии и России была получена двумерная форма углерода — графен. А всего через 6 лет после открытия этой новой аллотропной формы углерода руководители группы Андрей Гейм и Константин Новосёлов были удостоены Нобелевской премии по физике «за новаторские эксперименты с двумерным материалом графеном». Что такое графен и как его открыли? Пусть в нашем распоряжении имеется наиболее встречаемая в природе разновидность углерода — графит. Графит — сильно анизотропное вещество; он состоит из слабо взаимодействующих плоских слоев атомов углерода рис. То, что связь между атомными плоскостями слабая, можно наблюдать в процессе рисования карандашом на бумаге, когда слои графита легко смещаются и отсоединяются, оставляя на бумаге след. Графен верхний рисунок — это 2D- двумерный строительный материал для других углеродных аллотропных модификаций. Он может быть свёрнут в 0D-фуллерен слева , скручен в 1D-углеродную нанотрубку в центре или уложен в 3D-штабеля, образуя графит справа. Рисунок из статьи A. Geim и K. Novoselov The rise of graphene в Nature Materials Предположим, что нам каким-то образом удалось «отщепить» от кристалла графита одну атомарную плоскость. Полученный единичный слой атомов углерода и есть графен из-за плоской формы графен называют еще двумерной аллотропной формой углерода. Так что можно считать, что графит — это такой штабель графеновых плоскостей. Атомы графена собраны в гексагональную кристаллическую решетку по типу пчелиных сот ; расстояние между соседними атомами 0,142 нм. Эта «упаковка» настолько плотная, что она не пропускает даже маленькие атомы гелия. Хотя термин «графен» в качестве название единичного слоя графита появился относительно недавно, в 1987 году см. Mouras et al. ISSN 0035-1032. Канадский физик Филипп Уоллес рассчитал закон движения электронов в единичном слое графита и обнаружил, что в определенных его участках зависимость энергии электронов от их импульса закон дисперсии является линейной подробнее об этом см. Однако до 2004 года получить графен не удавалось. Главное препятствие, стоявшее на пути экспериментаторов, заключалось в невозможности стабилизировать форму графена. Из-за стремления минимизировать свою поверхностную энергию он сворачивается, трансформируясь в разнообразные аллотропные модификации углерода — фуллерены, нанотрубки и аморфный углерод.
Оно уже в достаточной степени популяризировано, можно найти простые и понятные объяснения. Хотя, признаюсь, я против излишних упрощений. Так мы иногда выхолащиваем смысл. Физика - это факты, но не только. Какие опыты на уроках вы проводите? Артем Барат: Моя любимая технология работы с физическим экспериментом была описана в старом журнале "Квант" в 1979 году. Тогда Е. Юносов придумал "турнир юных физиков" - исследования, которые можно ввести в течение года, которые требуют и экспериментов, и уравнений, и совпадения разных результатов... Например, если посветить естественным светом на компакт-диск, можно наблюдать красивые дифракционные картины. Изучаем это явление. Есть еще задачка "рисовые гири" - про физику сыпучих материалов. Оказывается, если в емкость, плотно наполненную рисом, буквально "вбить" ложку, то потом за эту ложку можно поднять всю емкость с крупой. Дети очень эффективно учатся на подобных задачках и узнают гораздо больше. Вообще, эксперимент для современных детей необычайно важен. И ценность представляет не только натурный эксперимент, но и имитационное моделирование. Поэтому я рекомендую своим ученикам использовать виртуальные лаборатории МЭШ. Это интерактивные онлайн-симуляторы опытов и экспериментов. Они помогают воспроизвести опыт или исследования бесконечное число раз, изменяя условия и изучая, что при этом происходит. Например, недавно появилась лаборатория по физике "Архимед" для учеников 7 класса, которая позволяет наблюдать и изучать взаимодействия тел, давление жидкостей, плавание тел и воздухоплавание, механическую работу и энергию, и даже способы измерения различных величин: размеров, массы, силы, давления. Современному человеку сложнее воображать, особенно что-то трёхмерное, потому что вокруг нас слишком много всего происходит "на плоскости". А воображать и представлять надо, это очень хороший способ познания. В самом начале надо решить главную задачу: объяснить ребятам, что физика - это интересно. Артем Барат: Честно скажу, я большой поклонник Единого государственного экзамена. Еще до повсеместного введения ЕГЭ я работал в вузе, проводил вступительные экзамены, и могу точно сказать: права детей со всей страны уравнялись. Где бы ребенок ни родился, у него есть равный с москвичом шанс поступить в московский вуз, и вообще в любой вуз страны. Это большое достижение. Кроме того, в этом году в школах Москвы стартовал новый формат обучения одиннадцатиклассников с акцентом на подготовку к ЕГЭ. До 1 февраля московские школьники прошли всю учебную программу по ряду непрофильных предметов и перешли к работе по гибким учебным планам. В зависимости от профиля класса или нахождения в предпрофессиональном классе, у ребят сейчас продолжается углубленное изучение профильных предметов. Но вместо пройденных предметов у ребят появились практикумы по выбранным ими предметам для подготовки к ЕГЭ. Они позволят ребятам подготовиться к самой процедуре проведения экзамена, проработать сложные вопросы и задания, а также систематизировать изученный материал.
Популярные категории
- Просмотр трансляции
- Электрический ток в жидкостях. Закон электролиза | Физика 10 класс #60 | Инфоурок - YouTube
- Российская электронная школа: проект XXI века
- Почему так происходит
- РЭ физика 2022-2023 учебный год (с решением и ответами)
Российская электронная школа: проект XXI века
Предложенная российскими специалистами теория физического вакуума эфира и есть огромный прыжок через технологические поколения. Такого гигантского прорыва фундаментальная физика не знала со времен Эйнштейна. Авторитетные российские ученые не только математически описали эфир, или, как его еще именуют «физический вакуум», но и получили патент на «Способ получения тепловой и электрической энергии и устройство для его реализации». Дискуссии о существовании тончайшей мировой субстанции, называемой эфиром, не затихали никогда, несмотря на скептицизм крупнейших экспертных сообществ. И все же самые известные физики, мыслители с мировым именем неизменно продолжали упоминать эфир.
Даже сам Альберт Эйнштейн колебался, то исключая, то учитывая эфир в процессе рассмотрения различных теорий мироустройства. Проживи Эйнштейн дольше и фундаментальная физика могла уже в XX веке совершить огромный рывок, который не состоялся, возможно, только из-за смерти великого ученого. Читая эти строки, скептики могут традиционно поморщиться — «этого не может быть, потому что не может быть никогда». На сей раз скептикам придется крепко подумать, прежде чем высказывать свои сомнения.
Дело в том, что эпохальное открытие россиян опубликовано и признано самыми сильными научными школами страны. В России нет более авторитетных научных журналов чем «Доклады Академии наук». В этом легко может убедиться каждый — статья Н. Евстигнеева, Ф.
Зайцева, А. Климова, Н. Магницкого, О. Рябкова по тематике эфира представлена в этот журнал академиком Д.
В частности, эксперименты подтвердили предсказания теоретиков о линейном законе дисперсии электронов. Но физикам было известно, что подобную зависимость энергии от импульса имеют и фотоны — безмассовые частицы, распространяющиеся в пространстве со скоростью света. Получалось, что электроны в графене, как и фотоны, не имеют массы, но движутся в 300 раз медленнее фотонов и имеют ненулевой заряд. Во избежание недоразумений подчеркнем, что нулевая масса электронов наблюдается только в пределах графена. Если такой электрон удалось бы «вытянуть» из графена, то он приобрел бы свои обычные свойства.
Линейный закон дисперсии электронов, а также то, что они являются фермионами имеют полуцелый спин , вынуждает использовать для описания графена не уравнение Шредингера , как в физике твердого тела, а уравнение Дирака. Поэтому электроны в графене называют дираковскими фермионами, а определенные участки кристаллической структуры графена, для которых закон дисперсии линеен, — дираковскими точками. Поскольку эти особенности поведения электронов в двумерном углероде присущи релятивистским частицам со скоростью движения близкой к скорости света , появляется возможность экспериментальным образом смоделировать в графене некоторые эффекты из физики высоких энергий например, парадокс Клейна , которые в обычных условиях исследуются в ускорителях заряженных частиц. В макроскопическом масштабе линейный закон дисперсии приводит к тому, что графен является полуметаллом, то есть полупроводником с нулевой шириной запрещенной зоны, а его проводимость в нормальных условиях не уступает проводимости меди. Более того, его электроны чрезвычайно чувствительны к воздействию внешнего электрического поля, поэтому подвижность носителей заряда в графене при комнатной температуре теоретически может достигать рекордных значений — в 100 раз больше, чем у кремния, и в 20 раз больше, чем у арсенида галлия.
Эти два полупроводника, наряду с германием, наиболее часто используются при создании различных высокотехнологичных устройств интегральных схем, диодов, детекторов и т. Графен установил рекорд и по теплопроводности. Измеренный коэффициент теплопроводности двумерного углерода в 10 раз больше коэффициента теплопроводности меди, которая считается отличным проводником теплоты. Интересно, что до открытия графена звание лучшего проводника тепла принадлежало другой аллотропной форме углерода — углеродной нанотрубке. Графен улучшил этот показатель почти в 1,5 раза.
Для наглядности рассмотрим гипотетический гамак из графена площадью 1 м2. Несмотря на кажущуюся хрупкость, этот гамак спокойно выдержит взрослого кота массой приблизительно 4 кг. И хотя из-за двумерности графена сравнивать его прочностные характеристики с другими 3D-материалами некорректно, для стального гамака такой же толщины «критическая» масса, приводящая к разрыву, была бы в 100 раз меньше. То есть графен на два порядка прочнее стали. Гипотетический пример, демонстрирующий механическую прочность графена.
Графеновый гамак площадью 1 м2 его масса меньше миллиграмма способен выдержать взрослого кота массой 4 кг. Для сравнения: стальной гамак той же площади если бы нам удалось его сделать той же толщины удерживал бы в 100 раз меньше — всего 40 г. Изображение с сайта nobelprize. Это означает, что графен практически бесцветен то есть стороннему наблюдателю будет казаться, что никакого графенового гамака нет, а кот на рис. Перспективы графена В настоящее время наиболее обсуждаемым и популярным проектом является использование графена как нового «фундамента» микроэлектроники, призванного заменить существующие технологии на базе кремния, германия и арсенида галлия рис.
Высокая подвижность зарядов вместе с атомарной толщиной делают графен идеальным материалом для создания маленьких и быстрых полевых транзисторов — «кирпичиков» микроэлектронной промышленности. В связи с этим стоит отметить публикацию 100 GHz Transistors from Wafer Scale Epitaxial Graphene , появившуюся в одном из февральских выпусков журнала Science за этот год. Авторы этой работы, сотрудники лаборатории IBM, сумели создать графеновый транзистор, работающий на частоте 100 ГГц это в 2,5 раза превышает быстродействие транзистора того же размера, изготовленного на кремниевой основе.
Проверяйте, пожалуйста, соответствующие почтовые папки. С уважением, команда «Российской электронной школы» 14.
Кроме Российской электронной школы, за основу можно взять и Московскую электронную школу, которая появилась еще раньше, полагает депутат. Доступ к новой платформе должны иметь и учителя, и ученики, и родители, в первую очередь — из русскоязычных школ. По ее замыслу, новая международная платформа должна быть абсолютно бесплатной для пользователей. Для углубления сотрудничества Помимо желания поделиться с педагогами из других стран собственными наработками в сфере образования, у инициативы есть и своя, чисто российская, выгода, отметила Лантратова: «Сейчас перед Россией стоит задача восстановления и углубления политического, экономического и культурного сотрудничества на всем евразийском пространстве, в первую очередь — с государствами постсоветского пространства, с которыми нас связывают общее наследие, общие интересы, общая историческая судьба». Выстроить такое долгосрочное и эффективное сотрудничество невозможно без «общих смыслов, ценностей и убеждений между народами», считает Лантратова: «А это требует развития взаимодействия в сфере образования.
Российские ученые отодвинули границу, за которой может быть найдена Новая физика
Также напоминаем, что некоторые важные сообщения «Российской электронной школы» могут быть ошибочно определены вашим почтовым сервисом как спам. Проверяйте, пожалуйста, соответствующие почтовые папки. С уважением, команда «Российской электронной школы» 14.
Функциональная грамотность отражает умение ученика пользоваться полученными в школе знаниями в реальной жизни, находить оптимальные способы решения тех или иных проблемных ситуаций. Формирование функциональной грамотности учащихся — одна из основных задач современного образования. Уровень сформированности функциональной грамотности — показатель качества образования в масштабах от школьного до государственного.
Сергей Стрыгин ответил на вопросы зрителей эфира о том, как лучше организовать подготовку и на что обратить внимание при выполнении различных заданий в ЕГЭ по физике, чтобы избежать ошибок в экзаменационной работе. Видеозапись эфира доступна в сообществе Рособрнадзора «ВКонтакте» и на Rutube. Опубликовано: 15 ноября 2023 г.
Фотомолекулярный эффект впервые показывает, что фотоны могут высвобождать целые молекулы с поверхности жидкости. И это обещает «новые революционные знания» для физиков. Зачем нужно это открытие? Он имеет значительный потенциал для практического применения: например, высокоэффективное опреснение воды с помощью солнечной энергии. Это исследование входит в редкую группу важных открытий, которые не сразу получают широкое признание сообщества и требуют времени, иногда длительного времени, для подтверждения», — утверждает Сюлин Руан, профессор машиностроения в Университете Пердью США. В частности, это может помочь в решении загадки облаков, над которой ученые бьются уже 80 лет. Измерения часто показывают, что они поглощают больше солнечного света, чем могут объяснить открытые сейчас физические законы. Но если рассматривать еще и фотомолекулярный эффект, то это может объяснить данное несоответствие. Эту гипотезу авторы открытия проверили с помощью эксперимента.
Они осветили светодиодами камеру Вильсона — детектор частиц, в котором для исследований используется способность ионов выполнять роль зародышей капель жидкости. И туман начал нагреваться, хотя этого не должно было произойти, поскольку вода не поглощает видимый спектр.
Российские ученые получили новый мировой результат в поисках «новой физики»
Методические интерактивные кейсы по учебному предмету “Физика”. Российская Электронная Школа РЭШ. Шкала перевода баллов ОГЭ 2024 по физике.
Почему хорошее знание физики открывает большие возможности в финансах
Чем привлекает такая образовательная платформа школьников? Интерактивным форматом, удобной навигацией, возможностью найти и проработать нужную тему. При этом важно, что ученики могут использовать РЭШ самостоятельно, для этого им нужен только компьютер с доступом к сети Интернет. Где бы ни находился ребенок, в школе или дома, в малых городах и селах или в другой стране, на лечении или на спортивных сборах, он может заниматься в Российской электронной школе. Напомню также, что все уроки соответствуют требованиям федеральных государственных образовательных стандартов. Родители тоже могут включиться в учебный процесс: помогать детям, находящимся на семейной форме обучения, или ребятам с ОВЗ, контролировать уровень знаний или повторение пройденных материалов. Насколько активно сегодня используется платформа РЭШ?
В отборочном туре, прошедшем 5 апреля 2024 года, принимало участие 240 студентов из 25 вузов. Команду Герценовского университета представляли студенты института физики Захарова Светлана 2 курс и Зариньш Роберт 1 курс.
Исследователи подсчитали, что расширение Вселенной, заполненной тахионами, может замедлиться перед повторным ускорением. Сейчас Вселенная находится в ускоренной фазе-за темной энергии. Поэтому эта тахионная космологическая модель потенциально может одновременно объяснить как темную энергию, так и темную материю. Чтобы проверить эту идею, физики применили модель к наблюдениям сверхновых типа Ia. Именно благодаря сверхновым типа Ia астрономы в конце 1990-х годов впервые обнаружили, что скорость расширения Вселенной ускоряется. Физики обнаружили, что космологическая модель тахионов так же хороша в объяснении данных сверхновых, как и стандартная космологическая модель, включающая материю и темную энергию.
Также программа ЛЭШ включает в себя спортивные игры, экскурсии по природным и историческим объектам. Профессиональное направление Раскрыть подробности Профессиональное направление Профессиональное направление включает в себя встречи с представителями профессии, позволяющие познакомиться с профессией энергетика, а также экскурсии на объекты Компании, формирование навыков проектной деятельности, различные мастер-классы по обучению навыкам инженерного творчества, на которых ребята в формате 3-4 часового занятия осваивают новые профессиональные навыки в рамках формирования мотивации к обучению. Программа ЛЭШ базируется на трех ключевых направлениях — интеллектуальном, профессиональном и личностном. ЛЭШ создает условия для интенсивного развития профильных компетенций, действенного профессионального самоопределения школьников, а также является площадкой выявления одарённых школьников, обладающих конструкторско-техническими способностями и желающих поступить в профильные энергетические вузы. Лучшие спикеры В преподавательский состав ЛЭШ входят ведущие преподаватели технических вузов и инновационных образовательных центров, кандидаты и доктора наук, профессора, заслуженные работники образования. Ежегодно в регионе проведения ЛЭШ привлекаются сотрудники организаций дополнительного образования, педагоги школ и эксперты Компании. В преподавательский состав ЛЭШ входят ведущие преподаватели технических вузов и инновационных образовательных центров, кандидаты и доктора наук, профессора, заслуженные работники образования. Тулупова Марианна Алексеевна Руководитель проектов в области технологий и образования Института опережающих исследований «Управление человеческими ресурсами» им. Шифферса Жаббаров Тимур Рамилевич Генеральный директор и соучредитель компании Smart Course, писатель, тренер, автор и разработчик образовательных программ и тренингов осознанного выбора, переговоров и презентации Калимуллин Леонид Вячеславович Руководитель Управления Федеральной службы государственной статистики по г. Москве и Московской области Андреев Николай Николаевич Заведующий лаборатории популяризации и пропаганды математики в Математическом институте им. Стеклова РАН. Кандидат физико-математических наук, популяризатор математики, создатель проекта «Математические этюды».