Следует отметить, что период полураспада первого порядка реакции постоянна и не зависит от исходной концентрации реагента. Найди верный ответ на вопрос«Что означает Nn в химии (нулевой период) » по предмету Химия, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Что такое периодичность?
Таким образом, период — это важное понятие в химии и играет ключевую роль в понимании периодических закономерностей в свойствах элементов и их взаимодействии. Изучение периодов и групп в таблице Менделеева позволяет сделать выводы о принципах химической связи, различных типах реакций и использовании элементов в промышленности и научных исследованиях. Навигация по записям.
Бейли 1882 , датским учёным Ю. Томсеном 1895 и усовершенствована Н.
Бором 1921. Каждая из трёх форм имеет достоинства и недостатки. Фундаментальным принципом построения П. Каждая группа в свою очередь подразделяется на главную а и побочную б подгруппы. В каждой подгруппе содержатся элементы, обладающие сходными химическими свойствами.
Элементы а- и б-подгрупп в каждой группе, как правило, обнаруживают между собой определённое химическое сходство, главным образом в высших степенях окисления, которые, как правило, соответствуют номеру группы. Периодом называется совокупность элементов, начинающаяся щелочным металлом и заканчивающаяся инертным газом особый случай — первый период ; каждый период содержит строго определённое число элементов. Первый период периодической системы элементов Специфика первого периода заключается в том, что он содержит всего 2 элемента: H и He. Место H в системе неоднозначно: водород проявляет свойства, общие со щелочными металлами и с галогенами, его помещают либо в Ia-, либо предпочтительнее в VIIa-подгруппу. Гелий — первый представитель VIIa-подгруппы однако долгое время Не и все инертные газы объединяли в самостоятельную нулевую группу.
Второй период периодической системы элементов Второй период Li — Ne содержит 8 элементов. Он начинается щелочным металлом Li, единственная степень окисления которого равна I. Затем идёт Be — металл, степень окисления II. Металлический характер следующего элемента В выражен слабо степень окисления III. Идущий за ним C — типичный неметалл, может быть как положительно, так и отрицательно четырёхвалентным.
Последующие N, O, F и Ne — неметаллы, причём только у N высшая степень окисления V соответствует номеру группы; кислород лишь в редких случаях проявляет положительную валентность, а для F известна степень окисления VI. Завершает период инертный газ Ne. Третий период периодической системы элементов Третий период Na — Ar также содержит 8 элементов, характер изменения свойств которых во многом аналогичен наблюдающемуся во втором периоде. Однако Mg, в отличие от Be, более металличен, равно как и Al по сравнению с В, хотя Al присуща амфотерность. Si, Р, S, Cl, Ar — типичные неметаллы, но все они кроме Ar проявляют высшие степени окисления, равные номеру группы.
Таким образом, в обоих периодах по мере увеличения Z наблюдается ослабление металлического и усиление неметаллического характера элементов. Менделеев называл элементы второго и третьего периодов малых, по его терминологии типическими. Существенно, что они принадлежат к числу наиболее распространённых в природе, а С, N и O являются наряду с H основными элементами органической материи органогенами. Все элементы первых трёх периодов входят в подгруппы а. Современная терминология - элементы этих периодов относятся к s-элементам щелочные и щёлочноземельные металлы , составляющим Ia- и IIa-подгруппы выделены на цветной таблице красным цветом , и р-элементам В — Ne, At — Ar , входящим в IIIa — VIIIa-подгруппы их символы выделены оранжевым цветом.
Для элементов малых периодов с возрастанием порядковых номеров сначала наблюдается уменьшение атомных радиусов, а затем, когда число электронов в наружной оболочке атома уже значительно возрастает, их взаимное отталкивание приводит к увеличению атомных радиусов. Очередной максимум достигается в начале следующего периода на щелочном элементе. Примерно такая же закономерность характерна для ионных радиусов. Четвёртый период периодической системы элементов Четвёртый период K — Kr содержит 18 элементов первый большой период, по Менделееву. После щелочного металла K и щёлочноземельного Ca s-элементы следует ряд из десяти так называемых переходных элементов Sc — Zn , или d-элементов символы даны синим цветом , которые входят в подгруппы б соответствующих групп П.
Большинство переходных элементов все они металлы проявляет высшие степени окисления, равные номеру группы. Исключение — триада Fe — Co — Ni, где два последних элемента максимально положительно трёхвалентны, а железо в определённых условиях известно в степени окисления VI. Элементы, начиная с Ga и кончая Kr р-элементы , принадлежат к подгруппам а, и характер изменения их свойств такой же, как и в соответствующих интервалах Z у элементов второго и третьего периодов. Установлено, что Kr способен образовывать химические соединения главным образом с F , но степень окисления VIII для него неизвестна. Пятый период периодической системы элементов Пятый период Rb — Xe построен аналогично четвёртому; в нём также имеется вставка из 10 переходных элементов Y — Cd , d-элементов.
Специфические особенности периода: 1 в триаде Ru — Rh — Pd только рутений проявляет степень окисления VIII; 2 все элементы подгрупп а проявляют высшие степени окисления, равные номеру группы, включая и Xe; 3 у I отмечаются слабые металлические свойства. Таким образом, характер изменения свойств по мере увеличения Z у элементов четвёртого и пятого периодов более сложен, поскольку металлические свойства сохраняются в большом интервале порядковых номеров. Шестой период периодической системы элементов Шестой период Cs — Rn включает 32 элемента. В нём помимо 10 d-элементов La, Hf — Hg содержится совокупность из 14 f-элементов, лантаноидов, от Ce до Lu символы чёрного цвета. Элементы от La до Lu химически весьма сходны.
В короткой форме П. Этот приём несколько неудобен, поскольку 14 элементов оказываются как бы вне таблицы. Подобного недостатка лишены длинная и лестничная формы П. Особенности периода: 1 в триаде Os — Ir — Pt только осмий проявляет степень окисления VIII; 2 At имеет более выраженный по сравнению с 1 металлический характер; 3 Rn, по-видимому его химия мало изучена , должен быть наиболее реакционноспособным из инертных газов. Следующие 14 элементов, f-элементы с Z от 90 до 103 , составляют семейство актиноидов.
В связи с этим в химическом отношении ряды лантаноидов и актиноидов обнаруживают заметные различия. Вертикальными чертами разделены периоды П. Под обозначениями подоболочек проставлены значения главного n и орбитального l квантовых чисел, характеризующие последовательно заполняющиеся подоболочки. Из вышеприведённой схемы легко определяются ёмкости последовательных периодов: 2, 8, 8, 18, 18, 32, 32… Каждый период начинается элементом, в атоме которого появляется электрон с новым значением n. Первый — третий периоды П.
Особый случай представляют собой элементы первого периода H и He. Высокая химическая активность атомарного водорода объясняется лёгкостью отщепления единственного ls-электрона, тогда как конфигурация атома гелия 1s2 является весьма прочной, что обусловливает его химическую инертность.
Кроме свойств элементов и их металлической группы, вы также можете увидеть их внешнюю конфигурацию оболочки или электронную конфигурацию валентной оболочки. Атом имеет много слоев в нем, который содержит электроны, которые связывают атомы вместе. В зависимости от атома количество слоев между элементами различается. Самый внешний слой - это место, где существует свободный электрон - электрон, который может связываться с другими, образуя соединение. Периодическая таблица размещает атомы с одним и тем же типом внешнего слоя вместе. Периодичность в свойствах происходит из-за подобной конфигурации внешнего слоя оболочки, упомянутой ранее. Информация об этой конфигурации также важна.
Из этой информации вы можете многое понять, например, связь между атомами или поведение атома. Свойства Существует четыре периодических свойства в периодической таблице: энергия ионизации, атомный радиус, электроотрицательность и сродство к электронам.
Принято элементы главных подгрупп обозначать заглавной буквой А, а элементы побочных подгрупп — В.
Например, вместо словосочетания «химические элементы шестой группы главной подгруппы» можно записать «химические элементы 6А группы». Сколько групп в короткой форме п с и сколько групп в длинной форме П с? Сколько элементов из таблицы Менделеева есть в Казахстане?
Из 105 элементов таблицы Менделеева в недрах Казахстана выявлено 99, разведаны запасы по 70, вовлечено в производство более 60 элементов. В Казахстане известно около 6 000 месторождений полезных ископаемых. Так, Казахстан по запасам нефти стоит в первой десятке стран мира.
Сколько химических элементов было известно до открытия периодического закона? История открытия К середине XIX века были открыты 63 химических элемента, и попытки найти закономерности в этом наборе предпринимались неоднократно. Интересные материалы:.
Период (химия)
Азот N — образует двухатомные молекулы и имеет способность образовывать стабильные трехатомные ионные структуры. Кислород O — образует двухатомные молекулы и может образовывать стабильные восемьатомные структуры. Фтор F — имеет наибольшую электроотрицательность во втором периоде и образует стабильные ионы F-. Неон Ne — является газообразным элементом и реакции с другими веществами не образует. Второй период включает элементы с различными физическими и химическими свойствами. Их электронная конфигурация и химические связи положены в основу современного понимания закономерностей и свойств химических элементов. Третий период Третий период периодической системы химических элементов состоит из элементов от натрия Na до аргонового Ar. В этом периоде на каждый элемент приходится одна новая оболочка электронов, что приводит к увеличению размеров атомов от металлов к неметаллам. В третьем периоде находятся такие важные элементы, как калий K , кальций Ca , железо Fe и магний Mg. Калий и кальций являются незаменимыми элементами для многих живых организмов, так как участвуют в работе клеток и регулируют обмен веществ. Железо служит главным компонентом гемоглобина, который необходим для транспортировки кислорода в организме.
Магний, в свою очередь, является неотъемлемой составляющей многих ферментов и участвует в процессах синтеза ДНК и РНК.
Электроотрицательность — способность атома в молекуле притягивать к себе электроны 9. Радиус атома — расстояние от ядра атома до внешнего уровня По теме: методические разработки, презентации и конспекты.
Более подробно про электроотрицательность будет рассказано в главе, посвященной химическим связям, но нужно отметить, что, электроотрицательность, как и многие другие параметры химических элементов, также подчиняется периодическому закону Д. Внутри одной подгруппы химических элементов электроотрицательность убывает, а при движении по ряду одного периода вправо электроотрицательность возрастает.
Следует усвоить один полезный мнемонический прием, позволяющий восстановить в памяти то, как меняются те или иные свойства химического элемента. Заключается он в следующем. Представим себе циферблат обычных круглых часов. Если его центр поместить в правый нижний угол таблицы Д. Менделеева, то свойства химических элементов будут однообразно изменяться при движении по ней вверх и вправо по часовой стрелке и противоположно вниз и влево против часовой стрелки : Попробуем применить данный прием к размеру атома. Допустим, что вы точно помните, что при движении вниз по подгруппе в таблице Д.
Менделеева радиус атома увеличивается, поскольку растет число электронных оболочек, но напрочь забыли, как изменяется радиус при движении влево и вправо. Тогда нужно действовать следующим образом. Поставьте большой палец правой руки в правый нижний угол таблицы. Движение вниз по подгруппе будет совпадать с движением указательного пальца против часовой стрелки, как и движение влево по периоду, то есть радиус атома при движении влево по периоду, как и при движении вниз по подгруппе, увеличивается. Аналогично и для других свойств химических элементов. Точно зная, как изменяется то или иное свойство элемента при движении вверх-вниз, благодаря данному методу вы сможете восстановить в памяти то, как меняется это же свойство при движении влево или вправо по таблице.
Однако главной заслугой Бойля стала предложенная им новая система химической философии, изложенная в книге "Химик-скептик" 1661. Книга была посвящена поискам ответа на вопрос, что именно следует считать элементами, исходя из современного уровня развития химии. Бойль писал: «Химики до сих пор руководствовались чересчур узкими принципами, не требовавшими особенно широкого умственного кругозора; они видели свою задачу в приготовлении лекарств, в получении и превращении металлов. Я смотрю на химию с совершенно иной точки зрения: не как врач, не как алхимик, а как должен смотреть на неё философ.
Я начертал здесь план химической философии, который надеюсь выполнить и усовершенствовать своими опытами и наблюдениями». Книга построена в форме беседы между четырьмя философами: Фемистом, перипатетиком последователем Аристотеля , Филопоном, спагириком сторонником Парацельса , Карнеадом, излагающим взгляды "мистера Бойля", и Элевтерием, беспристрастно оценивающим аргументы спорщиков. Дискуссия философов подводила читателя к выводу, что ни четыре стихии Аристотеля, ни три принципа алхимиков не могут быть признаны в качестве элементов. Бойль подчёркивал: "Нет никаких оснований присваивать данному телу название того или иного элемента только потому, что оно похоже на него одним каким-либо легко заметным свойством; ведь с тем же правом я мог бы отказать ему в этом названии, поскольку другие свойства являются разными".
Исходя из опытных данных, Бойль показал, что понятия современной химии должны быть пересмотрены и приведены в соответствие с экспериментом. Элементы, согласно Бойлю — практически неразложимые тела вещества , состоящие из сходных однородных состоящих из первоматерии корпускул, из которых составлены все сложные тела и на которые они могут быть разложены. Корпускулы могут различаться формой, размером, массой. Корпускулы, из которых образованы тела, остаются неизменными при превращениях последних.
Главную задачу химии Бойль видел в изучении состава веществ и зависимости свойств вещества от его состава. При этом понятие состава Бойль считал возможным употреблять только тогда, когда из элементов, выделенных из данного сложного тела, можно обратно восстановить исходное тело то есть он фактически принимал синтез за критерий правильности анализа. Бойль в своих трудах не назвал ни одного элемента в новом понимании этого понятия; не указал он и число элементов, отмечая лишь, что: "не будет абсурдом, если предположить, что число это много больше трёх или четырёх". Таким образом, книга "Химик-скептик" представляет собой не ответ на насущные вопросы химической философии, но постановку новой цели химии.
Главное значение работы Бойля заключается в следующем: 1. Формулировка новой цели химии — изучения состава веществ и зависимости свойств вещества от его состава. Предложение программы поиска и изучения реальных химических элементов; 3. Введение в химию индуктивного метода; Представления Бойля об элементе как о практически неразложимом веществе быстро получили широкое признание среди естествоиспытателей.
Однако создание теоретических представлений о составе тел, способных заменить учение Аристотеля и ртутно-серную теорию, оказалось очень сложной задачей. В последней четверти 17 века появились эклектические воззрения, создатели которых пытались увязать алхимические традиции и новые представления о химических элементах. Большое влияние на современников оказали взгляды французского химика Николя Лемери, автора широко известного учебника "Курс химии". Учебник Лемери начинался с определения предмета химии: "Химия есть искусство, учащее, как разделять различные вещества, содержащиеся в смешанных телах.
Я понимаю под смешанными телами те, которые образуются в природе, а именно: минералы, растительные и животные тела". Далее Лемери перечислял "химические начала", т. После некоего "универсального духа" который сам автор признаёт "несколько метафизичным" , Лемери на основании анализа посредством огня выделял пять основных материальных начал веществ: спирт иначе "ртуть" , масло иначе "сера" , соль, вода "флегма" и земля. Первые три начала — активные, вода и земля — пассивные.
Лемери, однако, отмечал, что эти субстанции являются для нас "началами" лишь постольку, поскольку химики не смогли далее разложить эти тела; очевидно, эти "начала" могут быть в свою очередь разделены на более простые. Таким образом, то, что принимается в качестве начал, — это субстанции, полученные в результате разделения смешанных тел и отделённые лишь настолько, насколько позволяют это сделать средства, которыми располагают химики. На рубеже 17-18 веков научная химия находилась лишь в самом начале своего пути; важнейшими препятствиями, которые лишь предстояло преодолеть, являлись сильные ещё алхимические традиции ни Бойль, ни Лемери не отрицали принципиальную возможность трансмутации , ложные представления об обжиге металлов как о разложении и спекулятивный умозрительный характер атомизма. Философия 18 века - это философия ума, разума, научной мысли.
Человеческий разум пытается понять окружающий мир с помощью научных знаний, соображений, наблюдений и логических выводов в противовес средневековой схоластике и слепому следованию церковным догмам. Это отразилось и на химии. Стали появляться первые теории научной химии. Первая теория научной химии — теория флогистона — в значительной степени основывалась на традиционных представлениях о составе веществ и об элементах как носителях определённых свойств.
Тем не менее, именно она стала в 18 веке главным условием и основной движущей силой развития учения об элементах и способствовала полному освобождению химии от алхимии. Именно во время почти столетнего существования флогистонной теории завершилось начатое Бойлем превращение алхимии в химию. Флогистонная теория горения была создана для описания процессов обжига металлов, изучение которых являлось одной из важнейших задач химии конца 18 века. Металлургия в это время столкнулась с двумя проблемами, разрешение которых было невозможно без проведения серьёзных научных исследований — большие потери при выплавке металлов и топливный кризис, вызванный почти полным уничтожением лесов в Европе.
Основой для теории флогистона послужили традиционные представления о горении как о разложении тела. Феноменологическая картина обжига металлов была хорошо известна: металл превращается в окалину, масса которой больше массы исходного металла; кроме того, при горении имеет место выделение газообразных продуктов неизвестной природы. Целью химической теории стало рациональное объяснение этого феномена, которое можно было бы использовать для решения конкретных технических задач.
Что такое период в химии кратко
Итак, мы разобрались, что такое диссоциация в химии, а сейчас повторим ключевые моменты. Номер периода отображает общее число энергетических уровней химического элемента, а также число подуровней на внешнем энергетическом уровне. Натрий в таблице менделеева занимает 11 место, в 3 периоде. Современная форма Периодической системы химических элементов (в 1989 году Международным союзом теоретической и прикладной химии рекомендована длинная форма таблицы) состоит из семи периодов (горизонтальных последовательностей элементов.
Период периодической системы. Периоды развития химии Что можно определить по периоду в химии
Периоды (кроме 1-го) начинаются щелочным металлом и заканчиваются инертным газом. Что такое период в химии: таблица Менделеева и его значение. Первая версия периодической системы химических элементов, созданная еевым в 1869 году. Найди верный ответ на вопрос«Что означает Nn в химии (нулевой период) » по предмету Химия, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Тема №2 «Закономерности изменения химических свойств элементов»
На этой странице сайта вы найдете ответы на вопрос Что означает Nn в химии (нулевой период)?, относящийся к категории Химия. это ряд хим элементов, для которых характерно постепенное возрастание заряда ядра и изменения хим. свойств. Период — это строка Периодической системы Д. И. Менделеева, отражающая возрастание заряда ядра и заполнение электронами внешнего уровня.