Примеры применения: Электроника: Незатухающие колебания используются в радиоэлектронике для создания точных частотных генераторов. Примеры незатухающих колебаний в реальной жизни Незатухающие колебания встречаются во множестве различных систем и ситуаций в реальной жизни. Свободные колебания могут быть незатухающими только при отсутствии силы трения. Затухающие колебания — это колебания, амплитуда которых со временем уменьшается из-за внешней силы или трения, в то время как незатухающие колебания продолжаются неопределенно долго с постоянной амплитудой. Главная» Новости» Незатухающие колебания это как примеры.
Незатухающие колебания. Автоколебания
Колебательный контур состоит из индуктивности, емкости и сопротивления. Когда энергия подается в такой контур, например, при подключении источника переменного тока, происходят колебания заряда и тока в контуре. В идеальном случае, без учета потери энергии на сопротивлении, колебания будут незатухающими. Еще одним примером незатухающих колебаний является свободное колебание механической системы с одной степенью свободы. Такая система может представлять собой маятник, пружинный маятник или массу на наклонной плоскости. Когда система отклоняется от равновесия и отпускается, она начинает колебаться вокруг своего равновесного положения. В идеальных условиях, без учета потери энергии на трении и сопротивлении, колебания будут незатухающими. Еще одним примером незатухающих колебаний являются электромагнитные колебания.
Они актуальны для упрощения решения практических задач: где не требуется высокая точность; поставленных с целью обучения школьников решать их; в системах, которые совершают много циклов до заметного снижения амплитуды. Незатухающие колебания превращается в затухающие, когда возникает потеря энергии. График затухающих колебаний выглядит следующим образом.
Амплитуда и частота значит и периодичность синусоиды снижаются. При незатухающих характеристики остаются постоянными. Примеры затухающих колебаний Затухающие колебания встречаются в природе и быту: качающиеся от дуновения ветра ветки; маятники;.
Анкер не позволяет ходовому колесу свободно вращаться, а дает ему возможность провернуться только на один зуб за каждые полпериода маятника.
Но и ходовое колесо действует при этом на маятник, а именно, пока зуб ходового колеса соприкасается с изогнутой поверхностью левой или правой палетты, маятник не получает толчка и только слегка тормозится из-за трения. Но в те моменты, когда зуб ходового колеса «чиркает» по торцу палетты, маятник получает толчок в направлении своего движения. Таким образом, маятник совершает незатухающие колебания, потому что он сам в определенных своих положениях дает возможность ходовому колесу подтолкнуть себя в нужном направлении. Эти толчки и восполняют расход энергии на трение.
Период колебаний и в этом случае почти совпадает с периодом собственных колебаний маятника, т. Схема часового механизма Автоколебаниями являются также колебания струны под действием смычка в отличие от свободных колебаний струны у рояля, арфы, гитары и других несмычковых струнных инструментов, возбуждаемых однократным толчком или рывком ; автоколебаниями являются звучание духовых музыкальных инструментов, движение поршня паровой машины и многие другие периодические процессы. Характерная черта автоколебаний состоит в том, что их амплитуда определяется свойствами самой системы, а не начальным отклонением или толчком, как у свободных колебаний. Если, например, маятник часов отклонить слишком сильно, то потери на трение будут больше, чем поступление энергии от заводного механизма, и амплитуда будет уменьшаться.
Наоборот, если уменьшить амплитуду, то избыток энергии, сообщаемой маятнику ходовым колесом, заставит амплитуду возрасти. Автоматически установится именно такая амплитуда, при которой расход и поступление энергии сбалансированы. Возможно вам будет интересно:.
Как же разомкнуть систему? Вспомним простой пример из жизни: катание на качелях. Для того чтобы качели колебались без остановки, человек периодически толкает их, а если перевести это на язык физики, то человек действует на качели с силой, величина которой зависит от времени периодическим образом. Если построить график зависимости модуля силы от времени, то получим следующий результат: сила зависит от времени периодически см. Зависимость силы от времени Мы прекрасно понимаем, что если мы будем воздействовать на качели постоянно, то они не будут колебаться. Колебания системы, совершающие ею под действием внешней периодической силы, называются вынужденными. Силу, являющейся мерой этого внешнего воздействия, называют вынуждающей.
При этом, как вы понимаете, мы уже не можем считать систему замкнутой, то есть в системе уже не совершаются свободные колебания — в системе совершаются вынужденные колебания. Примерами систем, в которых совершаются вынужденные колебания, могут быть также в полнее привычные вам часы — это могут быть настенные маятниковые часы, а могут быть и обычные пружинные механические часы. В каждом таком случае колебания совершаются за счет подвода энергии извне. Вынужденные колебания Самым простым видом колебаний являются свободные незатухающие колебания. О них подробнее мы говорили на предыдущих занятиях. Давайте поговорим о некоторых характерных особенностях затухающих колебаний и вынужденных колебаний. Начнем с затухающих колебаний.
Как вы уже знаете, любая реальная колебательная система — затухающая, ведь нам всегда приходится преодолевать силу трения или силу сопротивления. Если мы говорим об электромагнитных колебаниях, то там тоже есть факторы, вызывающие их затухания, — это сопротивление проводников. Итак, как же выглядят затухающие колебания? Если вывести маятник из положения равновесия, то со временем его колебания затухают, здесь два основных фактора: сопротивление воздуха, а также трение в подвесе. Здесь речь идет об амплитуде колебаний, то есть максимальном отклонении от положения равновесия. Со временем амплитуда становится все меньше, меньше и меньше — именно этот факт отображен на рисунке см. Уменьшение амплитуды колебаний Обратите внимание: колебания все равно остаются периодическими, но амплитуда непрерывно уменьшается — колебания затухают.
Хорошо это или плохо — смотря для чего. Если речь идет о часах, то плохо, поскольку хотелось бы, чтоб затухание было как можно меньше, а колебания — больше, чтобы нам не доводилось подводить дополнительную энергию. Но есть и обратная сторона: если распахнуть двери и бросить их, то нам будет хотеться, чтобы они колебались как можно меньше. Для этого на двери ставят демпферы — гасители колебаний. Теперь переходим к вынужденным колебаниям. Представим себе, что мы раскачиваем брата или сестру на качелях: если мы толкнем качели один раз, то они рано или поздно остановятся. Поэтому мы продолжаем раскачивать качели, и тем самым колебания из свободных становятся вынужденными, потому что появляется некая внешняя сила.
Какой же характеристикой должна обладать эта внешняя сила?
Механические колебания | теория по физике 🧲 колебания и волны
Эту частоту называют собственной. Таким образом, свободные колебания при отсутствии трения являются гармоническими, если при отклонении от положения равновесия возникает упругая сила 1. Собственная круговая частота является основной характеристикой свободных гармонических колебаний. Эта величина зависит только от свойств колебательной системы в рассматриваемом случае - от массы тела и жесткости пружины. Амплитуда свободных колебаний определяется свойствами колебательной системы m, k и энергией, сообщенной ей в начальный момент времени. При отсутствии трения свободные колебания, близкие к гармоническим, возникают также и в других системах: математический и физический маятники теория этих вопросов не рассматривается рис. Математический маятник - небольшое тело материальная точка , подвешенное на невесомой нити рис. Математический маятник а , физический маятник б Физический маятник - твердое тело, совершающее колебания под действием силы тяжести вокруг неподвижной горизонтальной оси.
Работа внешней силы, которая обеспечивает колебательную систему энергией, при этом является положительной. Благодаря ей колебания не затухают и могут противодействовать силам трения. Внешняя сила не обязательно должна быть постоянной. С течением времени она может изменяться по разным законам.
В идеальном случае, без учета потери энергии на сопротивлении, колебания будут незатухающими. Еще одним примером незатухающих колебаний является свободное колебание механической системы с одной степенью свободы. Такая система может представлять собой маятник, пружинный маятник или массу на наклонной плоскости. Когда система отклоняется от равновесия и отпускается, она начинает колебаться вокруг своего равновесного положения. В идеальных условиях, без учета потери энергии на трении и сопротивлении, колебания будут незатухающими. Еще одним примером незатухающих колебаний являются электромагнитные колебания.
Электромагнитное поле может колебаться вокруг своего равновесного состояния, как, например, в случае электромагнитных волн. Электромагнитные волны могут быть представлены, например, световыми волнами, радиоволнами или микроволнами.
Изучаются колебания наномеханических резонаторов, применение их в сенсорике. Дальнейшие исследования незатухающих колебаний позволят расширить возможности науки и техники. Колебания в окружающем мире Незатухающие колебания широко распространены в природе, быту, технике. Давайте рассмотрим некоторые примеры: Колебания в живой природе. В организмах постоянно происходят колебательные процессы - пульс, дыхание, электрическая активность мозга. Ритмические сокращения сердечной мышцы обеспечивают кровообращение. Вдохи и выдохи создают колебательные движения воздуха в легких. Звуковые колебания.
Звук представляет собой упругие волны в воздухе, возникающие при колебаниях источника. Музыкальные инструменты. Струнные, духовые, ударные инструменты создают музыкальные звуки за счет колебаний. Звуки речи образуются колебаниями голосовых связок и резонаторов речевого аппарата. Бытовые колебательные процессы. Многие привычные вещи в быту работают за счет колебаний. Маятник часов совершает строго периодические колебания. Мобильный телефон. Антенна телефона излучает и принимает радиоволны благодаря электромагнитным колебаниям. Колебания в технических устройствах.
Незатухающие колебания лежат в основе работы многих технических систем. Генераторы колебаний. Генераторы создают электрические колебания с помощью резонаторов и усилителей. Кварцевые генераторы.
Приведи пример вариантов незатухающих колебаний
Еще одним примером незатухающих колебаний является колебания вокруг равновесного положения пружины. Незатухающие колебания широко используются в различных областях науки и техники. О сервисе Прессе Авторские права Связаться с нами Авторам Рекламодателям Разработчикам. Примером незатухающих колебаний может служить колебание маятника с нулевым затуханием. Автоколебания — незатухающие колебания, которые существуют за счет поступления энергии в систему под ее же управлением. Главная» Новости» Незатухающие колебания примеры.
Свободные незатухающие колебания: понятие, описание, примеры
Акустический резонанс С исследования именно этого вида резонанса всё и началось! Галилео Галилей в 1602 году исследовал маятники и струны различных музыкальных инструментов. Открытия, сделанные им, позволили сделать ряд выводов и создать новую отрасль физики — учение о звуковых колебаниях. Акустический резонанс — это явление, при котором акустическая система усиливает звуковые волны, частота которых совпадает с одной из ее собственных частот вибрации ее резонансными частотами. Благодаря акустическому резонансу музыкальные инструменты способны работать, воспроизводить звучание особенным образом. Большую роль в этом играет форма инструмента. Звук, который издает струна, попадает внутрь корпуса и вступает там в резонанс со стенками, что в итоге многократно усиливает его.
Грушевидная форма гитары, определенная длина флейты, форма барабана не являются результатом случайного выбора — с древних времен, путем проб и экспериментов, именно это строение каждого инструмента было выбрано из-за наилучшего акустического резонанса. Характеристики струны также влияют на этот показатель: акустический резонанс зависит от длины, массы и силы натяжения струны. Формула для расчета частоты резонанса в акустике: где — сила натяжения, — масса единицы длины струны, а m — полная масса струны.
Квазиупругая сила и потенциальная энергия возвращают осциллятор в положение равновесия.
Электрический осциллятор Колебательный контур, состоящий из катушки индуктивности и конденсатора, создает незатухающие колебания на резонансной частоте. Чем выше добротность контура, тем меньше потери энергии за период колебаний. Генераторы незатухающих колебаний используются в радиотехнике для создания радиосигналов. Механические осцилляторы Рассмотрим более подробно различные виды механических осцилляторов.
Физический маятник Физический маятник представляет собой твердое тело, подвешенное на оси вращения. Торсионный маятник Торсионный маятник - стержень, подвешенный в середине на оси. Он совершает затухающие крутильные колебания. Период зависит от жесткости стержня на кручение.
Маятник Максвелла Маятник Максвелла состоит из стержня, подвешенного на нитях. Он демонстрирует механический аналог молекулярного хаоса при определенной частоте внешнего воздействия. Получение незатухающих колебаний Существует несколько способов получения незатухающих колебаний в осцилляторах. Рассмотрим их подробнее.
Автоколебания При автоколебаниях энергия поступает от внешнего источника и пополняет потери осциллятора за счет обратной связи. Пример - маятниковые часы. Параметрический резонанс При параметрическом резонансе параметр осциллятора периодически изменяется, вызывая рост амплитуды колебаний. Вынужденные колебания Вынужденные колебания возникают под действием внешней периодической силы, компенсирующей потери энергии.
Автоколебания Автоколебания обеспечивают поддержание незатухающих колебаний за счет обратной связи в системе. Рассмотрим несколько примеров автоколебательных систем. Маятниковые часы В маятниковых часах маятник связан через кинематическую цепь с заводным механизмом. При опускании маятника он получает импульс энергии от пружины, компенсирующий потери.
Генератор на электронной лампе В электронных генераторах лампа усиливает колебания контура, восполняя омические потери в нем.
Амплитуда затухающих колебаний зависит от времени. Частота и период зависят от степени затухания колебаний. Фаза и начальная фаза имеют тот же смысл, что и для незатухающих колебаний. Механические затухающие колебания Механическая система: пружинный маятник с учетом сил трения. Силы, действующие на маятник: Упругая сила. Сила сопротивления. Рассмотрим силу сопротивления, пропорциональную скорости v движения такая зависимость характерна для большого класса сил сопротивления :.
Знак "минус" показывает, что направление силы сопротивления противоположно направлению скорости движения тела. Учитывая, что , запишем второй закон Ньютона в виде:. В новых обозначениях дифференциальное уравнение затухающих колебаний имеет вид:. Это линейное дифференциальное уравнение второго порядка.
Электромагнитные волны могут быть представлены, например, световыми волнами, радиоволнами или микроволнами. В идеальных условиях, без учета потери энергии на поглощение или рассеяние, электромагнитные колебания будут незатухающими. Незатухающие колебательные процессы имеют множество практических применений. Например, в часах и механических часовых механизмах используются незатухающие колебания для точного измерения времени. Также незатухающие колебания находят применение в музыкальных инструментах, оптических приборах, электронных устройствах и многих других системах. В заключение можно сказать, что незатухающие колебания являются важным явлением в физике и науке в целом. Они позволяют изучать и практически применять различные системы, сохраняя энергию и обеспечивая стабильные колебания в течение продолжительного времени. Эти примеры незатухающих колебаний демонстрируют возможности и применения этого явления в различных областях наших жизней.
Свободные незатухающие колебания: понятие, описание, примеры
Примерами незатухающих колебаний могут служить колебания маятника или звуковой волны, распространяющейся в открытом пространстве. Это такие колебания при которых они исчезают, поскольку энергия колебаний преобразуется в другие формы энергии. Существуют системы, в которых незатухающие колебания возникают не за счет периодического внешнего воздействия, а в результате имеющейся у таких систем способности самой регулировать поступление энергии от постоянного источника. Автоколебательные системы – это системы, в которых могут возникать незатухающие колебания безотносительно внешнего воздействия, а лишь за счет способности самостоятельно регулировать подвод энергии от внешнего источника. Примеры незатухающих колебаний Незатухающие колебания широко применяются в различных областях науки и техники. Незатухающие колебания широко используются в различных областях науки и техники.
Основные сведения о затухающих колебаниях в физике
Характеристика затухающих колебаний, какие колебания называют затухающими | Незатухающими колебаниями могут быть только те, которые совершаются под действием периодической внешней силы (вынужденные колебания). |
Незатухающие колебания. Автоколебательные системы | Примерами незатухающих колебаний могут служить колебания маятников в. Незатухающие колебания характеризуются постоянством и регулярностью амплитуды, частоты и фазы. |
Приведи пример вариантов незатухающих колебаний | Биологические незатухающие колебания Незатухающие колебания встречаются не только в физических системах, но и в биологических организмах. |
Затухающие и незатухающие колебания: разница и сравнение | Примеры применения: Электроника: Незатухающие колебания используются в радиоэлектронике для создания точных частотных генераторов. |
Явление резонанса
Примеры применения: Электроника: Незатухающие колебания используются в радиоэлектронике для создания точных частотных генераторов. Примеры незатухающих колебаний Незатухающие колебания — это колебания системы, которые продолжаются вечно без потери энергии. Примерами незатухающих колебаний являются колебания в маятниках, электрических схемах, контурах RLC и др.
Свободные незатухающие колебания: понятие, описание, примеры
Механический резонанс Механический резонанс — это резонанс, вызванный механическим воздействием. Сюда можно отнести наш пример с качелями, а еще раскачивание и обрушение моста под действием ветра. Существует историческое подтверждение этому явлению: 7 ноября 1940 года двухкилометровый Такомский мост в США полностью обрушился. Порывы ветра отклоняли мост в одну сторону, создавая колебания, которые не могло погасить сопротивление воздуха, и из-за упругости конструкции движение по ветру начиналось вновь и вновь. В конечном итоге амплитуда движения стала настолько большой, что мост не выдержал и рухнул.
Механический резонанс очень часто возникает во время строительства, когда частота колебаний частей объекта совпадает с частотой внешних сил ветра, рабочих инструментов , поэтому инженеры и строители бдительно следят за этими показателями. Амплитуда достигает максимального значения на определённой частоте, когда индуктивная и ёмкостная составляющие системы уравновешены, и энергии могут свободно циркулировать между магнитным полем катушки и электрическим полем конденсатора. Магнитное поле индуктивного элемента порождает электрический ток, заряжающий конденсатор, а разрядка конденсатора создаёт магнитное поле в катушке. Этот процесс способен повторяться многократно.
Более подробно об этих явлениях вы можете прочитать в нашей статье «Колебательный контур».
Давайте рассмотрим некоторые примеры: Колебания в живой природе. В организмах постоянно происходят колебательные процессы - пульс, дыхание, электрическая активность мозга.
Ритмические сокращения сердечной мышцы обеспечивают кровообращение. Вдохи и выдохи создают колебательные движения воздуха в легких. Звуковые колебания.
Звук представляет собой упругие волны в воздухе, возникающие при колебаниях источника. Музыкальные инструменты. Струнные, духовые, ударные инструменты создают музыкальные звуки за счет колебаний.
Звуки речи образуются колебаниями голосовых связок и резонаторов речевого аппарата. Бытовые колебательные процессы. Многие привычные вещи в быту работают за счет колебаний.
Маятник часов совершает строго периодические колебания. Мобильный телефон. Антенна телефона излучает и принимает радиоволны благодаря электромагнитным колебаниям.
Колебания в технических устройствах. Незатухающие колебания лежат в основе работы многих технических систем. Генераторы колебаний.
Генераторы создают электрические колебания с помощью резонаторов и усилителей. Кварцевые генераторы. Кварцевые резонаторы обеспечивают высокую стабильность частоты благодаря пьезоэлектрическому эффекту.
Генераторы на диоде Ганна. Диод Ганна использует электронно-дырочные переходы в полупроводниках для создания СВЧ-колебаний.
Скоростью затухания колебаний принято называть величину, которая прямо пропорциональна силе затухания колебаний. Период затухающих колебаний — это минимальный промежуток времени, за который система проходит дважды положение равновесия в одном направлении. Амплитуда затухающих колебаний при небольших затуханиях — это наибольшее отклонение от положения равновесия за период. Амплитуда затухающих колебаний постоянно изменяется со временем.
Для генератора существенны и отклонения от линейности, но об этом позже.
Одним словом, дополнительная ЭДС должна быть такой, чтобы скомпенсировать потери энергии в контуре. А как можно повлиять на величину М? Оказывается, она увеличится, если намотать побольше витков в дополнительной катушке или если эту катушку расположить поближе к катушке контура. Нужно сказать, что достаточный для генерации коэффициент М на практике получить довольно просто. Лучше выбрать эту величину с некоторым запасом — при этом получится контур не только без потерь, но даже с подкачкой энергии от внешнего источника с «отрицательными» потерями. При включении генератора амплитуда колебаний сначала будет возрастать, но через некоторое время установится — энергия, поступающая в контур за один период, станет равной потерям энергии за то же время. И действительно, при увеличении амплитуды напряжения на конденсаторе управляющее напряжение полевого транзистора транзистор начинает усиливать хуже, поскольку при большом отрицательном напряжении ток в цепи канала прекращается, а при положительных напряжениях переход начинает открываться, что тоже увеличивает потери в контуре.
В результате колебания получаются не совсем синусоидальными, но, если потери в контуре невелики, искажения незначительны. Для того чтобы использовать полученные колебания — а ведь именно для этого и делается генератор,— нужно либо подключиться непосредственно к контуру, либо намотать еще одну катушку. Но в обоих случаях необходимо учесть «уход» энергии из контура и скомпенсировать его в числе прочих потерь.