Модель водного раствора сахарозы с массовой долей 30%, включающей 12 молекул сахарозы и 532 молекулы воды, использованная для расчётов на суперкомпьютере.
Квантово-механические свойства воды - Вода Квантовая механика Молекула » 2024
Компьютерная модель состояния воды с высокой плотностью. Изображение : Andreas Neophytou et al. Коллоиды — это частицы, которые могут быть в тысячу раз больше, чем одна молекула воды. Благодаря своему относительно большему размеру и, следовательно, более медленному движению, коллоиды используются для наблюдения и объяснения физических явлений, которые также происходят в гораздо меньших атомных и молекулярных масштабах. В этой работе мы впервые предлагаем взгляд на фазовый переход жидкость-жидкость, основанный на идеях сетевой запутанности.
Загадочный эффект воды впервые зафиксирован учеными на камеру Читать 360 в Специалисты Национальной ускорительной лаборатории SLAC при Министерстве энергетики США, Стэнфордского университета и Стокгольмского университета в Швеции впервые сфотографировали загадочный эффект воды. Они увидели, как атомы водорода в молекулах воды взаимодействуют с соседними молекулами при возбуждении лазерным светом. Об этом написал сайт NEWS.
Кубик такого льда весил в четыре раза больше обычного.
Впервые его существование было предсказано более 30 лет назад, и хотя его до сих пор никогда не видели, ученые считают, что он может быть одним из самых распространенных видов воды во Вселенной. Даже в Солнечной системе большая часть воды , вероятно, находится в форме суперионного льда — в недрах Урана и Нептуна. Ее больше, чем жидкой воды в океанах Земли, Европы и Энцелада. Открытие суперионного льда могло бы решить старые загадки о составе этих «ледяных гигантов». Ученые уже обнаружили восемнадцать изумительных архитектур ледяного кристалла, включая гексагональное расположение молекул воды в обычном льду Ih. Да, «лед-9» на самом деле существует, но его свойства вовсе не такие, как в романе Курта Воннегута «Колыбель для кошки». Это новый кристалл, но есть в нем одно но. Все ранее известные водяные льды состоят из неповрежденных молекул воды, в которых один атом кислорода связан с двумя атомами водорода.
Но суперионный лед, как показывают новые измерения, не такой. Он существует в некоем сюрреалистическом лимбе, наполовину твердом, наполовину жидком. Отдельные молекулы воды распадаются. Атомы кислорода формируют кубическую решетку, но атомы водорода разливаются свободно, протекая, как жидкость, через жесткую клетку кислорода. Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового. Специалисты говорят, что обнаружение суперионного льда оправдывает компьютерные прогнозы, которые могут помочь физикам-материаловедам создавать будущие вещества с индивидуальными свойствами. А обнаружение этого льда требовало сверхбыстрых измерений и точного контроля температуры и давления, что стало возможным лишь в условиях усовершенствования экспериментальных методов.
Физик Ливия Бове из Национального центра научных исследований Франции считает, что поскольку молекулы воды распадаются, это не совсем новая фаза воды. Паззлы на льду Физики охотились за суперионным льдом много лет — с тех пор, как примитивная компьютерная симуляция Пьерфранко Демонтиса в 1988 году предсказала, что вода примет эту странную, почти металлическую форму, если вытолкнуть ее за пределы карты известных ледяных фаз. Моделирование показало, что под сильным давлением и теплом молекулы воды разрушаются.
Вода растворяет все! Во многом благодаря диэлектрической проницаемости, вода проявляет себя как универсальный растворитель. Ее растворяющему действию в той или иной мере подвластны и твердые тела, и жидкости, и газы. Постоянно соприкасаясь со всевозможными веществами, вода фактически всегда представляет собой раствор различного, зачастую очень сложного состава. Даже из свежевыпавшей дождевой воды можно выделить различные минеральные и органические вещества, растворенные в ней до нескольких десятков миллиграммов на литр. В среднем в 1 л океанской воды растворено 34... Общее количество их настолько велико, что, выделенные из воды, они покрыли бы поверхность земного шара слоем стометровой толщины. Солевой состав речных и морских вод различен не только количественно, но и качественно. В пресных водах набор минеральных примесей выглядит иначе. Из газов в пресных и морских водах наиболее широко представлены кислород, азот, углекислый газ, сероводород. Этот ядовитый газ присутствует и в нижних слоях некоторых озер. В пресных и морских водах в небольших количествах имеются и разнообразные органические компоненты — растворимые соединения типа белков, сахаров, спиртов, углеводородов и т. Это продукты жизнедеятельности и распада животных и растительных организмов, населяющих водоемы и их берега, а также отходы промышленности и сельского хозяйства. Формирование кластеров воды Полярность молекул воды, наличие в них частично нескомпенсированных электрических зарядов порождает склонность к группировке молекул в укрупненные «сообщества» — ассоциаты.
Модель молекулы воды
В зависимости от назначения предъявляются разные требования: Питьевая вода. Питьевая вода должна отвечать жестким нормативам по содержанию вредных веществ, патогенных бактерий и вирусов. Кроме того, она не должна иметь неприятных запаха и привкуса. Техническая вода. Техническая вода, используемая, к примеру, для охлаждения оборудования может содержать различные соли, но не должна вызывать коррозию металлов или отложение солей. Очистка воды Существует несколько основных методов очистки воды: Фильтрование через песчаные фильтры или мембраны; Хлорирование для обеззараживания; Умягчение путем удаления солей жесткости; Адсорбция примесей активированным углем.
Несмотря на кажущуюся обильность запасов пресной воды, ее надо беречь. Рекомендации по экономии: Установка счетчиков; Использование специальных насадок и режимов при пользовании кранами, душем; Сбор дождевой воды для полива; Повторное использование технической воды. Многие значительные источники пресной воды пересекают границы нескольких государств.
Поскольку моделирование можно считать вполне успешным, далее эта модель использовалась для изучения энергии связи молекул в водяной капле, находящейся под воздействием иона.
Было установлено, что отрицательные ионы создают более сильную связь, особенно на малых расстояниях. Причина этой зарядовой асимметрии заключена в ненулевом квадрупольном электрическом моменте молекулы воды и смещении зарядов относительно центра молекулы. Обнаруженная зарядовая асимметрия может быть описана простой моделью диполя, сдвинутого от центра молекулы. Взаимодействие с соседними молекулами заменено воздействием упругой среды, в которую погружена молекула, с модулем упругости g.
Определим энергию его взаимодействия с ионом, находящимся на расстоянии г от молекулы. Мы видим, что энергия связи асимметрична по отношению к знаку заряда иона. Теперь подгоночные значения параметров g и b можно найти, сравнивая формулу для энергии взаимодействия с данными микромоделирования. В случае мелких капель их равновесие с паром наступает, когда его давление больше, чем давление насыщения, пар является пересыщенным.
Это связано с двумя обстоятельствами. Во-первых, вследствие поверхностного натяжения энергия связи молекул меньше и соответственно скорость испарения выше, чем в случае плоской поверхности. Во-вторых, коэффициент залипания вследствие того же натяжения меньше. При малых размерах капель пресыщение снижается из-за дополнительной связи с ионом.
Таким образом, кривая пересыщения должна иметь максимум. Измеренные пороговые значения пересыщения см. Мейсон Б. Физика облаков.
Френкель Я. Кинетическая теория жидкостей.
И это оказалось важным. Учёные провели 14 опытов, доказывающих и проясняющих ряд моментов воздействия света на воду, в ходе которого молекулы воды отрывались от её поверхности и превращались в пар. Например, ещё в прошлом году было замечено, что наиболее сильное воздействие на эти процессы — на отрыв кластеров молекул воды от её жидкой поверхности — оказывал зелёный свет. В новых опытах учёные изменяли наклон освещения и поляризацию света.
Поляризация также оказывала влияние на интенсивность испарения, но этот момент ещё предстоит уточнить.
Чаще всего физики применяют для этого так называемые оптические интерференционные ловушки. Они представляют собой периодическую структуру полей, возникающих в результате интерференции лазерного излучения.
В узлы такой решётки помещают ультрахолодные атомы изучаемых веществ. Но исследователи из лаборатории терагерцовой спектроскопии МФТИ нашли другой, более рациональный путь. Они помещают отдельные молекулы воды, обладающие довольно большим дипольным моментом, в так называемую диэлектрическую матрицу.
Её роль исполняет кристаллическая решетка цеолитов, содержащая периодически распределённые поры нанометрового размера. В результате получается твердотельный образец кристалл с находящимися в этих порах практически свободными молекулами воды так называемой нанолокализованной воды. Его очень удобно исследовать при различных не только очень низких температурах, включая комнатные, а также при различных внешних воздействиях под влиянием электрических полей, давления и др.
Электродипольная решётка, исследованная в данной работе, была создана на основе одного из цеолитов — кристалла кордиерита.
Ученые впервые нашли молекулы воды на астероидах
Они поместили отдельные молекулы воды, обладающие довольно большим дипольным моментом, в так называемую диэлектрическую матрицу. Первая модель эволюции поверхности Земли с высоким разрешением. Согласно этой модели вода состоит из 1820 молекул воды, что в два раза больше, чем в модели Зенина.
ABC: Появились доказательства того, что вода состоит из двух жидкостей
Компьютерное моделирование соленой воды при различных концентрациях и температурах жидкости было объединено с экспериментальными данными исследователей. Ученые обнаружили, что, в отличие от того, что считалось ранее, ионы не движутся вместе с соседними молекулами растворителя. Комплексы ион-вода колеблются медленно по сравнению с быстро движущимися молекулами воды. Ожидается, что понимание того, как ионы ведут себя в растворах, расширится в результате этого исследования, что будет полезно для накопления энергии и лечения.
Они увидели, как атомы водорода в молекулах воды взаимодействуют с соседними молекулами при возбуждении лазерным светом. Об этом написал сайт NEWS.
Ранее ученые не могли наблюдать за эффектами, которые возникают при взаимодействии молекул воды со своими соседями на атомном уровне.
В научной литературе часть ученых приписывает этот дублет двум вышеупомянутым структурным мотивам. Из этого делаются далеко идущие заключения о локальной структуре и критических свойствах воды.
Как заверил профессор Гельмуханов, «эксперименты привели к неожиданному результату и показали, что точно такое же расщепление присутствует в рентгеновских спектрах рассеяний молекул воды в газовой фазе, где очевидно водородная связь отсутствует и вопрос о легкой и тяжелой фракциях не возникает. Более того, выполненные теоретические расчёты однозначно объясняют данное расщепление сверхбыстрой диссоциациeй молекулы воды в 1s-дырочном состоянии. Таким образом, данное исследование, однозначно свидетельствуя о динамической природе расщепления 1b1 резонанса, опровергает структурный механизм, тем самым свидетельствуя, что структура воды однородна».
Левая панель показывает распределение молекул воды в жидкой фазе. Средняя врезка показывает процесс неупругого рассеяния молекулой воды, а правый рисунок показывает колебательную d-структуру в PHPPИ спектре. Вторым не менее важным результатом данной работы, по словам российского ученого, является «извлечение из эксперимента более детальной структурной информации, а именно, как влияет водороднaя связь ВС на силу OH связи.
Колебательная инфракрасная ИК спектроскопия является общепринятым инструментом для исследования ВС в жидкостях. Спектроскопия PHPPИ воды качественно отличается от ИК спектроскопии тем, что при возбуждении рентгеновским фотоном глубокого 1s электрона кислорода на первую незанятую молекулярную орбиту, молекула воды быстро диссоциирует. В процессе этой сверхбыстрой диссоциации возбуждённый электрон переходит обратно на 1s уровень, испуская рентгеновский фотон.
Частота испущенного фотона отличается от возбуждающего фотона, так как при этом переходе заселяются более высокие колебательные уровни см. Чем выше колебательное состояние см. Итак, «PHPPИ даёт уникальную возможность исследовать ВС, а именно, извлечь из экспериментального спектра количественную информацию o влиянии соседних молекул через ВС на потенциал взаимодействия OH связи.
Важно отметить, что в отличие от изолированной молекулы воды с одним OH потенциалом, в жидкости имеется набор распределение OH потенциалов в силу флуктуирующего многообразия ближайшего окружения молекулы воды. В этой многоаспектной работе по изучению структуры жидкой воды участвовало две группы: теоретики и экспериментаторы. Группу теоретиков возглавлял профессор Фарис Гельмуханов.
Сюда вошли специалисты из разных научных учреждений, в частности, из Королевского технологического института Стокгольм , Стокгольмского университета и российские ученые Сибирского федерального университета доктор Сергей Полютов и аспирантка Нина Игнатова. Важно, что вторая практическая работа, выводы которой обнародованы в Proceedings of the National Academy ofSciences of the United States of America, vol. Поэтому мы измеряем на нем, чтобы увидеть в PHPPИ-спектре колебательную структуру воды в жидкой фазе, связанную с колебаниями OH-связи в молекуле воды».
Итогом длительной работы ученых стало обнаружение нового физического эффекта — Динамического вращательного эффекта Допплера, а также детальное исследование роли структуры и ядерной динамики на рентеновские спектры паров воды, жидкой воды и льда. Впервые удалось визуализировать Динамику индуцированного вращения. Экспериментальные данные, дополненные теоретическими расчетами позволили получить детальную структурную информацию о жидкой воде, и было показано, что структура воды однородна.
Ученые обнаружили, что, в отличие от того, что считалось ранее, ионы не движутся вместе с соседними молекулами растворителя. Комплексы ион-вода колеблются медленно по сравнению с быстро движущимися молекулами воды. Ожидается, что понимание того, как ионы ведут себя в растворах, расширится в результате этого исследования, что будет полезно для накопления энергии и лечения.
Ученые впервые обнаружили молекулы воды на астероидах
Если взять очень много молекул (например, стакан воды), то дипольные моменты отдельных молекул скомпенсируются, и суммарное электрическое поле исчезнет, в чём нас убеждает и повседневный опыт. H2o или молекула воды внутри клетки фуллерен c60. Расчеты показали, что молекула воды даже при температуре в 300 градусов по Кельвину постоянно находится в центре молекулы фуллерена. Молекула метана CH4 3d модель для печати. Во всех моделях молекулы воды (рис. 6-9) шестой электрон атома кислорода остается свободным, формируя зону отрицательного потенциала на ее поверхности. Модель молекулы воды Вода образует водородные связи Благодаря водородным связям вода, являясь жидкостью, обладает аномальными свойствами При нагревании вода сжимается, при замерзании же расширяется, в то время как другие жидкости сжимаются.
Описание 3D-модели
- Вода | Строение молекулы и структура воды в жидком, твердом и газообразном виде.
- Содержание:
- Ученые впервые увидели процесс, который обеспечивает «странные» свойства воды
- Читать дальше
- Modeling of interaction between a water molecule and crystal surfaces
- Проекты по теме:
Модель молекулы воды
Нейтронное рассеяние и компьютерное моделирование выявили уникальное и неожиданное поведение молекулы воды, нетипичное для какого-либо из известных газов, жидкостей или твердых тел. 3d-модель молекулы воды на черном фоне. © Guru3d / Фотобанк Лори. 3d illustration of a water molecule isolated on white background. Строение электронного облака молекулы воды таково, что во льду каждая молекула связана четырьмя водородными связями с ближайшими к ней молекулами, координационное число молекул в структуре льда равно четырем. "Используя наблюдения ALMA с высоким разрешением, мы изучили молекулярный газ в этой паре галактик и обнаружили молекулы воды и монооксида углерода в большей из них", – рассказал ведущий автор исследования Шривани Яругула (Sreevani Jarugula). Стоковая иллюстрация: модель молекулы воды, научная или медицинская справка, 3d иллюстрация. Исследователи из NASA и Немецкого космического агентства DLR впервые обнаружили молекулы воды на поверхности астероидов.
"Nature Chemistry": опровергнута описанная в учебниках организация молекул воды
В этот момент молекулярная структура воды изменяется, образуя набор тетраэдров каждая молекула воды связана с четырьмя другими. Новый тип фазового перехода, объясняющий такое поведение, был впервые предложен 30 лет назад в исследовании ученых из Бостонского университета. В новом исследовании представлены доказательства существования фазового перехода жидкость-жидкость, происходящего в условиях переохлаждения. Две более или менее плотные жидкие формы Согласно теории, предложенной 30 лет назад для объяснения происхождения термодинамических аномалий воды, в переохлажденной области фазовой диаграммы воды существует линия фазового перехода первого рода жидкость-жидкость. Эта линия разделяла бы две жидкие фазы, образованные сетью переходных водородных связей — жидкость низкой плотности LDL и жидкость высокой плотности HDL — и заканчивалась бы в критической точке жидкость-жидкость. Если в условиях переохлаждения существуют два жидких состояния, то их очень трудно наблюдать экспериментально: при таких низких температурах вода находится в метастабильном состоянии, и малейшее возмущение может вызвать затвердевание.
Поэтому команда использовала компьютерное моделирование, чтобы определить, какие характеристики отличают две жидкости на микроскопическом уровне.
Например, узел-трилистник, а также связь Хопфа отдаленно напоминает звенья цепочки. А так называемая «легкая» вода, напротив, образует в основном простейшие кольца, а это значит, что молекулы жидкости с пониженной плотностью не запутаны. Компьютерная модель состояния воды с высокой плотностью. Изображение: Andreas Neophytou et al. Ну что ж, будем ждать новых результатов данных экспериментов, а с уже проделанной работой ученых можно ознакомиться в материале, который был опубликован на портале Nature Physics.
Традиционно это делалось с помощью метода, называемого генерацией суммарной частоты колебаний VSFG. С помощью этого метода лазерного излучения можно измерять молекулярные колебания непосредственно на этих ключевых границах раздела. Однако, хотя силу сигналов можно измерить, этот метод не позволяет определить, являются ли сигналы положительными или отрицательными, что затрудняло интерпретацию результатов в прошлом. Кроме того, использование только экспериментальных данных может дать неоднозначные результаты. Затем они разработали усовершенствованные компьютерные модели для моделирования интерфейсов в различных сценариях. Катионы и анионы простых электролитов ориентируют молекулы воды как вверх, так и вниз.
И из всего многообразия структур в природе базовой, судя по всему пока лишь не точно доказанное предположение является всего одна — гексагональная шестигранная , когда шесть молекул воды тетраэдров объединяются в кольцо. Такой тип структуры характерен для льда, снега, талой воды, клеточной воды всех живых существ. Кристаллическая структура льда Каждая молекула воды в кристаллической структуре льда участвует в 4 водородных связях, направленных к вершинам тетраэдра. В центре этого тетраэдра находится атом кислорода, в двух вершинах — по атому водорода, электроны которых задействованы в образовании ковалентной связи с кислородом. Две оставшиеся вершины занимают пары валентных электронов кислорода, которые не участвуют в образовании внутримолекулярных связей. При взаимодействии протона одной молекулы с парой неподеленных электронов кислорода другой молекулы возникает водородная связь, менее сильная, чем связь внутримолекулярная, но достаточно могущественная, чтобы удерживать рядом соседние молекулы воды. Когда лёд плавится, его тетрагональная структура разрушается и образуется смесь полимеров, состоящая из три-, тетра-, пента-, и гексамеров воды и свободных молекул воды. Схематически этот процесс показан ниже. В воде кластеры периодически разрушаются и образуются снова. Время перескока составляет 10-12 секунд. Изучить строение этих образующихся полимеров воды оказалось довольно сложно, поскольку вода — смесь различных полимеров, которые находятся в равновесии между собой. Сталкиваясь друг с другом, полимеры переходят один в другой, разлагаются и вновь образуются. Разделить эту смесь на отдельные компоненты тоже практически невозможно. Лишь в 1993 году группа исследователей из Калифорнийского университета г. Беркли, США под руководством доктора Р. Сайкалли расшифровала строение триммера воды, в 1996 г. К этому времени уже было установлено, что жидкая вода состоит из полимерных ассоциатов кластеров , содержащих от трех до шести молекул воды. На рисунке ниже показано строение три-, тетра-, пента-, и гексамера воды. Все они цикличны, т. Более сложным оказалось строение гексамера. Самая простая структура — шесть молекул воды в вершинах шестиугольника, — как выяснилось, не столь прочна, как структура клетки. Более того, структуры призмы, раскрытой книги или лодки тоже оказались менее устойчивыми. В шестиугольнике может быть только шесть водородных связей, а экспериментальные данные говорят о наличии восьми. Это значит, что четыре молекулы воды связаны перекрёстными водородными связями.