Онтонио Веселко. какими организмами являются бактерии с точки зрения эволюции. Колония таких бактерий не является многоклеточным организмом, а представляет собой клеточную массу — различимое невооружённым глазом скопление клеток. Микоплазмы являются отдельным классом микроорганизмов, отличающимся как от вирусов, так и от бактерий.
Связанных вопросов не найдено
- Бактерии в мутуалистических отношениях с другими организмами
- Методы эволюционной биологии: исследование эволюции бактерий доклад, проект
- Долгая счастливая фенотипическая эволюция бактерий
- БАКТЕРИИ | Энциклопедия Кругосвет
- Продолжается ли эволюция?
Концепции происхождения и развития микроорганизмов
Бактерии с точки зрения эволюции являются довольно сложно организованными организмами и представляют высокий уровень развития. Другие микроорганизмы — и археи, и бактерии — могут использовать водород для восстановления сульфата или серы, в результате чего образуется сероводород. Основные положения эволюционного учения Ч. Дарвина. Бактериальные заболевания.
Роль бактерий в эволюции жизни на Земле
С точки зрения эволюционного учения, бактерии являются. Однако бактерии размножаются посредством бинарного деления, которое является формой бесполого размножения, что означает, что дочерняя клетка и родительская клетка генетически идентичны. Клетка археи, поглотившая бактерию и ставшая затем эукариотной клеткой, получила много преимуществ с точки зрения эффективности метаболизма, устойчивости, выживаемости. Найди верный ответ на вопрос«Какими организмами являются бактерии с точки зрения эволюции » по предмету Биология, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов.
Бактерии в мутуалистических отношениях с другими организмами
- Почему, обладая примитивной организацией, бактерии сохранились в ходе эволюции?
- КОМПЛЕКСНОЕ СТРОЕНИЕ КЛЕТКИ
- Задание Учи.ру
- Происхождение и эволюция микроорганизмов - YouTube
Презентация, доклад на тему Методы эволюционной биологии: исследование эволюции бактерий
Онтонио Веселко. какими организмами являются бактерии с точки зрения эволюции. С точки зрения эффективной эволюции это гораздо круче, чем наш секс. Согласно третьей точке зрения, это был химерный организм, образовавшийся в результате слияния клеток нескольких разных архей и бактерий. Тело первых бактерий имело примитивное строение. Со временем структура микроорганизмов усложнилась, но и сейчас они являются наиболее примитивными одноклеточными организмами. Колония таких бактерий не является многоклеточным организмом, а представляет собой клеточную массу — различимое невооружённым глазом скопление клеток. Микоплазмы являются отдельным классом микроорганизмов, отличающимся как от вирусов, так и от бактерий.
Какими организмами являются бактерии с точки зрения эволюции
28. Из предложенной информации выберите сведения о бактериях и грибах: 1. отсутствует. Бактерии делятся бинарным делением клетки. В ходе бинарного деления бактерия делится на две дочерние клетки, являющиеся генетическими копиями материнской. Бактерии Thermotogota обычно являются термофильными или гипертермофильными, грамотрицательно окрашивающимися, анаэробными организмами, которые могут жить вблизи гидротермальных источников, где температура может колебаться в пределах 55-95 ° C. Например, уникальной чертой бактерий является их способность достаточно легко обмениваться между собой разными генами. ответ на этот и другие вопросы получите онлайн на сайте Бактериальные заболевания.
Ученые говорят, что все живое произошло от бактерий. Как это можно объяснить?
Для таксономических рангов выше семейства наблюдается ещё меньшее фенотипическое сходство. Всё это говорит о том, что полногеномные метаболические реконструкции можно использовать для уточнения бактериальной таксономии. Фенотипические часы? Известно, что разные гены эволюционируют с разной скоростью [4]. А как относительно них меняются фенотипы?
Наиболее пристальное внимание уделили эволюции существенных генов, без которых клетка не может обходиться совсем, и синтетических леталей см. Оказалось, что в среднем долговременная эволюция существенных генов тоже подчиняется закономерностям экспоненциального спада, как и изменение фенотипического сходства рис. Однако средняя скорость эволюции таких генов происходит быстрее и достигает насыщения на более близких генетических расстояниях. Фенотипы по сравнению с ними «запаздывают».
На больших эволюционных расстояниях более половины консервативных существенных генов одного вида, как правило, остаются таковыми и в другом. Такая тенденция согласуется с доступными экспериментальными данными. Рисунок 3. Изменение сходства существенных генов a и синтетических леталей b c ростом генетического расстояния.
Консервативность синтетических леталей среди метаболических генов довольно низкая. Это говорит о высокой чувствительности синтетических леталей к изменениям бактериальных генотипов. Обнаруженное поведение долговременной фенотипической дивергенции бактерий напоминает молекулярные часы белковой эволюции [5]. Похоже, что подобно эволюции белков, тренды фенотипической дивергенции задаются как адаптацией бактерий к различным экологическим нишам, так и нейтральными изменениями.
В каждой конкретной филогенетической линии и эволюционном контексте относительный вклад адаптивных и нейтральных изменений различен. Метаболические фенотипы, существенные гены и синтетическая летальность дивергируют с разной скоростью и неодинаково чувствительны к изменению бактериальных генотипов.
Это технология получила название — пастеризация. Микробиология от греч.
Клеточное строение и жизнедеятельность бактерий. Бактерии от греч. Клеточное строение бактерии представлено клеточной мембраной, прочной клеточной стенкой и цитоплазмой Рис. В зависимости от строения клеточной стенки выделяют две группы бактерий: Грамположительные — имеют внутреннюю мембрану и более толстый слой пептидогликана окрашиваются в синий или фиолетовый цвет по методу Г.
Грамотрицательные — имеют три слоя: внутренняя мембрана, тонкий слой пептидогликана и наружная мембрана окрашиваются в розовый или красный цвет Рис. Цитоплазма включает в себя белки, жиры и кольцевую молекулу ДНК — нуклеоид основное наследственное вещество бактерии. Оформленного ядра нет. На поверхности бактерии имеются мелкие нитевидные выросты —пили, служащие для передачи наследственной информации между бактериями в ходе полового размножения см.
Передвижение бактериальной клетки обеспечивает один или несколько жгутиков. Формы и цвет бактерий: По форме бактерии подразделяют на три группы: шаровидные, палочковидные и извитые. Наиболее простыми считаются шаровидные, их называют кокками. Формы в виде виноградной грозди называют — стафилококки, в виде цепочки — стрептококки.
Большая часть бактерий обладает палочковидной формой, однако встречаются и в виде запятой — вибрионы, в виде спирали латинская буква «S» — спириллы. По цвету бактерии в основном бесцветны, однако есть и с пигментами зеленые и пурпурные, способные к фотосинтезу. Бактерии распространены повсеместно. Больше всего их можно встретить в плодородном слое почты чернозем.
Каждый вид способен к неограниченному размножению. Ограниченность жизненных ресурсов препятствует реализации потенциальной возможности беспредельного размножения. Большая часть особей гибнет в борьбе за существование и не оставляет потомства. Гибель или успех в борьбе за существование носят избирательный характер. Организмы одного вида отличаются друг от друга совокупностью признаков. В природе преимущественно выживают и оставляют потомство те особи, которые имеют наиболее удачное для данных условий сочетание признаков, то есть лучше приспособлены.
Избирательное выживание размножение наиболее приспособленных организмов Ч. Дарвин назвал естественным отбором. Под действием естественного отбора находящиеся в разных условиях группы особей одного вида из поколения в поколение накапливают различные приспособительные признаки. Они приобретают настолько существенные отличия, что превращаются в новые виды принцип расхождения признаков. Эволюционная теории Дарвина совершила переворот в биологической науке. На основе изучения гигантского материала, собранного во время путешествия на корабле УБиглФ, Дарвину удается вскрыть причины изменения видов.
Изучив геологию Южной Америки, Дарвин убедился в несостоятельности теории катастроф и подчеркнул значение естественных факторов в истории земной коры и ее животного и растительного населения. Благодаря палеонтологическим находкам он отмечает сходство между вымершими и современными животными Южной Америки. Он находит так называемые переходные формы, которые совмещают признаки нескольких современных отрядов. Таким образом был установлен факт преемственности между современными и вымершими формами. На Галапагосских островах он нашел нигде более не встречающиеся виды ящериц, черепах, птиц. Они близки к южноамериканским.
Галапагосские острова имеют вулканическое происхождение, и поэтому Ч. Дарвин предположил, что виды попали на них с материка и постепенно изменились. В Австралии его заинтересовали сумчатые и яйцекладущие, которые вымерли в других местах земного шара. Австралия как материк обособилась, когда еще не возникли высшие млекопитающие. Сумчатые и яйцекладущие развивались здесь независимо от эволюции млекопитающих на других материках. Так постепенно крепло убеждение в изменяемости видов и происхождении одних от других.
Однако в естественных условиях численность взрослых особей каждого вида длительно сохраняется примерно на одном уровне, следовательно, большинство появляющихся на свет особей гибнет в борьбе за существование — внутривидовой, межвидовой и в борьбе с неблагоприятными абиотическими факторами условиями неживой природы. Сопоставив два вывода — о перепроизводстве потомства и о всеобщей изменчивости, Дарвин пришел к главному заключению: больше шансов выжить и достичь взрослого состояния имеют особи, отличающиеся от множества других какими-либо полезными свойствами. Так был открыт принцип естественного отбора как главной движущей силы эволюции. Хотя эволюция протекает как единый процесс, обычно выделяют два уровня — микроэволюционный и макроэволюционный. Процессы, протекающие на популяционном и внутривидовом уровне, называют микро эволюцией, на уровне выше видового — макро эволюцией. Биополимеры - белки.
Полимеры- высокомалекулярные соединения состоящие из молекул мономеров. Мономеры- низкомалеккулярные соединения. Регулярные полимеры- молекула состоит из мономеров одного вида. Нерегулярные полимеры- молекула состоит из мономеров нескольких видов. Белки- это нерегулярные полимеры, мономерами которых являются аминокислоты. Аминокислот — 20 видов из них 8 незаменимые, не синтезируются в организме человека, а поступают в него вместе с пищей.
Нуклеиновые кислоты. Эти биополимеры состоят из мономеров, называемых нуклеотидами. Каждый нуклеотид состоит из трех компонентов, соединенных прочными химическими связями. Нуклеотиды, входящие в состав РНК, содержат пяти-углеродный сахар — рибозу, одно из четырех органических соединений, которые называют азотистымиоснованиями: аденин, гуанин, цитозин, урацил А, Г, Ц, У — и остаток фосфорной кислоты. Нуклеотиды, входящие в состав ДНК, содержат пяти-углеродный сахар — дезоксирибозу, одно из четырех азотистых оснований: аденин, гуанин, цитозин, тимин А, Г, Ц, Т —и остаток фосфорной кислоты. В составе нуклеотидов к молекуле рибозы или дезокси-рибозы с одной стороны присоединено азотистое основание, а с другой — остаток фосфорной кислоты.
Нуклеотиды соединяются между собой в длинные цепи. Остов такой цепи образуют регулярно чередующиеся остатки сахара и органических фосфатов, а боковые группы этой цепи — четыре типа нерегулярно чередующихся азотистых оснований. Молекула ДНК представляет собой структуру, состоящую из двух нитей, которые по всей длине соединены друг с другом водородными связями. Такую структуру, свойственную только молекулам ДНК, называют двойной спиралью. Особенностью структуры ДНК является то, что против азотистого основания А в одной цепи лежит азотистое основание Т в другой цепи, а против азотистого основания Гвсегда расположено азотистое основаниеЦ. А аденин — Т тимин Т тимин — А аденин Г гуанин — Ц цитозин Ц цитозин -Г гуанин Эти пары оснований называют комплиментарными основаниями дополняющими друг друга.
Нити ДНК, в которых основания расположены комплементарно друг другуФ называют комплиментарными нитями. Расположение четырех типов нуклеотидов в цепях ДНК несет важную информацию. Порядок расположения нуклеотидов в молекулах ДНК определяет порядок расположения аминокислот в линейных молекулах белков, то есть их первичную структуру. Набор белков ферментов, гормонов и др. Молекулы ДНК хранят сведения об этих свойствах и передают их в поколения потомков. Другими словами, ДНК является носителем наследственной информации.
Молекулы ДНК в основном находятся в ядрах клеток. Однако небольшое их количество содержится в митохондриях и хлоропластах. Основные виды РНК. Наследственная информация, хранящаяся в молекулах ДНК, реализуется через молекулы белков. Информационная РНК переносится в цитоплазму, где с помощью специальных органоидов — рибосом — идет синтез белка. Именно информационная РНК, которая строится комплементарно одной из нитей ДНК, определяет порядок расположения аминокислот в белковых молекулах.
Молекула РНК в отличие от молекулы ДНК представлена одной нитью; вместо дезоксирибозы — рибоза и вместо тимина — урацил. Значение РНК определяется тем, что они обеспечивают синтез в клетке специфических для нее белков. Удвоение ДНК. Перед каждым клеточным делением при абсолютно точном соблюдении нуклеотидной последовательности происходит самоудвоение редупликация молекулы ДНК. Редупликация начинается с того, что двойная спираль ДНК временно раскручивается. Это происходит под действием фермента ДНК-полимеразы в среде, в которой содержатся свободные нуклеотиды.
Каждая одинарная цепь по принципу химического сродства А-Т, Г-Ц притягивает к своим нуклеотидным остаткам и закрепляет водородными связями свободные нуклеотиды, находящиеся в клетке. Таким образом, каждая полинуклеотидная цепь выполняет роль матрицы для новой комплиментарной цепи. В результате получаются две молекулы ДНК, у каждой из них одна половина происходит от родительской молекулы, а другая является вновь синтезированной, то есть две новые молекулы ДНК представляют собой точную копию исходной молекулы. Несоответствие между возможностью видов к беспредельному размножению и ограниченностью ресурсов — главная причина борьбы за существование. Виды борьбы за существование. Внутривидовая борьба.
Дарвин указывал, что борьба за жизнь особенно упорна между организмами в пределах одного вида, и обосновывал свое утверждение тем, что они обладают сходными признаками и испытывают одинаковые потребности. Широкое распространение в природе конкуренции организмов за ограниченные ресурсы — типичный способ естественного отбора, благоприятствующего победителям в конкуренции. Кроме того, естественный отбор может осуществляться и без непосредственной конкуренции, например вследствие действия неблагоприятных факторов среды. Способность переносить низкие и высокие температуры, воздействие других параметров среды также приводит к выживанию более приспособленных или к их более успешному размножению. Иногда косвенные формы борьбы за существование дополняются прямой борьбой. Примером могут служить турнирные бои самцов за право обладать гаремом.
Взаимоотношения особей в пределах вида не ограничиваются борьбой и конкуренцией, существует также и взаимопомощь. Межвидовая борьба. Под межвидовой борьбой следует понимать конкуренцию особей разных видов. Особой остроты межвидовая борьба достигает в тех случаях, когда противоборствуют виды, обитающие в сходных экологических условиях и использующие одинаковые источники питания. В результате межвидовой конкуренции происходит либо вытеснение одного из противоборствующих видов, либо приспособление видов к разным условиям в пределах единого ареала, либо, наконец, их территориальное разобщение. Межвидовая борьба ведет к экологическому и географическому разобщению видов.
При попытках переселения в новые зоны обитания большинство не выдерживает влияния других видов и факторов внешней среды, лишь некоторые способны закрепиться и выдержать конкуренцию. Сложные взаимоотношения хищника и жертвы, хозяина и паразита — тоже примеры межвидовой борьбы. Борьба с неблагоприятными условиями среды. В ходе естественного отбора основное значение имеет фенотип организма: окраска, способность быстро перемещаться, устойчивость к действию высоких или низких температур и многое другое. Поэтому верно утверждение, что естественный отбор оценивает прежде всего фенотип особи. Поскольку за одинаковыми фенотипами могут скрываться различные генотипы например, АА и Аа при полном доминировании , то сходные фенотипы, наиболее приспособленные к конкретной ситуации, могут формироваться на различной генетической основе.
Широкое распространение инсектицидов привело к возникновению у многих видов насекомых устойчивости к ним. Однако генетические механизмы устойчивости оказались неодинаковыми в различных популяциях. В одних случаях устойчивость определялась доминантным геном, в других — рецессивным, отмечено не только аутосомное наследование, но и наследование, сцепленное с полом. Обнаружены, кроме того, случаи полигенного и цитоплазматического наследования. Соответственно и физиологические механизмы устойчивости к инсектицидам оказались различными. Среди них накопление яда кутикулой; повышенное содержание липидов, способствующих растворению инсектицида; повышение устойчивости нервной системы к действию ядов; снижение двигательной активности и др.
Направление, в котором действует естественный отбор, и его интенсивность в природных популяциях не являются строго фиксированным, неизменным показателем. Они существенно изменяются как во времени, так и в пространстве. У обыкновенного хомяка обнаруживаются две основные формы окраски — бурая и черная. Их распространение от Украины до Урала показывает, что существует как большое разнообразие в сезонной изменчивости черных и бурых форм, так и значительные различия в их концентрации на видовом ареале. Итак, естественный отбор — единственный фактор эволюции, осуществляющий направленное изменение фенотипического облика популяции и ее генотипического состава вследствие избирательного размножения организмов с разными генотипами. Аденозинфосфорные кислоты.
Особо важную роль в биоэнергетике клетки играет адениловый нуклеотид, к которому присоединены два остатка фосфорной кислоты. Такое вещество называют аденозинтрифосфорной кислотой АТФ. Энергию АТФ все клетки используют для процессов биосинтеза, движения, производства тепла, нервных импульсов, свечений например, у люминесцентных бактерий , то есть для всех процессов жизнедеятельности. АТФ — универсальный биологический аккумулятор энергии. Световая энергия Солнца и энергия, заключенная в потребляемой пище, запасается в молекулах АТФ. Запас АТФ в клетке невелик.
Так, в мышце запаса АТФ хватает на 20—30 сокращений. При усиленной, но кратковременной работе мышцы работают исключительно за счет расщепления содержащейся в них АТФ. После окончания работы человек усиленно дышит — в этот период происходит расщепление углеводов и других веществ происходит накопление энергии и запас АТФ в клетках восстанавливается. Митохондрии окружены наружной мембраной и, следовательно, уже являются компартментом, будучи отделенными от окружающей цитоплазмы; кроме того, внутреннее пространство митохондрий также подразделено на два компартмента с помощью внутренней мембраны. Наружная мембрана митохондрий очень похожа по составу на мембраны эндоплазматической сети; внутренняя мембрана митохондрий, образующая складки кристы , очень богата белками - пожалуй, эта одна из самых насыщенных белками мембран в клетке; среди них белки Удыхательной цепиФ, отвечающие за перенос электронов; белки-переносчики для АДФ, АТФ, кислорода, СО у некоторых органических молекул и ионов. Продукты гликолиза, поступающие в митохондрии из цитоплазмы, окисляются во внутреннем отсеке митохондрий.
Белки, отвечающие за перенос электронов, расположены в мембране так, что в процессе переноса электронов протоны выбрасываются по одну сторону мембраны - они попадают в пространство между наружной и внутренней мембраной и накапливаются там. Это приводит к возникновению электрохимического потенциала вследствие разницы в концентрации и зарядах. Эта разница поддерживается благодаря важнейшему свойству внутренней мембраны митохондрии - она непроницаема для протонов. То есть при обычных условиях сами по себе протоны пройти сквозь эту мембрану не могут. Но в ней имеются особые белки, точнее белковые комплексы, состоящие из многих белков и формирующие канал для протонов. Протоны проходят через этот канал под действием движущей силы электрохимического градиента.
Энергия этого процесса используется ферментом, содержащимся в тех же самых белковых комплексах и способным присоединить фосфатную группу к аденозиндифосфату АДФ , что и приводит к синтезу АТФ. Митохондрия, таким образом, исполняет в клетке роль Уэнергетической станцииФ. Принцип образования АТФ в хлоропластах клеток растений в общем тот же - использование протонного градиента и преобразование энергии электрохимического градиента в энергию химических связей. Направления эволюции На макроэволюционном уровне можно проследить главные направления органической эволюции: биологический и морфофизиологический прогрессы. Поскольку направление эволюции определяется естественным отбором, то пути эволюции совпадают с путями формирования приспособлений, определяющих те или иные преимущества одних групп перед другими. Появление таких признаков обусловливает прогрессивность данной группы.
Биологический прогресс, то есть расширение ареала, увеличение количества особей данного вида и количества новых систематических единиц внутри вида или более крупной систематической единицы, достигается различными путями. Можно выделить несколько путей эволюции : — арогенез ароморфоз или морфофизиологический прогресс аллогенез идиоадаптацию — гипергенез Арогенез — такой путь эволюции, который характеризуется повышением организации, развитием приспособлений широкого значения, расширением среды обитания данной группы организмов. На арогенный путь развития группа организмов вступает, вырабатывая определенные приспособления, называемые в таком случае ароморфозами. Примером ароморфоза у млекопитающих является разделение сердца на левую и правую половины с развитием 2 кругов кровообращения, что привело к увеличению легких и улучшению снабжения кислородом органов. Дифференцировка органов пищеварения, усложнение зубной системы, появление тепло кровности — все это уменьшает зависимость организма от окружающей среды. У млекопитающих и птиц появилась возможность переносить снижение температуры среды значительно легче, чем, например, у рептилий, которые теряют активность с наступлением холодной ночи и холодного времени года.
В связи с этим ночная активность рептилий в среднем ниже, чем дневная. Теплокровность млекопитающих и птиц позволила им овладеть поверхностью всего земного шара. Дифференцировка зубного аппарата у млекопитающих, приспособление его к жевательной функции, чего не было ни у одного из предшествовавших классов хордовых, обеспечили большую возможность использования пищи. У них хорошо развиты большие полушария головного мозга, которые обеспечивают поведение Уразумного типаФ, позволяют организмам приспосабливаться к быстрым изменениям среды без изменения своей морфологической организации. Ароморфозы сыграли важную роль в эволюции всех классов животных. Например, в эволюции насекомых большое значение имело появление трахейной системы дыхания и преобразование ротового аппарата.
Трахейная система обеспечила резкое повышение активности окислительных процессов в организме, что вместе с появлением крыльев обеспечило им выход на сушу. Благодаря необычайному разнообразию ротового аппарата у насекомых сосущий, колющий, грызущий они приспособились к питанию самой разнообразной пищей Немалую роль сыграло в их эволюции и развитие сложной нервной системы, а также органов обоняния, зрения, осязания. Аллогенез — путь эволюции без повышения общего уровня организации. Организмы эволюционируют путем частных приспособлений к конкретным условиям среды. Такой тип эволюции ведет к быстрому повышению численности и многообразию видового состава. Все многообразие любой крупной систематической группы является результатом аллогенеза.
Достаточно вспомнить многообразие млекопитающих, чтобы увидеть, насколько разнообразны пути их приспособления к самым различным факторам среды. Аллогенезы осуществляются благодаря мелким эволюционным изменениям, повышающим приспособление организмов к конкретным условиям обитания. Эти изменения называются идиоадаптацией. Хорошим примером идиоадаптаций служат защитная окраска у животных, разнообразные приспособления к перекрестному опылению ветром и насекомыми, приспособление плодов и семян к рассеиванию, приспособление к придонному образу жизни уплощение тела у многих рыб. Аллогенез часто приводит к узкой специализации отдельных групп. Общая дегенерация катагенез.
В ряде эволюционных ситуаций, когда окружающая среда стабильна, наблюдается явление общей дегенерации, то есть резкого упрощения организации, связанного с исчезновением целых систем органов и функций. Очень часто общая дегенерация наблюдается при переходе видов к паразитическому образу существования. У крабов известен паразит саккулина, имеющая вид мешка, набитого половыми продуктами, и обладающая как бы корневой системой, пронизывающей тело хозяина. Эволюция этого организма такова. Родоначальная форма принадлежала к усоногим ракам и прикреплялась не к водным камням, а к крабам и постепенно перешла к паразитическому способу существования, утратив во взрослом состоянии почти все органы. Несмотря на то, что общая дегенерация приводит к значительному упрощению организации виды, идущие по этому пути, могут увеличивать численность и ареал, то есть двигаться по пути биологического прогресса.
Гипергенез — путь эволюции, связанный с увеличением размеров тела и непропорциональным пере развитием органов. В различные периоды в различных классах организмов появлялись гигантские формы. Но, как правило, они довольно быстро вымирали и наступало господство более мелких форм. Вымирание гигантских форм чаще всего объясняется нехваткой пищи, хотя некоторое время такие организмы могут иметь преимущество вследствие своей огромной силы и отсутствия по этой причине врагов. Соотношение направлений эволюции. Пути эволюции органического мира сочетаются друг с другом либо сменяют друг друга, причем ароморфозы происходят значительно реже идиоадаптаций.
Но именно ароморфозы определяют новые этапы в развитии органического мира. Возникнув путем ароморфоза, новые, высшие по организации группы организмов занимают другую среду обитания. Далее эволюция идет по пути идиоадаптаций, иногда и дегенерации, которая обеспечивает организмам обживание новой для них среды обитания. Клетка — элементарная единица живой системы.
С тех пор прошло более 2 млрд лет, но эти невидимые существа по-прежнему выполняют незаменимые функции в круговороте жизни на Земле. О микробах и их роли в развитии биосферы рассказывает микробиолог Елизавета Александровна Бонч-Осмоловская. Ломоносова, заведующая отделом биологии экстремофильных микроорганизмов в Институте микробиологии им. Они действительно самые древние организмы на Земле. При этом бактерии и археи в отличие от вирусов способны к самостоятельному существованию в природной среде. Клетки и тех и других крайне маленького размера и очень похожи, но эти две группы безъядерных микроорганизмов, прокариот, имеют большие различия в базовых механизмах жизнедеятельности и поэтому отнесены к разным доменам: Archaea и Bacteria.
К ним относимся и мы с вами. Бактерии и археи были первыми живыми организмами на Земле и оставались ее полноправными хозяевами на протяжении более 2 млрд лет. Строение бактериальной клетки. Источник: Foxford. Считается, что биомасса бактерий и архей на Земле сравнима с биомассой всех остальных живых существ: они точно не уступают другим организмам по своей многочисленности, а возможно, и превосходят их. Бактерии и археи присутствуют практически повсюду: в воде, почве, осадках водоемов, глубоко под землей, под дном океана, в горячих источниках и в вечной мерзлоте. Как это произошло? Их долгое время называли сине-зелеными водорослями, потому что они выглядят как одноклеточные водоросли, но на самом деле это прокариоты, ведь у них нет ядра. В ходе этого процесса образуется свободный кислород и, как результат, кислородная атмосфера. Запасание энергии в процессе дыхания происходит при переносе электронов по цепочке белков-переносчиков.
Акцепторами электронов при дыхании прокариот могут быть и кислород, и другие окислители. Но больше всего энергии выделяется, если окислителем служит кислород.
Задание Учи.ру
Прокариоты (доядерные одноклеточные) | Какими организмами являются бактерии с точки зрения эволюции. |
Бактерии эволюционировали в лаборатории? | Бактерии, микроорганизмы с прокариотным типом строения клетки: генетический аппарат у них не заключён в обособленное мембраной клеточное ядро. |
какими организмами являются бактерии с точки зрения эволюции
Отсутствие других мембранных органоидов митохондрий, эндоплазматической сети и других компенсируется мезосомами, выполняющих аналогичные функции. Имеется небольшое количество мелких рибосом. В процессе эволюции некоторые бактерии утратили клеточную стенку и перешли в L-форму. Таким способом им удалось пережить возникшие неблагоприятные условия, а затем вернуться к исходному состоянию. Бактерии, у которых в естественном состоянии отсутствует клеточная стенка, называются микоплазмами. Появление в ходе эволюции жгутиковых форм бактерий определило способность микроорганизмов к передвижению.
Впоследствии количество и расположение жгутиков на теле прокариот стало одним из признаков видовой принадлежности. Микробы приобрели самые разные формы и органоиды, чтобы приспособиться к изменяющимся условиям. Чем питались и дышали древнейшие бактерии Одними из старейших микроорганизмов считаются бактерии, восстанавливающие сульфаты. Они способны поглощать ионы водорода и переносить их на сульфаты, восстанавливая те до сульфидов. Усовершенствованный в процессе эволюции метод переноса электронов, используемый бактериями, происходит с участием цитохромов крупных белков.
Благодаря механизму фосфорилирования, протекающему в анаэробных бескислородных условиях, накапливается энергия. Другими представителями микромира были: бактерии, обладавшие способностью фиксировать углеводородные соединения и аммиак; водородные бактерии, окислявшие молекулярный водород; микроскопические сине-зеленые водоросли, использовавшие углеводород для строительства своего тела и выделявшие кислород. Их жизнедеятельность привела к обогащению биосферы Земли кислородом с одновременным снижением концентрации в ней углекислого газа. Такая эволюция фотосинтеза привела к массовой гибели анаэробных микроорганизмов и дала возможность развиваться аэробам. Таким образом, произошло четкое разделение между прокариотами и эукариотами.
Безъядерные бактерии продолжали использовать сульфатное дыхание, формировать и потреблять метан, фиксировать азот и выполнять другие важные для экологии функции. Жизнедеятельность ядерных микроорганизмов базировалась в основном на фотосинтезе и существовании в присутствии кислорода. Как передается генетическая информация Отсутствие полового размножения у бактерий привело к возможности не только воспроизводить потомство путем простого деления, но и делиться генетическим материалом с другими микроорганизмами. Данное явление получило название горизонтального переноса. Оно создает значительные трудности для ученых в отслеживании развития определенного вида бактерий и архей.
Изучение подвижных генетических элементов и их роли в эволюции бактерий позволило установить, что они могут оказывать влияние на процесс преобразования наследственной информации в РНК или протеин. В результате этого происходит блокировка определенных действующих и активизация неактивных генов, вызывая мутации и создавая этим определенные эволюционные преимущества. Эволюция вирусов Вирусы представляют собой микроскопические частицы, которые состоят из молекул нуклеиновых кислот, заключенных в протеиновую оболочку капсид. Особенностями вирусных микроорганизмов является наличие только одного типа нуклеиновых кислот РНК или ДНК , а также неспособность размножаться, находясь вне клетки хозяина. Так как вирусы не имеют общего предка и не образуют окаменелостей, то не существует единой теории их возникновения.
Однако выделение вирусных элементов из геномов останков древних существ позволяет проследить их распространение и изменение. Откуда взялись бесклеточные организмы В настоящее время выдвинуты следующие теории происхождения вирусов в ходе эволюции: регрессия одноклеточных микроорганизмов; переход доклеточных форм к паразитическому способу жизни; отсоединение отдельных участков ДНК или РНК клеточных организмов с сохранением зависимости. У каждой теории существуют недостатки, не позволяющие ее принять за единую правильную версию. Изменчивость и наследственность вирусов Эволюцию вирусов ученые пытаются проследить, проводя анализ геномов современных микроорганизмов.
На поверхности мембран мезосом находятся ферменты, участвующие в процессе дыхания. Над клеточной стенкой у многих бактерий расположена слизистая капсула, предназначенная для дополнительной защиты бактерии от внешних воздействий. Бактерии размножаются простым делением надвое.
После редупликации кольцевой ДНК клетка удлиняется и в ней образуется поперечная перегородка. В дальнейшем дочерние клетки расходятся или остаются связанными в группы. Значение бактерий Разнообразие биохимических процессов у прокариотов велико: необходимую для жизни энергию различные бактерии получают или окисляя неорганические соединения, или используя для питания готовые органические вещества, или посредством фотосинтеза. Некоторые бактерии являются паразитами животных или растений. Жизнеспособность бактерий поразительна.
Размножаются путем бинарного деления, обладают независимым от клетки-хозяина метаболизмом. Источником энергии у внеклеточных риккетсий служит глутамат.
Возможно, что при размножении получают макроэргические соединения из клетки-хозяина. Способны индуцировать [как? На поверхности мембраны клеточной стенки располагается капсулоподобный слизистый покров и микрокапсула, содержащие группоспецифичный «растворимый» антиген. В клеточной стенке локализуются основные белки, большинство из которых являются видоспецифичными антигенами, а также липополисахарид и пептидогликан. В цитоплазматической мембране преобладают ненасыщенные жирные кислоты, она осмотически активна, имеет специфическую транспортную систему АТФ-АДФ. Грибобактерии актиномицеты, стрептомицеты, микобактерии Актиномицеты Actinomicetes или лучистые грибки, стрептомицеты, микобактерии Mycobacterium - от греч. Распространены в почве, водоемах, в воздухе и на растительных остатках; некоторые - паразиты животных, человека туберкулез, дифтерия и др.
Некоторые виды образуют антибиотики, пигменты, витамины [т. Для них характерно нитевидное или палочковидное и кокковидное строение и наличие боковых выростов. Актиномицеты состоят из центрального "клубка" ветвящихся нитевидных структур гифы , от которого к периферии отходят тонкие филаменты. Длинный ветвящийся мицелий актиномицетов не имеет перегородок, чем сильно отличается от мицелия грибов. Микобактерии, к которым относятся возбудители туберкулеза и проказы, обладают рядом особенностей, из-за которых с ними трудно бороться. Например, при лечении туберкулеза приходится принимать антибиотики очень долго, чтобы избежать рецидива, хотя большинство туберкулезных палочек Mycobacterium tuberculosis погибает в самом начале лечения. Дело в том, что некоторая часть популяции сохраняет жизнеспособность еще долго после гибели основной массы бактерий.
Самое интересное, что выжившие микробы могут генетически ничем не отличаться от погибших. Иными словами, у микобактерий имеется большая ненаследственная изменчивость по устойчивости к антибиотикам. Микобактерии фактически создают фенотипическое разнообразие при каждом делении, не меняя своего генома. Цианобактерии сине-зеленые водоросли, цианеи Цианобактерии, или сине-зелёные водоросли лат. Cyanobacteria, от греч. Сине-зеленая окраска обусловлена пигментами - хлорофиллом и фикоцианином. Размножение бесполое.
Обитают чаще в пресных водах, но могут жить в морях, океанах, почве, горячих источниках. Некоторые съедобны. Цианобактерии, вместе с хлороксибактериями, относят к подцарству оксифотобактерий. Эти бактерии имеют одиночные и колониальные формы. Колонии создают органогенные известковые постройки строматолиты. Цианобактерии могут использовать как солнечную энергию автотрофность , так и энергию, выделяющуюся при расщеплении готовых органических веществ гетеротрофность. В периферической части клеток цианобактерий диффузно распределены синий и бурый пигменты, определяющие в сочетании с хлорофиллом сине-зеленый цвет этих организмов.
Некоторые цианобактерии могут иметь дополнительные пигменты, изменяющие их характерный цвет до черного, коричневого, красного. Цвет Красного моря определяется широким распространением в нем пурпурно пигментированных сине-зеленых. Цианобактерии наиболее близки к древнейшим микроорганизмам, остатки которых строматолиты, возраст более 3,5 миллиардов лет обнаружены на Земле. Они были и остаются самой распространенной группой организмов на планете. Сравнительно крупные размеры клеток и физиологическое сходство с водорослями было причиной их рассмотрения ранее в составе водорослей «синезелёные водоросли», «цианеи». За то время было альгологически описано более 1000 видов в почти 175 родах. Бактериологическими методами в настоящее время подтверждено существование не более 400 штаммов.
Биохимическое, молекулярно-генетическое и филогенетическое сходство цианобактерий с остальными бактериями в настоящее время подтверждено солидным корпусом доказательств, однако до сих пор некоторые ботаники, отдавая дань традиции, склонны относить цианобактерии к водорослям. Единственные, наряду с прохлорофитами, бактерии, способные к оксигенному фотосинтезу, предки цианобактерий рассматриваются в теории эндосимбиогенеза как наиболее вероятные предки хроматофоров красных водорослей прохлорофиты по этой теории имеют общих предков с хлоропластами прочих водорослей и высших растений. Сине-зелёные водоросли выделяют свободный кислород, одновременно химически связывая водород и углерод. Они замечательны тем, что способны использовать атмосферный азот и превращать его в органические формы азота.
Бактерии распространены повсюду: в воздухе, в воде, в почве, в мёртвых телах и в живых организмах. Примером бактерий может служить сенная палочка. Она несколько крупнее других бактерий, поэтому её можно рассмотреть в школьный микроскоп. Бактерия сенная палочка имеет форму, соответствующую её названию. Она состоит из одной клетки. Снаружи клетка покрыта тонкой оболочкой, поэтому она сохраняет свою постоянную форму. Внутри находится протоплазма. Ядра нет, как нет и хлорофилла. Содержимое клетки бесцветно. Многие бактерии имеет форму палочки. Само слово «бактерия» происходит от греческого слова «бактерион», что означает палочка. Однако многие бактерии имеют форму шара, изогнутых палочек, запятых или спиралей. Бактерии растут и размножаются необыкновенно быстро. Холерная бактерия делится на две клетки через каждые 20 минут. Новые клетки вырастают до размеров взрослой бактерии и снова делятся. Бактерии нуждаются в пище, влаге, в определённой температуре для поддержании своей жизнедеятельности. При наступлении неблагоприятных для их жизни условий, например при недостатке пищи, влаги или при резком понижении или повышении температуры, протоплазма бактерии сжимается в шарик и покрывается новой прочной оболочкой. Такое состояние бактерий называется cпopoй. В состоянии споры бактерия не питается и не движется - она находится в покое. Споры многих бактерий выдерживают длительное высушивание, кипячение, замораживание, а также действие различных ядов. Попав во влажную питательную среду, споры набухают и затем прорастают. Из споры снова образуется бактерия, которая начинает двигаться, питаться и размножаться. Так, путём образования спор бактерии сохраняют своё существование. Таким образом, бактерии объединяются в царство мельчайших организмов очень простого строения. Бактерии большей частью питаются органическими веществами; среди них встречаются сапрофиты и паразиты. Бактерии растут и размножаются очень быстро.
Бактерии эволюционировали в лаборатории?
Впоследствии выяснилось, что клетки этой группы организмов бывают самой разнообразной формы — округлой, спиралевидной, каплевидной, — но название уже прижилось для всей группы доядерных организмов. Луи Пастер фотография 1878 г. Большой вклад в изучение роли бактерий в природе и жизни человека внёс французский учёный Луи Пастер 1822—1895 , основоположник микробиологии. Он изучал процессы брожения, вызываемые бактериями, при изготовлении пива, вина, уксуса, молочнокислых продуктов и квашения овощей. Впоследствии этот способ получил в честь своего изобретателя название пастеризации. Пастер доказал, что причиной многих заболеваний человека и животных — сибирской язвы, куриной холеры, болезни шелковичных червей — являются бактерии, и заложил научные основы создания вакцин и вакцинации. Были исследованы многие болезнетворные бактерии, получены вакцины и лекарства, способные предотвратить и победить болезни, вызываемые этими бактериями. Многие бактерии стали служить человеку в промышленных масштабах: их культивированием и получением продукции от этих микроорганизмов занимается прикладная микробиология и биотехнология. Свернуть Общая характеристика бактерий Бактерии — это крошечные организмы, изучать которые можно только с помощью увеличительной техники. Увидеть бактерии можно и в световой микроскоп, а вот рассмотреть мельчайшие структуры бактериальных клеток позволяют только электронные микроскопы.
Бактерии, видимые в световой а и электронный б микроскопы. Бактерии — это одноклеточные организмы У некоторых видов бактерий клетки не разделяются после деления, а располагаются парами, четвёрками, цепочками или гроздьями, но при этом каждая бактериальная клетка остаётся самостоятельным организмом и способна существовать независимо от других клеток. Многие бактерии способны образовывать на питательной среде колонии характерной формы. Колония таких бактерий не является многоклеточным организмом, а представляет собой клеточную массу — различимое невооружённым глазом скопление клеток. Формы бактериальных клеток Это интересно: форма бактериальных клеток Бактериальные клетки бывают разной формы. Палочковидные бактерии называют бациллами от лат. Диплококки от др. Названия стафилококков и стрептококков происходят от греческих слов staphylоs [стафилос] — «виноград, гроздь» и streptos [стрептос] — «цепочка». В бактериальных клетках нет ядер Все представители царства бактерий являются прокариотами.
Прокариоты, или Доядерные, — это надцарство одноклеточных организмов, не имеющих клеточных ядер. Бактериальные клетки окружены клеточной стенкой из муреина Муреин от лат. Прочная и достаточно жёсткая клеточная стенка располагается поверх клеточной мембраны и определяет характерную для каждого вида форму бактериальных клеток. Бактерий можно выращивать в лабораторных условиях Микробиологи, изучающие разные виды бактерий, выращивают их на особых средах — в жидком питательном бульоне, на поверхности или в толще особых плотных желеобразных сред. Колонии бактерий на поверхности питательных сред в чашках Петри Строение бактериальной клетки Клетки бактерий устроены гораздо проще клеток других организмов — животных, растений, грибов. В них нет не только ядер, но и многих органоидов. В цитоплазме можно обнаружить только мелкие округлые органоиды — рибосомы, осуществляющие сборку белковых молекул, и включения в виде зёрен, капель, кристаллов или комочков разной формы — отложенные впрок запасы питательных веществ или изолированные уже ненужные клетке продукты обмена веществ. В цитоплазме располагается также генетический материал — вещество, содержащее наследственную информацию о строении и жизнедеятельности бактериальной клетки. В отличие от клеток эукариотических организмов, генетический материал в клетках бактерий не окружён ядерной оболочкой.
У некоторых видов бактерий поверх клеточной стенки имеется дополнительный внешний слой — слизистая капсула. В отличие от стенки, капсула неплотная, полужидкая, полупрозрачная. Капсула обеспечивает дополнительную защиту бактериальных клеток от повреждений. Схема строения бактериальной клетки. Некоторые виды бактерий имеют один или несколько жгутиков, с помощью которых они передвигаются. Узнать больше: пили бактерий Этот материал будет полезен тем, кто готовится к олимпиаде Иногда клетки бактерий бывают покрыты многочисленными тонкими выростами — пилями от лат. Пили представляют собой нитевидные белковые образования и бывают двух видов. Одни, более короткие и тонкие, участвуют в прикреплении бактериальных клеток к различным поверхностям и друг к другу. Другие, длинные и более толстые, служат для передачи наследственного материала от одной бактериальной клетки к другой.
Жизнедеятельность бактерий Дыхание Большинство видов бактерий используют для дыхания кислород, их называют аэробными бактериями. Но есть виды прокариот, не нуждающиеся в кислороде, — это анаэробные бактерии. Бактерии-анаэробы способны жить на дне водоёмов, в глубоких слоях почвы, в желудках и кишечниках животных, то есть в местообитаниях, где совсем немного или вообще нет кислорода.
Биохимическое, молекулярно-генетическое и филогенетическое сходство цианобактерий с остальными бактериями в настоящее время подтверждено солидным корпусом доказательств, однако до сих пор некоторые ботаники, отдавая дань традиции, склонны относить цианобактерии к водорослям. Единственные, наряду с прохлорофитами, бактерии, способные к оксигенному фотосинтезу, предки цианобактерий рассматриваются в теории эндосимбиогенеза как наиболее вероятные предки хроматофоров красных водорослей прохлорофиты по этой теории имеют общих предков с хлоропластами прочих водорослей и высших растений. Сине-зелёные водоросли выделяют свободный кислород, одновременно химически связывая водород и углерод.
Они замечательны тем, что способны использовать атмосферный азот и превращать его в органические формы азота. При фотосинтезе они могут использовать углекислый газ как единственный источник углерода. В отличие от фотосинтезирующих бактерий, цианобактерии при фотосинтезе выделяют молекулярный кислород. В течении прошедших 3-х миллиардов лет до начала кембрия они являлись основным источником свободного кислорода в атмосфере Земли, наряду с фотохимическими реакциями в верхних слоях атмосферы. Строматолиты ископаемые цианобактериальные маты Строматолиты др. Следует иметь ввиду, что вещество, из которого построен строматолит, не создается матом; последний лишь структурирует естественное осадконакопление.
На ранних стадиях изучения строматолиты ассоциировались с остатками многоклеточных эукариот — губками, кораллами или мхами. По степени сложности они более всего напоминали исследователям скелеты многоклеточных эукариот. Позже к числу возможных строматолитообразователей были отнесены миксомицеты. Дальнейшее изучение строматолитов позволило однозначно связать их образование с жизнедеятельностью колоний нитчатых цианобактерий. Это было показано в результате обнаружения остатков нитей в ископаемых строматолитах и подтверждено исследованиями их современных аналогов. Строматолиты чаще всего состоят из карбоната кальция потому лишь, что карбонатный тип осадконакопления в море наиболее обычен, однако в иных гидрохимических условиях формируются строматолиты фосфатные, кремнеземовые, железистые и пр.
Мат, располагающийся на верхней поверхности создаваемого строматолита, представляет собой плотный многослойный "ковер" общей толщиной до 2 см; основу его составляют нитчатые либо пальмеллоидные цианобактерии, однако помимо них в формировании сообщества участвуют и другие бактерии. Маты существуют во многих районах мира, однако в современное время настоящие строматолиты существуют только в Акульем заливе на западном побережье Австралии и на атлантическом побережье Багамских островов. Многослойная расцветка строматолитов может меняться в течении суток, поскольку обитатели нижних слоев могут подниматься в темное время наверх и наоборот. Скользят бактерии вверх и вниз со скоростью до 2см в час. Строматолиты достоверно появляются в геологической летописи в древнейших осадочных формациях Уарравуна Западная Австралия возрастом в 3,5 млрд лет — это древнейшая известная форма [прокариотической] жизни. Наибольший расцвет цианобактерий пришелся на протерозойский эон, затем их роль резко снизилась.
Строматолиты обитали в соленых и пресных водах. В протерозое из строматолитов состояли огромные рифы мощностью в сотни метров. Отдельные глубоководные строматолиты достигали высоты 75 м. Протерозойские строматолиты достигли высокого уровня сложности: появились формы со всевозможными ветвящимися столбиками, козырьками, разнообразной слоистостью и микроструктурой и т. Современные строматолиты, образуемые бактериальными матами, устроены намного проще. Микростроматолиты строматолиты-столбики Министроматолиты - мельчайшие столбчатые строматолиты с диаметром столбиков Представительный комплекс раннепротерозойских министроматолитов имеет возраст 2.
Следующий возрастной комплекс министроматолитов, развитый в раннем и начале среднего рифея 1. В целом рифейские министроматолиты однообразнее раннепротерозойских из-за исчезновения одной сложно построенной надродовой дорифейской группировки, преобладания в рифее форм с цилиндрическими вертикальными колонками и появления короткостолбчатых построек, связанных протяженными наслоениями. Наряду с этим, рифейские министроматолиты проявляют явную тенденцию к уменьшению диаметра и высоты колонок и к увеличению количества переходных мостиков. Имеются и возрастом 775 млн. Тенденции морфологических изменений министроматолитов, зафиксированные в протерозое, не находят продолжения в их раннепалеозойском комплексе и не совпадают с тенденциями изменения протерозойского комплекса столбчатых строматолитов обычной размерности. Поэтому можно предполагать, что ответственность за формирование каждого из упомянутых комплексов несли специфические ассоциации микроорганизмов.
Prochlorales — «дохлорофильные дробянки» — порядок прокариот, обычно относимый к царству бактерий, отличительной особенностью представителей которого является способность к оксигенному фотосинтезу, сходному с таковым у цианобактерий при отличном от цианобактерий составе фотосинтезирующих пигментов. Возможно, вместе с цианобактериями участвовали в строительстве строматолитов. В силу своей редкости прохлорофиты не имеют какого-либо существенного практического значения, однако представляют немалый научный интерес как возможные «предки» хлоропластов эукариот. Предполагается, что симбиоз каких-то других прокариот с прохлорофитами дал начало зеленым водорослям - предкам многоклеточных растений. Археобактерии археи - анаэробные бактерии От гипотетических протобионтов следует строго отличать археобактерии археи. Недавно они были признаны отдельной самостоятельной группой.
Они настолько отличаются от всех остальных живых существ, что представляют собой целый "мир", отдельный от других бактерий эубактерий и организмов с ядросодержащими клетками эукариотов. Кроме того, это некультивируемые микробы, отказывающиеся расти на лабораторных средах.
Значение РНК определяется тем, что они обеспечивают синтез в клетке специфических для нее белков. Удвоение ДНК. Перед каждым клеточным делением при абсолютно точном соблюдении нуклеотидной последовательности происходит самоудвоение редупликация молекулы ДНК. Редупликация начинается с того, что двойная спираль ДНК временно раскручивается. Это происходит под действием фермента ДНК-полимеразы в среде, в которой содержатся свободные нуклеотиды.
Каждая одинарная цепь по принципу химического сродства А-Т, Г-Ц притягивает к своим нуклеотидным остаткам и закрепляет водородными связями свободные нуклеотиды, находящиеся в клетке. Таким образом, каждая полинуклеотидная цепь выполняет роль матрицы для новой комплиментарной цепи. В результате получаются две молекулы ДНК, у каждой из них одна половина происходит от родительской молекулы, а другая является вновь синтезированной, то есть две новые молекулы ДНК представляют собой точную копию исходной молекулы. Несоответствие между возможностью видов к беспредельному размножению и ограниченностью ресурсов — главная причина борьбы за существование. Виды борьбы за существование. Внутривидовая борьба. Дарвин указывал, что борьба за жизнь особенно упорна между организмами в пределах одного вида, и обосновывал свое утверждение тем, что они обладают сходными признаками и испытывают одинаковые потребности.
Широкое распространение в природе конкуренции организмов за ограниченные ресурсы — типичный способ естественного отбора, благоприятствующего победителям в конкуренции. Кроме того, естественный отбор может осуществляться и без непосредственной конкуренции, например вследствие действия неблагоприятных факторов среды. Способность переносить низкие и высокие температуры, воздействие других параметров среды также приводит к выживанию более приспособленных или к их более успешному размножению. Иногда косвенные формы борьбы за существование дополняются прямой борьбой. Примером могут служить турнирные бои самцов за право обладать гаремом. Взаимоотношения особей в пределах вида не ограничиваются борьбой и конкуренцией, существует также и взаимопомощь. Межвидовая борьба.
Под межвидовой борьбой следует понимать конкуренцию особей разных видов. Особой остроты межвидовая борьба достигает в тех случаях, когда противоборствуют виды, обитающие в сходных экологических условиях и использующие одинаковые источники питания. В результате межвидовой конкуренции происходит либо вытеснение одного из противоборствующих видов, либо приспособление видов к разным условиям в пределах единого ареала, либо, наконец, их территориальное разобщение. Межвидовая борьба ведет к экологическому и географическому разобщению видов. При попытках переселения в новые зоны обитания большинство не выдерживает влияния других видов и факторов внешней среды, лишь некоторые способны закрепиться и выдержать конкуренцию. Сложные взаимоотношения хищника и жертвы, хозяина и паразита — тоже примеры межвидовой борьбы. Борьба с неблагоприятными условиями среды.
В ходе естественного отбора основное значение имеет фенотип организма: окраска, способность быстро перемещаться, устойчивость к действию высоких или низких температур и многое другое. Поэтому верно утверждение, что естественный отбор оценивает прежде всего фенотип особи. Поскольку за одинаковыми фенотипами могут скрываться различные генотипы например, АА и Аа при полном доминировании , то сходные фенотипы, наиболее приспособленные к конкретной ситуации, могут формироваться на различной генетической основе. Широкое распространение инсектицидов привело к возникновению у многих видов насекомых устойчивости к ним. Однако генетические механизмы устойчивости оказались неодинаковыми в различных популяциях. В одних случаях устойчивость определялась доминантным геном, в других — рецессивным, отмечено не только аутосомное наследование, но и наследование, сцепленное с полом. Обнаружены, кроме того, случаи полигенного и цитоплазматического наследования.
Соответственно и физиологические механизмы устойчивости к инсектицидам оказались различными. Среди них накопление яда кутикулой; повышенное содержание липидов, способствующих растворению инсектицида; повышение устойчивости нервной системы к действию ядов; снижение двигательной активности и др. Направление, в котором действует естественный отбор, и его интенсивность в природных популяциях не являются строго фиксированным, неизменным показателем. Они существенно изменяются как во времени, так и в пространстве. У обыкновенного хомяка обнаруживаются две основные формы окраски — бурая и черная. Их распространение от Украины до Урала показывает, что существует как большое разнообразие в сезонной изменчивости черных и бурых форм, так и значительные различия в их концентрации на видовом ареале. Итак, естественный отбор — единственный фактор эволюции, осуществляющий направленное изменение фенотипического облика популяции и ее генотипического состава вследствие избирательного размножения организмов с разными генотипами.
Аденозинфосфорные кислоты. Особо важную роль в биоэнергетике клетки играет адениловый нуклеотид, к которому присоединены два остатка фосфорной кислоты. Такое вещество называют аденозинтрифосфорной кислотой АТФ. Энергию АТФ все клетки используют для процессов биосинтеза, движения, производства тепла, нервных импульсов, свечений например, у люминесцентных бактерий , то есть для всех процессов жизнедеятельности. АТФ — универсальный биологический аккумулятор энергии. Световая энергия Солнца и энергия, заключенная в потребляемой пище, запасается в молекулах АТФ. Запас АТФ в клетке невелик.
Так, в мышце запаса АТФ хватает на 20—30 сокращений. При усиленной, но кратковременной работе мышцы работают исключительно за счет расщепления содержащейся в них АТФ. После окончания работы человек усиленно дышит — в этот период происходит расщепление углеводов и других веществ происходит накопление энергии и запас АТФ в клетках восстанавливается. Митохондрии окружены наружной мембраной и, следовательно, уже являются компартментом, будучи отделенными от окружающей цитоплазмы; кроме того, внутреннее пространство митохондрий также подразделено на два компартмента с помощью внутренней мембраны. Наружная мембрана митохондрий очень похожа по составу на мембраны эндоплазматической сети; внутренняя мембрана митохондрий, образующая складки кристы , очень богата белками - пожалуй, эта одна из самых насыщенных белками мембран в клетке; среди них белки Удыхательной цепиФ, отвечающие за перенос электронов; белки-переносчики для АДФ, АТФ, кислорода, СО у некоторых органических молекул и ионов. Продукты гликолиза, поступающие в митохондрии из цитоплазмы, окисляются во внутреннем отсеке митохондрий. Белки, отвечающие за перенос электронов, расположены в мембране так, что в процессе переноса электронов протоны выбрасываются по одну сторону мембраны - они попадают в пространство между наружной и внутренней мембраной и накапливаются там.
Это приводит к возникновению электрохимического потенциала вследствие разницы в концентрации и зарядах. Эта разница поддерживается благодаря важнейшему свойству внутренней мембраны митохондрии - она непроницаема для протонов. То есть при обычных условиях сами по себе протоны пройти сквозь эту мембрану не могут. Но в ней имеются особые белки, точнее белковые комплексы, состоящие из многих белков и формирующие канал для протонов. Протоны проходят через этот канал под действием движущей силы электрохимического градиента. Энергия этого процесса используется ферментом, содержащимся в тех же самых белковых комплексах и способным присоединить фосфатную группу к аденозиндифосфату АДФ , что и приводит к синтезу АТФ. Митохондрия, таким образом, исполняет в клетке роль Уэнергетической станцииФ.
Принцип образования АТФ в хлоропластах клеток растений в общем тот же - использование протонного градиента и преобразование энергии электрохимического градиента в энергию химических связей. Направления эволюции На макроэволюционном уровне можно проследить главные направления органической эволюции: биологический и морфофизиологический прогрессы. Поскольку направление эволюции определяется естественным отбором, то пути эволюции совпадают с путями формирования приспособлений, определяющих те или иные преимущества одних групп перед другими. Появление таких признаков обусловливает прогрессивность данной группы. Биологический прогресс, то есть расширение ареала, увеличение количества особей данного вида и количества новых систематических единиц внутри вида или более крупной систематической единицы, достигается различными путями. Можно выделить несколько путей эволюции : — арогенез ароморфоз или морфофизиологический прогресс аллогенез идиоадаптацию — гипергенез Арогенез — такой путь эволюции, который характеризуется повышением организации, развитием приспособлений широкого значения, расширением среды обитания данной группы организмов. На арогенный путь развития группа организмов вступает, вырабатывая определенные приспособления, называемые в таком случае ароморфозами.
Примером ароморфоза у млекопитающих является разделение сердца на левую и правую половины с развитием 2 кругов кровообращения, что привело к увеличению легких и улучшению снабжения кислородом органов. Дифференцировка органов пищеварения, усложнение зубной системы, появление тепло кровности — все это уменьшает зависимость организма от окружающей среды. У млекопитающих и птиц появилась возможность переносить снижение температуры среды значительно легче, чем, например, у рептилий, которые теряют активность с наступлением холодной ночи и холодного времени года. В связи с этим ночная активность рептилий в среднем ниже, чем дневная. Теплокровность млекопитающих и птиц позволила им овладеть поверхностью всего земного шара. Дифференцировка зубного аппарата у млекопитающих, приспособление его к жевательной функции, чего не было ни у одного из предшествовавших классов хордовых, обеспечили большую возможность использования пищи. У них хорошо развиты большие полушария головного мозга, которые обеспечивают поведение Уразумного типаФ, позволяют организмам приспосабливаться к быстрым изменениям среды без изменения своей морфологической организации.
Ароморфозы сыграли важную роль в эволюции всех классов животных. Например, в эволюции насекомых большое значение имело появление трахейной системы дыхания и преобразование ротового аппарата. Трахейная система обеспечила резкое повышение активности окислительных процессов в организме, что вместе с появлением крыльев обеспечило им выход на сушу. Благодаря необычайному разнообразию ротового аппарата у насекомых сосущий, колющий, грызущий они приспособились к питанию самой разнообразной пищей Немалую роль сыграло в их эволюции и развитие сложной нервной системы, а также органов обоняния, зрения, осязания. Аллогенез — путь эволюции без повышения общего уровня организации. Организмы эволюционируют путем частных приспособлений к конкретным условиям среды. Такой тип эволюции ведет к быстрому повышению численности и многообразию видового состава.
Все многообразие любой крупной систематической группы является результатом аллогенеза. Достаточно вспомнить многообразие млекопитающих, чтобы увидеть, насколько разнообразны пути их приспособления к самым различным факторам среды. Аллогенезы осуществляются благодаря мелким эволюционным изменениям, повышающим приспособление организмов к конкретным условиям обитания. Эти изменения называются идиоадаптацией. Хорошим примером идиоадаптаций служат защитная окраска у животных, разнообразные приспособления к перекрестному опылению ветром и насекомыми, приспособление плодов и семян к рассеиванию, приспособление к придонному образу жизни уплощение тела у многих рыб. Аллогенез часто приводит к узкой специализации отдельных групп. Общая дегенерация катагенез.
В ряде эволюционных ситуаций, когда окружающая среда стабильна, наблюдается явление общей дегенерации, то есть резкого упрощения организации, связанного с исчезновением целых систем органов и функций. Очень часто общая дегенерация наблюдается при переходе видов к паразитическому образу существования. У крабов известен паразит саккулина, имеющая вид мешка, набитого половыми продуктами, и обладающая как бы корневой системой, пронизывающей тело хозяина. Эволюция этого организма такова. Родоначальная форма принадлежала к усоногим ракам и прикреплялась не к водным камням, а к крабам и постепенно перешла к паразитическому способу существования, утратив во взрослом состоянии почти все органы. Несмотря на то, что общая дегенерация приводит к значительному упрощению организации виды, идущие по этому пути, могут увеличивать численность и ареал, то есть двигаться по пути биологического прогресса. Гипергенез — путь эволюции, связанный с увеличением размеров тела и непропорциональным пере развитием органов.
В различные периоды в различных классах организмов появлялись гигантские формы. Но, как правило, они довольно быстро вымирали и наступало господство более мелких форм. Вымирание гигантских форм чаще всего объясняется нехваткой пищи, хотя некоторое время такие организмы могут иметь преимущество вследствие своей огромной силы и отсутствия по этой причине врагов. Соотношение направлений эволюции. Пути эволюции органического мира сочетаются друг с другом либо сменяют друг друга, причем ароморфозы происходят значительно реже идиоадаптаций. Но именно ароморфозы определяют новые этапы в развитии органического мира. Возникнув путем ароморфоза, новые, высшие по организации группы организмов занимают другую среду обитания.
Далее эволюция идет по пути идиоадаптаций, иногда и дегенерации, которая обеспечивает организмам обживание новой для них среды обитания. Клетка — элементарная единица живой системы. Элементарной единицей она может быть названа потому, что в природе нет более мелких систем, которым были бы присущи все без исключения признаки свойства живого. Известно, что организмы бывают одноклеточными например, бактерии, простейшие, водоросли или многоклеточными. Клетка обладает всеми свойствами живой системы: она осуществляет обмен веществ и энергии, растет, размножается и передает по наследству свои признаки, реагирует на внешние раздражители и способна двигаться. Она является низшей ступенью организации, обладающей всеми этими свойствами. Клетка, по существу, представляет собой самовоспроизводящуюся химическую систему.
Для того, чтобы поддерживать в себе необходимую концентрацию химических веществ, эта система должна быть физически отделена от своего окружения, и вместе с тем она должна обладать способностью к обмену с этим окружением, то есть способностью поглощать те вещества, которые требуются ей в качестве У сырья Ф, и выводить наружу накапливающиеся У отходы Ф. Роль барьера между данной химической системой и ее окружением играет плазматическая мембрана. Она помогает регулировать обмен между внутренней и внешней средой и, таким образом, служит границей клетки. Функции в клетке распределены между различными органоидами, такими, как клеточное ядро, митохондрии и т. У многоклеточных организмов разные клетки например, нервные, мышечные, клетки крови у животных или клетки стебля, листьев, корня у растений выполняют разные функции и поэтому различаются по структуре. Несмотря на многообразие форм, клетки разных типов обладают поразительным сходством главных структурных особенностей. В качестве единого целого клетка реагирует и на воздействие внешней среды.
При этом одна из ее особенностей как целостной системы — обратимость некоторых происходящих в ней процессов. Например, после того как клетка отреагировала на внешние воздействия, она возвращается к исходному состоянию. В ней сосредоточена наследственная информация, обеспечивающая сохранность вида и разнообразие особей. Строение растительной клетки: целлюлозная оболочка, мембрана, цитоплазма с органоидами, ядро, вакуоли с клеточным соком. Наличие пластид — главная особенность растительной клетки. Функции клеточной оболочки — определяет форму клетки, защищает от факторов внешней среды. Плазматическая мембрана — тонкая пленка, состоит из взаимодействующих молекул липидов и белков, отграничивает внутреннее содержимое от внешней среды, обеспечивает транспорт в клетку воды, минеральных и органических веществ путем осмоса и активного переноса, а также удаляет продукты жизнедеятельности.
Цитоплазма — внутренняя полужидкая среда клетки, в которой расположено ядро и органоиды, обеспечивает связи между ними, участвует в основных процессах жизнедеятельности. Эндоплазматическая сеть — сеть ветвящихся каналов в цитоплазме. Она участвует в синтезе белков, липидов и углеводов, в транспорте веществ. ЭПС и рибосомы — единый аппарат синтеза и транспорта белков. Митохондрии — органоиды, отграниченные от цитоплазмы двумя мембранами. В них окисляются органические вещества и синтезируются молекулы АТФ с участием ферментов. Увеличение поверхности внутренней мембраны, на которой расположены ферменты за счет крист.
АТФ — богатое энергией органическое вещество. Пластиды хлоропласты, лейкопласты, хромопласты , их содержание в клетке — главная особенность растительного организма. Хлоропласты — пластиды, содержащие зеленый пигмент хлорофилл, который поглощает энергию света и использует ее на синтез органических веществ из углекислого газа и воды. Отграничение хлоропластов от цитоплазмы двумя мембранами, многочисленные выросты — граны на внутренней мембране, в которых расположены молекулы хлорофилла и ферменты. Комплекс Гольджи — система полостей, отграниченных от цитоплазмы мембраной. Накапливание в них белков, жиров и углеводов. Осуществление на мембранах синтеза жиров и углеводов.
Лизосомы — тельца, отграниченные от цитоплазмы одной мембраной. Содержащиеся в них ферменты ускоряют реакцию расщепления сложных молекул до простых: белков до аминокислот, сложных углеводов до простых, липидов до глицерина и жирных кислот, а также разрушают отмершие части клетки, целые клетки. Вакуоли — полости в цитоплазме, заполненные клеточным соком, место накопления запасных питательных веществ, вредных веществ; они регулируют содержание воды в клетке. Ядро — главная часть клетки, покрытая снаружи двух мембранной, пронизанной порами ядерной оболочкой. Вещества поступают в ядро и удаляются из него через поры. Хромосомы — носители наследственной информации о признаках организма, основные структуры ядра, каждая из которых состоит из одной молекулы ДНК в соединении с белками. Строение животной клетки — наличие наружной мембраны, цитоплазмы с органоидами, ядра с хромосомами.
Наружная, или плазматическая, мембрана — отграничивает содержимое клетки от окружающей среды других клеток, межклеточного вещества , состоит из молекул липидов и белка, обеспечивает связь между клетками, транспорт веществ в клетку пиноцитоз, фагоцитоз и из клетки. Цитоплазма — внутренняя полужидкая среда клетки, которая обеспечивает связь между расположенными в ней ядром и органоидами. В цитоплазме протекают основные процессы жизнедеятельности. Органоиды клетки: 1 эндоплазматическая сеть ЭПС — система ветвящихся канальцев, участвует в синтезе белков, ли-пидов и углеводов, в транспорте веществ в клетке; 2 рибосомы — тельца, содержащие рРНК, расположены на ЭПС и в цитоплазме, участвуют в синтезе белка. ЭПС и рибосомы — единый аппарат синтеза и транспорта белка; 3 митохондрии — Усиловые станцииФ клетки, отграничены от цитоплазмы двумя мембранами. Внутренняя образует кристы складки , увеличивающие ее поверхность. Ферменты на кристах ускоряют реакции окисления органических веществ и синтеза молекул АТФ, богатых энергией; 4 комплекс Гольджи — группа полостей, отграниченных мембраной от цитоплазмы, заполненных белками, жирами и углеводами, которые либо используются в процессах жизнедеятельности, либо удаляются из клетки.
На мембранах комплекса осуществляется синтез жиров и углеводов; 5 лизосомы — тельца, заполненные ферментами, ускоряют реакции расщепления белков до аминокислот, липидов до глицерина и жирных -. В лизосомах разрушаются отмершие части клетки, целые и клетки. Клеточные включения — скопления запас- иных питательных веществ: белков, жиров и углеводов. Ядро — наиболее важная часть клетки. Оно покрыто двухмембранной оболочкой с порами, через которые одни вещества проникают в ядро, а Другие поступают в цитоплазму. Хромосомы — основные структуры ядра, носители наследственной информации о признаках организма. Она передается в процессе деления материнской клетки дочерним клеткам, а с половыми клетками — дочерним организмам.
Ядро — место синтеза ДНК. Формы естественного отбора В природе естественный отбор, без сомнения, выступает как единый фактор, действующий в пределах популяций. Однако в зависимости от изменений условий среды и взаимодействия популяций и видов не только его направление, но и формы могут меняться. Механизм действия естественного отбора при этом остается неизменным — выживание и более эффективное размножение индивидуумов, наиболее приспособленных к конкретным условиям существования. Выделяют несколько форм отбора: — движущий — стабилизирующий — разрывающий. Движущая форма отбора. Способствует сдвигу среднего значения признаков и появлению новых форм.
Бактерии и археи были первыми живыми организмами на Земле и оставались ее полноправными хозяевами на протяжении более 2 млрд лет. Строение бактериальной клетки. Источник: Foxford.
Считается, что биомасса бактерий и архей на Земле сравнима с биомассой всех остальных живых существ: они точно не уступают другим организмам по своей многочисленности, а возможно, и превосходят их. Бактерии и археи присутствуют практически повсюду: в воде, почве, осадках водоемов, глубоко под землей, под дном океана, в горячих источниках и в вечной мерзлоте. Как это произошло?
Их долгое время называли сине-зелеными водорослями, потому что они выглядят как одноклеточные водоросли, но на самом деле это прокариоты, ведь у них нет ядра. В ходе этого процесса образуется свободный кислород и, как результат, кислородная атмосфера. Запасание энергии в процессе дыхания происходит при переносе электронов по цепочке белков-переносчиков.
Акцепторами электронов при дыхании прокариот могут быть и кислород, и другие окислители. Но больше всего энергии выделяется, если окислителем служит кислород. И поэтому кислородное дыхание стало основным энергетическим процессом, благодаря которому в процессе эволюции могли появляться все более сложные живые системы.
Почему они так и не научились дышать им, как все остальные? Кислорода на всех не хватило? После появления кислородной атмосферы на Земле все еще оставалось много местообитаний, лишенных кислорода, где продолжали жить анаэробные микроорганизмы.
Прочно занимая свою экологическую нишу, они не испытывали острой необходимости эволюционировать дальше, да и анаэробные процессы не давали достаточного количества энергии для усложнения жизненных форм. Несмотря на это, они прекрасно дожили до наших дней и, как и анаэробные местообитания, существуют на планете в значительном количестве. Бактерии практически всеядны.
Прокариоты (доядерные одноклеточные)
* * * Бактерии являются самыми древними организмами, появившимися около 3,5 млрд. лет назад в архее. Заходи и смотри, ответил 1 человек: какими организмами являются бактерии с точки зрения эволюции — Знания Сайт. Бактерии как и все организмы прошли эволюционный путь развития с точки зрения эволюции они являются. а)высокоорганизованными б) организмами способными дать начало новой группе организмов в)примитивными г)не способными изменяться. пж дайте ответ. Колония таких бактерий не является многоклеточным организмом, а представляет собой клеточную массу — различимое невооружённым глазом скопление клеток. В целом клетка бактерии устроена достаточно просто.